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Why Monte Carlo?

The purpose of Monte Carlo or Quasi Monte Carlo is to
approximate the value of high dimensional integrals

I =

∫
~x∈A

g(x) dA



Sample average approach

Write integral as

I =

∫
~x∈A

f(x)fX(x) d~x

where fX is a probability density. Then draw

X1, . . . , Xn
iid∼ fX ,

use

Î =
1

n

n∑
i=1

f(Xi)



There must be a better way!
Seen many approaches to improvement this last week

I SMC concentrate particles where g(x) = f(x)fX(x) large

I Multilevel Monte Carlo: lots of samples to get initial estimate,
small number of samples to get correction

I QMC and variance reduction to get better spread of random
variables

Perfect integration

I Learn from our samples about the space

I End with guaranteed relative error bounds on Î

I Need relative error since I usually exponentially large/small in
dimension



Want user set relative error and chance of success

Definition
An algorithm is an (ε, δ)-randomized approximation scheme if
for all ε, δ > 0, the output â of the algorithm satis�es (with respect
to true answer a)

P
(∣∣∣∣ âa − 1

∣∣∣∣ > ε

)
< δ.



Our Goal

Develop (ε, δ)-ras for I where the number of samples grows
polynomially (linearly if possible) in the dimension of the problem



Simulation

Bernoulli Factory

Acceptance
Rejection

Density
AR

Fundamental Theorem
of Simulation

Read-once
CFTP

Coupling
from the past

Bounding
chains

Fundamental Theorem
of Perfect simulation

Dominating
Processes

Birth/death
chains

Uniform coupling

Integration

Gamma Bernoulli
Approximation Scheme

Bounded
Relative
Variance

Gamma Poisson
Approximation Scheme

Tootsie Pop
Algorithm

Well balanced
Importance Sampling



Can I use perfect integration

methods wtih imperfect

samples?



Absolutely!

Bad
Imperfect samples with imperfect integration

Good
Imperfect samples with perfect integration

Great!
Perfect samples with perfect integration



Gamma Bernoulli

Approximation Scheme



All integrals are area/volume problems
For f a nonnegative function:∫
(x1,...,xn)∈A

f(x1, . . . , xn) dRn =

vol({x1, . . . , xn, y}|(x1, . . . , xn) ∈ A, y ∈ [0, f(x1, . . . , xn)])

0 2

A Area(A) =
∫ 2
0 4x3 − 4x2 + 4x dx



Convert area problem to mean of Bernoulli problem

Embed A in larger region B

1. Draw X ← Unif(B) where m(B) known

2. Then P(X ∈ A) ∼ Bern(m(A)/m(B))

B

0 2

A



Gamma Bernoulli Approximation Scheme outline
T T T T T T T T T T TH H H

0

H H H

R

1. Use your Bern(p) to thin a 1D Poisson point process of rate 1

2. Result is a Poisson point process of rate p

3. Let R be location of kth unthinned point (then
R ∼ Gamma(k, p))

4. Let p̂ = (k − 1)/R (so p/p̂ ∼ Gamma(k, k − 1))



Gamma Bernoulli Approximation Scheme

Gamma_Bernoulli_Approximation_Scheme
Input: k Output: p̂k

1) S ← 0, R← 0.
2) Repeat
3) X ← Bern(p), A← Exp(1)
4) S ← S +X, R← R+A
5) Until S = k
6) p̂k ← (k − 1)/R

M. Huber, A Bernoulli mean estimate with known relative error
distribution, Random Struc. & Alg., arXiv:1309.5413, 50:173�182, 2017



Performance of GBAS

Recall that an (ε, δ)-ras satis�es

P
(∣∣∣∣ âa − 1

∣∣∣∣ > ε

)
< δ

Average number of Bernoulli draws for (ε, δ)-ras at most

d2ε−2 ln(δ−1)e/p

Bad for small p!



Theoretical Computer Science

How hard is optimization and integration?



How hard is integration?

Optimization ≤ Integration



NP problems

If you can evaluate f(x) in polynomial time, the problem

of deciding if ∃x such that f(x) ≥ a for some a is in the

NP class of problems.

Notable NP hard problems

1. Traveling Salesman Problem

2. Integer Programming

3. Max-cut in a graph



#P problems

If you can evaluate f(x) in polynomial time, the problem

of �nding the measure of the set of x such that f(x) ≥ a
for some a is in the #P (read as �Number-P�) class of

problems.

Notable #P hard problems

1. Find the number of Hamiltonian cycles in a graph

2. Volume of a convex body

3. How many cuts of a certain size are there in a graph?



#P harder than NP
I If you can solve the #P problem of measure, NP problem of

existence is easy

I NP ≈ optimization, #P ≈ integration

I Sampling gives existence, so harder than NP

I Integration gives conditional marginals, so harder than
sampling

optimization ≤ sampling ≤ integration

I Goal here is to show that good sampling gives rise to good
approximate integration

sampling ≥ approximate integration



The Tootsie Pop Algorithm



A tale of two circles

p = 0.1963 p = 0.007853

Need 25 times as many samples for same relative error for circle
that is 25 times as small



Handling small p

For statistical applications,

I p typically exponentially small in dimension of problem

I Want running time to grow as ln(1/p), not 1/p

I Have to adapt our samples as we take steps



Tootsie Pop Algorithm

Acceptance-rejection

I Draw from large region, only accept if make it to small region
in a single step

TPA

I Suppose draw from large region does not reach all the way to
the small region.

I Remove everything in large region farther away from small
region than your draw

I On average, remove half of large region at each step



First step TPA

⇒



Second step TPA

⇒



Third step TPA

⇒

It took three 3 steps to get to the red region



Getting to the small circle
Now that we know how to get to the small square, easy to get to
the small circle with standard AR



Indexing the regions
Note that each blue region can be indexed by the length of the side
of the square - call this index β

⇒

3.5 41.2



Measuring the regions

Let Bβ be region indexed by β, and Zβ the area of Bβ

Z4 = 16

Z3.5 = 12.25

Z1.2 = 1.44

One step of TPA

1. Draw X ← Unif(Bβ)

2. Set β ← inf{b : X ∈ Bb}



Main result about TPA
Theorem
Suppose X ∼ Unif(Bβ), β′ = inf{b : X ∈ Bb}. If Zβ is continuous

in β, then
Zβ
Zβ′
∼ Unif([0, 1]).

So on average the size of the large region is cut in half in a step of
TPA. It's like a randomized Zeno's walk!

0 Z0 Zβ
U1

U1U2

U1U2U3



Moving to log-space

Fun fact, if U ∼ Unif([0, 1]), then

− ln(U) ∼ Exp(1)

Reminder

ln(U1U2 · · ·Uk) =

k∑
i=1

ln(Ui)

In log-space, the product of uniforms is the sum of exponentials



Poisson point process

ln(Z0) ln(Zβ)

− ln(U1)− ln(U2)− ln(U3)



How this gives us an integration algorithm

Corollary
The number of steps taken by TPA before landing in the small

region is Poisson distributed with mean equal to the natural

logarithm of the ratio between the small region and the original

large region. So the expected number of steps taken by TPA is

ln(1/p) + 1.

M. Huber and S. Schott, Random construction of interpolating sets for
high dimensional integration, Journal of Applied Probability, arXiv:1112.3692,
51(1):92�105, 2014



Why Tootsie Pop Algorithm?

I A Tootsie Pop is a candy with a chocolately center surrounded
by a candy shell

I An old ad campaign has Mr. Owl being asked �How many licks
does it take to get to the center of the Tootsie Pop�

I For us, if it takes N , then p = exp(−E[N ] + 1)



Easy to parallelize
One run of TPA gives Poisson point process of rate 1

ln(Z0) ln(Zβ)

Combine k runs of TPA to give Poisson point process of rate k

ln(Z0) ln(Zβ)

Number of points is then

Pois(k[ln(Zβ)− ln(Z0)])



Well balanced schedule
Suppose k = 10, and we consider every 10th point

ln(Z0) ln(Zβ)

β3β2β1

I Distance between points (in log-space) is about 1

I Each βi value has
Zβi+1

Zβi
≈ e,

call such a schedule well balanced



What are well balanced schedules used for?
Certain Markov chains

I Simulated annealing

I Simulated tempering

Why well balanced temperatures

I Temp levels roughly reduce size of space by constant factor

I Necessary condition for rapid mixing of the chain 1 2

1D. B. Woodward, S. C. Schmidler, and M. Huber, Conditions for rapid
mixing of parallel and simulated tempering on multimodal distributions, Annals
of Applied Probability 19(2):617�640, 2012

2D. B. Woodward, S. C. Schmidler, and M. Huber, Su�cient conditions for
torpid mixing of parallel and simulated tempering, Electronic Journal of

Probability 14:780�804, Article 29, 2009



TPA with Markov chains

I Suppose that I have a set of N particles

I Use min β that covers all particles

I Rate of Poisson point process now N instead of 1
I If using Markov chains, duplicate one point, let points wander

for a while
I If using perfect simulation, draw one new point to replace



About Poisson random variables

Variance of a Poisson with mean ln(1/p) is

ln(1/p)

Need to run TPA Θ(ln(1/p)) times for (ε, δ)-ras. Total steps

d2ε−2 ln(δ−1) ln(1/p)e(ln(1/p) + 1) = Θ((ln(1/p))2)

Can we get user speci�ed relative error for Poisson (as Bernoulli)?



Gamma Poisson Approximation

Scheme



Gamma Poisson Approximation Scheme

Outline

I Can turn stream of Pois(µ) rv's into stream of Exp(µ) rv's.

I Then proceed as with GBAS.

How Poisson to Exponential?

I Use relationship between Poisson process of rate µ and
Exponential random variables of rate µ



How to turn Poissons into Exponentials

I Use A1, A2, . . . iid Pois(µ) for Poisson point process rate µ

I Use Ai ∼ Pois(µ) to determine how many points in [i− 1, i]

I Generate points uniformly in interval

0 1 2 3

P1 P2 P3

A1 = 1 A2 = 0 A3 = 2

I P1, P2 − P1, P3 − P2, . . . iid Exp(µ)



Pseudocode for GPAS

Gamma_Poisson_Approximation_Scheme
Input: k, c Output: µ̂k

1) A← 0, i← 0
2) While A < k [Draw k points.]
3) T ← Pois(µ)
4) If A+ T ≥ k [Then have k points.]
5) T ′ ← i+ Beta(k −A, T − (k −A) + 1)
6) A← A+ T , i← i+ 1
7) µ̂k ← (k − 1)c/T ′



Our integration story so far

Direct Acceptance/Rejection

F · 1/p

TPA
F · [ln(1/p)]2



TPA for general integration

using three sets approach



Using TPA for integration, three sets approach

A is the "area" under f(x)

Let (x∗, f(x∗)) be a local mode
B is area under f(x∗) within
distance α of x∗

C = A ∩B



Using the three sets
I Know µ(B), want µ(A)

I Estimate p̂1 ≈ µ(C)/µ(B) with AR

I Estimate p̂2 ≈ µ(C)/µ(A) with TPA

I Then µ̂(A) ≈ µ(A) where

µ̂(A) =
p̂1
p̂2
µ(B)

A B C



Take several draws from area under A

x∗

Set β ←∞
Draw X ∼ f |dist(X,x∗) ≤ β
Set β ← dist(X,x∗)

X

x∗

Repeat
Draw X ∼ f |dist(X,x∗) ≤ β
Set β ← dist(X,x∗)

X

x∗

Until X falls in C

X



Gibbs distributions



Gibbs distributions

Definition
Say that X has a Gibbs distribution if

P(X = x) =
exp(βh(x))

Zβ
,

where h(x) is called a Hamiltonian function and β is the inverse
temperature.



Examples and behavior of Gibbs

Examples

I Ising model

I Autonormal model

I Potts model

Typical behavior

I Easy to draw from X when β = 0

I Easier to sample from for small values of β

I Can be set up so that h(x) > 0 for all x



Gibbs densities for various values of β

x
0 1

unnormalized

density

h(x) = x

β = 1.3



Gibbs densities for various values of β

x
0 1

unnormalized

density

h(x) = x

β = 1.3

β = 0.6



Gibbs densities for various values of β

x
0 1

unnormalized

density

h(x) = x

β = 1.3

β = 0.6

β = 0



TPA for Gibbs

x
0 1

unnormalized

density

h(x) = x

β = 1.3



TPA for Gibbs

x
0 1

unnormalized

density

h(x) = x

β = 1.3

X1



TPA for Gibbs

x
0 1

unnormalized

density

h(x) = x

β = 1.3

X1

Y1



TPA for Gibbs

x
0 1

unnormalized

density

h(x) = x

β = 1.3

Y1
β = 0.6757



TPA for Gibbs

x
0 1

unnormalized

density

h(x) = x

β = 1.3

Y1
β = 0.6757

X2



TPA for Gibbs

x
0 1

unnormalized

density

h(x) = x

β = 1.3

Y1
β = 0.6757

X2

Y2



TPA for Gibbs

x
0 1

unnormalized

density

h(x) = x

β = 1.3

Y1
β = 0.6757

Y2
β = 0



TPA for Gibbs distribution

For X drawn from Gibbs, create auxilliary variable

[Y |X] ∼ Unif([0, exp(βh(X))])

Let Ωβ = {(x, y) : y ∈ [0, exp(βh(x))]}, use with TPA

1. Draw X from Gibbs with parameter β

2. Draw Y uniformly from [0, exp(βh(X))]

3. Let β′ = inf{b ≥ 0 : (X,Y ) ∈ Ωb} = ln(max{Y, 1})/h(X)



Behavior from earlier

For
p = Z0/Zβ,

needed a number of draws that was about

ln(1/p)2



How big is that?

Typically p exponentially small in dimension of problem

I For Ising/autonormal/Strauss model, number of nodes in
graph

I So ln(1/p)2 = Ω(n2)

I Too large to be e�ective in this case

I Use importance sampling to speed things up



Importance sampling



Replacing random choices with means

Rao-Blackwellization

I In last step of TPA for Gibbs, draw Y uniformly over
[0, exp(βh(X))], then choose new β

I Instead, start with new β, �nd probability that Y falls below
new β



Illustration of importance sampling for Gibbs

x
0 1

unnormalized

density

Y ∼ Unif([0, exp(1.3h(X))])

P(Y ≤ exp(0.6h(X)) = exp(0.6h(X))/ exp(1.3h(X))

β = 1.3

β = 0.6

X



Moving from Z0 to Zβ

Cooling schedule

I Connect Zβ to Z0 using di�erent values of β

0 ≤ β1 ≤ β2 ≤ · · · ≤ βk = β

I Then can multiply ratios to get target ratios

Zβ
Z0

=
Zβk
Zβk−1

·
Zβk−1

Zβk−2

·
Zβk−2

Zβk−3

· · ·
Zβ1
Zβ0
·



Product estimator

I Estimate each rk = Zβk/Zβk−1
by r̂k

3

I Final estimtae is
r̂ = r̂1r̂2 · · · r̂k

I Called product estimator by Fishman 4

3M. Jerrum and L. Valiant and V. Vazirani, Random generation of
combinatorial structures from a uniform distribution, Theoret. Comput. Sci.,
43:169�188, 1986

4G. S. Fishman, Monte Carlo: concepts, algorithms, and applications,
Springer-Verlag, New York, 1996



Using for Gibbs

I For Gibbs, using a well balanced cooling schedule makes
variance in product estimator small

I Each ri ≈ c ∈ [0, 1]

I Basic approach di�cult to analyze, but possible 5

I Variant approach is the Paired Product Estimator 6

5D. �Stefankovi�c and S. Vempala and E. Vigoda, Adaptive Simulated
Annealing: A Near-Optimal Connection between Sampling and Counting, J. of
the ACM, 56(3):1�36,2009

6M. Huber, Approximation algorithms for the normalizing constant of Gibbs
distributions, Ann. Appl. Probab., arXiv:1206.2689, 51(1):92�105, 2015



Paired Product Estimator running time
Theorem
By employing the Paired Product Estimator we get an (ε, δ)-ras
using about

2ε−2 ln(δ−1) ln(1/p)

samples on average.

Basic TPA approach to Gibbs

2ε−2 ln(δ−1)[ln(1/p)]2

samples on average



Can I use inexact samples with

these methods?





What if I do not have a perfect simulator?

I Can still use AR, TPA, or PPE

I Normally two sources of mistakes with Monte Carlo
integration:

1. Samples are inexact2. Integration method has unknown variance

I With AR, TPA, or PPE only one source of error

1. Samples are inexact



Summary
I AR integration with GBAS

F · (1/p)

I TPA integration with GPAS

F · [ln(1/p)]2

I Paired Product Estimator/IS for Gibbs

F · ln(1/p)


