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Preface

Purpose This book covers a one semester course in stochastic operations re-
search for students who have had an undergraduate, Calculus based course in
Probability.

Organization The course begins with an introduction before moving on to the
main topics.

• Queuing Networks.

• Simulation.

• Decisions.

• Models.

Why are all the numerical answers in problems and examples given to
4 significant digits? In my homework assignments to students I require that
all noninteger answers be presented to four significant digits. There are several
reasons why I do this.

The first is that it makes answers uniform. I do not have to worry if 1/(3+
√
2) =

(3−
√
2)/5 or not if the answer given is 0.2265. The second is that it emphasizes

to students that in most problems in applied mathematics the exact numbers are
uncertain. The number 1/3 is specific and exact, but not actually encountered
outside of toy problems. Third, it builds numerical literacy (aka numeracy.) Seeing
that exp(−2) ≈ 13.53% is a useful thing, as it makes it crystal clear that the
answers are not mere abstractions, but give results that can be acted upon.





Part I

Introduction

1





Chapter 1

What is Stochastic Operations
Research?

Question of the Day

What is stochastic operations research all about?

Summary

• The mathematical science of making optimal decisions with partial informa-
tion is Stochastic Operations Research.

• Logical statements evaluate to be either true or false.

• The indicator function outputs 1 if the input is true and 0 if the input is false.

• Probability functions inputs events and return a number between 0 and 1
indicating the information present about the truth of the event. They obey
three rules. 1) The probability of a true statement is 1. 2) The probability a
statement is false is 1 minus the probability it is true. 3) The probability that
any of a sequence of events is true where at most one event is true equals
the sum of the probabilities that the individual events are true.

• Densities of random variables can be used to calculate the distribution of the
random variable, which is the probability that the random variable falls into
a measurable set.

• For discrete random variables X with density fX , P(X ∈ A) =∑
a∈A fX(a). For continuous random variables, P(X ∈ A) =∫

a∈A fX(a)da.
3
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• X is exponential with rate λ if it is continuous with density fX(a) =
λ exp(−λa)1(a ≥ 0). Write X ∼ Exp(λ).

Mathematics has been used since ancient times to make choices that were the
best possible. Ancient Greeks such as Plato exhorted nobles to learn arithmetic (or
logistics as he called it) so that they would be able to properly supply their soldiers
during times of war.
World War II saw the apotheosis of this application, as massive numbers of

people and great quantities of military supplies had to be transported around the
globe. The British coined a new term, operations research (OR), to describe the
science and mathematics of making optimal decisions.

After the war, those scientists and mathematicians who had developed the begin-
nings of OR took those ideas into government and industry. They revolutionized
production and systems development. OR was so important that it gained several
synonyms. The terms

• operational research,

• management science, and

• decision science

all refer to making decisions in an optimal fashion.
In most situations where a decision must be made, the parameters that inform

that decision are typically not known completely. For instance, if we are designing
a network of roads, we usually do not know ahead of time how many people will
use the roads once the network is built.
But just because we do not know the exact numbers does not mean we know

nothing about the situation. Often we have partial information about the numbers
we need. It might be known, for instance, that it is more likely that fewer than
1000 people per hour will use a road network than 1000 or more people will use it.

The mathematics of partial information, how to model and calculate with it, is
called probability. Synonyms for partial information include

• random,

• stochastic, and

• uncertain.

Definition 1
The mathematical science of making optimal decisions with partial
information is Stochastic Operations Research.
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In this text, we will look at the major models and methods associated with
Stochastic OR. These include queuing networks, models of decision making, simu-
lation, and forecasting.

1.1 Probability

Suppose I am waiting for a bus. Let A denote the time needed for the bus to arrive
in minutes. Then either A > 5 is true, or A > 5 is false. After five minutes, I will
know for sure.

Notation 1
Use T to stand for true, and F to stand for false.

Definition 2
A logical statement is a statement that is either true (T) or false (F).

Since computers operate in binary at their most basic levels, which only uses 0
and 1 for each binary digit (usually abbreviated as a bit). Use 1 to stand for true
statements, and 0 to stand for false statements. This is encoded in the indicator
function, which we denote using a blackboard boldface numeral one.

Definition 3
The indicator function is 1 : {T, F} → {0, 1}, where

1(T) = 1

1(F) = 0.

A probability function (or probabilistic model) extends this notion of true or false
to allow for partial information. Probabilities measure how likely a statement is to
be true given our current information. Use P(p) to represent the probability of a
statement p being true by a number that lies in the interval [0, 1].
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Definition 4
A probability function (aka probability measure) satisfies the fol-
lowing rules.

• True statements The probability of a true statement is 1. (P(T) =
1).

• Negation Let ¬p be the negation of p. So if p is T, ¬p is F, and if
p is F, ¬p is T. Then

P(¬p) = 1− P(p).

• Countable mutually exclusive statements If the set {pi} is
either a finite set or an infinite sequence of statements such that
at most one of them is true at any time, we call the statements
disjoint or mutually exclusive. If the {pi} are a sequence of
disjoint statements, then

P (one of the pi is true) =
∑
i

P(pi).

Often probability functions are defined in terms of sets instead of logical state-
ments. Both treatments can be made rigorous, however, the definition in terms of
logic is how probability is usually treated in practice, hence we will use the logical
approach from here on out.
The name probability measure is also used to refer to P because it measures

how likely a statement is to be true given our current information. For example,
suppose that I am waiting for a bus. I can let T denote the amount of time I have
to wait until the bus arrives.
Then to determine if T > 5 is true, all I have to do is wait five minutes. If the

bus arrives in 5 or fewer minutes, then the statement is true, and if it takes longer,
then the statement is false.

But before I wait the fiveminutes, I only have partial information aboutP(T > 5).
This partial information gives me a stochastic model of the bus. For instance, I
might know that in the past, the bus (on average) came within 5 minutes only 10%
of the time. So I might initially say that P(T > 5) = 0.9 and P(T ≤ 5) = 0.1.

Sets and intervals

Here a brief review of sets and set notation is given.
Sets are mathematical objects that either contain other mathematical objects.

That is, for a set S and object a, either a is in set S is true or false. If it is true, call
a an element of the set S.
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Notation 2
The following notation is useful.

• Write a ∈ S if it is true that a is an element of the set S.

• Use brace notation to indicate exactly which statement are true.
For instance S = {a, b} means that a ∈ S and b ∈ S are both
true statements, but for any c different from both a and b, c ∈ S
is false.

• Write A ⊆ B for two sets A and B if for all a such that a ∈ A is
true, it also holds that a ∈ B is true.

• The set of real numbers is denoted R.

Note that (a ∈ S) = T and (b ∈ S) = T could also be written as (b ∈ S) = T
and (a ∈ S) = T. That is, there is no notion of order of the elements of a set. So
{a, b} and {b, a} are the same set.

Intervals are special sets of real numbers given using parentheses, brackets, and
the extended real numbers −∞ and∞. Some example include

(x ∈ (3, 5]) = (x > 3) and (x ≤ 5)

(x ∈ [3, 5)) = (x ≥ 3) and (x < 5)

(x ∈ (−∞, 5)) = (x < 5)

(x ∈ [3,∞)) = (x ≥ 3).

So a parenthesis in interval notation means strict inequality on the right hand
side, so less than or greater than. A bracket in interval notation means less than or
equal to or greater than or equal to. An infinity (on the right) or negative infinity
(on the left) means there is no restriction on the number.

1.2 Discrete and continuous random variables

Sets are useful in describing random variables. Using interval and set notation,

P(T ≤ 5) = P(T ∈ (−∞, 5]).

More generally, a random variable X is a mathematical object where there exists
setsA of real numbers such that P(X ∈ A) is defined for those sets. The collection
of sets A where P(X ∈ A) is defined is called the sets measurable with respect to
X . The function that takes a measurable set A and returns P(X ∈ A) is called the
distribution of the random variable X .
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Definition 5
For a random variable X , the distribution of X is defined for measur-
able A ⊆ R as

PX(A) = P(X ∈ A).

So how do we go about calculating P(X ∈ A) for a random variable? That
depends on the type of random variable. It turns out there are three types of
random variables. The two most common types are discrete and continuous.

Definition 6
A random variable is discrete if it has a probability density function
(pdf) fX such that for all measurable subsets A,

P(X ∈ A) =
∑
i∈A

fX(i).

This is sometimes called a probability mass function. However, this term is
outdated, there is no mathematical reason to call the densities for discrete and
continuous random variables anything other than densities.

Definition 7
A random variable is continuous if it has a probability density func-
tion (pdf) fX such that for all measurable subsets A,

P(X ∈ A) =

∫
a∈A

fX(a) da.

So for discrete random variables, we find P(X ∈ A) by summing the density
over elements of A. For continuous random variables, we find P(X ∈ A) by
integrating the density over elements of A.
Technically, discrete random variables have a density with respect to counting

measure, while continuous random variables have a densitywith respect to Lebesgue
measure. However, these details will be unnecessary for what we want to do
with random variables, and so we will not discuss them further. Instead, use the
following fact to determine if a density is for a discrete or continuous random
variable.
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Fact 1
Suppose a random variableX has density fX . ThenX is discrete if and
only if ∑

i:fX(i)>0

fX(i) = 1.

Also, X is continuous if and only if fX is continuous at all but a set of
places that is countable.

Recall that a set is countable if it can be placed in a sequence. So for instance,
0, 2, 4, 6, . . . is a countable set of numbers because they can be placed in a sequence.
The set of real numbers (or a subset like [0, 1]) is famously uncountable because
there is no way to put all of these numbers in a sequence.

1.3 Named distributions

Several distributions are important enough to have their own names. The first
distribution we will be using is the exponential distribution.

Definition 8
Say that X has the exponential distribution with parameter λ if
λ > 0 and X has density

fX(a) = λ exp(−λa)1(a ≥ 0).

Write X ∼ Exp(λ).

Note that we used the indicator function here for convenience. When a is at least
0, 1(a ≥ 0) = 1 and fX(a) = λ exp(−λa). When a is less than 0, 1(a ≥ 0) = 0,
so fX(a) = 0. Another way to say this is that for the density to be nonzero, we
must have a ≥ 0 be true.
Yet another way to write this is

λ exp(−λa)1(a ≥ 0) =

{
λ exp(−λa) a ≥ 0
0 a < 0.

Graphing this density yields

0

λ
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Call λ the rate parameter, as when it is higher, the random variable is more likely
to be smaller.
Moreover, using indicator functions makes it easier to figure out how to find

probabilities (and later in the course, expected value). That is because the indi-
cator function in an integral (or a sum) tells us what the limits of integration (or
summation) should be.

Example 1
Suppose A ∼ Exp(1.5). Find P(A > 1) and P(A ≤ 1).

Answer For P(A > 1):

P(A > 1) =

∫
a∈[1,∞)

1.5 exp(−1.5a)1(a ≥ 0) da

=

∫ ∞

1
1.5 exp(−1.5a) da

= − exp(−a)|∞1 = 0− (− exp(−1.5)) = 0.2231 . . . .

Note that the 1(a ≥ 0) part of the integrand was redundant, since
for a ∈ [5,∞), this was always true. For P(A ≤ 1), we will use the
indicator function in the density to change our limits of integration.

P(A ≤ 1) =

∫
a∈(−∞,1]

1.5 exp(−1.5a)1(a ≥ 0) da

=

∫ 1

0
1.5 exp(−1.5a) da

= − exp(−a)|10 = −(− exp(−1.5))− (− exp(0)) = 1− exp(−1.5)
= 0.7768 . . . .

Note that the density is a continuous function except at a single point, making
the random variable continuous.

Fact 2
Exponentially distributed random variables are continuous.

Problems

1.1 Which of the following are logical statements?

a) The capital of Iowa.
b) 4 > 6.
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c) (1(4 > 6) = 1).
d) The temperature at which water boils.

1.2 Which of the following are logical statements?

a) 3 = 7

b) The capital of California is Sacramento.
c) What color is the Sun?
d) What year did the Battle of Hastings take place?

1.3 Evaluate the following.

a) 1(3 = 4).
b) 1(3 < 4).
c) 1(4 < 3).

1.4 Evaluate the following.

a) 1(7 = 7).
b) 1(7 ≤ 7).
c) 1((1(7 = 3) + 1(3 < 7)) ≥ 1).

1.5 Given the density fX of a random variable X , state whether X is discrete
or continuous.

a) fX(2) = 0.3, fX(4) = 0.7.
b) fX(x) = 1(x ∈ [0, 1]).
c) fX(0) = 1/3, fX(1) = 1/3, fX(2) = 1/3.
d) fX(x) = exp(−x)1(x ≥ 0).

1.6 Given the density fY of a random variable Y , state whether Y is discrete
or continuous.

a) fY (y) = (1/2)1(x ∈ [0, 2]).
b) fY (1) = 0.8, fY (2) = 0.1, fY (3) = 0.1.
c) fY (0) = 0.5, fY (1) = 0.5.
d) fY (y) = 2 exp(−2y)1(y ≥ 0).

1.7 Suppose X ∼ Exp(0.1).
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a) Find P(X > 10).
b) Find P(X ≤ 10).

1.8 Suppose Y ∼ Exp(1.3), andW ∼ Exp(2).

a) Find P(Y ∈ [0, 1]).
b) Find P(W ∈ [0, 1]).
c) Find P(Y ∈ [−1, 1]).
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Conditional Probability

Question of the Day

Suppose X ∼ Exp(2). What is P(X > 2|X > 1)?

Summary

• Write X ∼ Y if X and Y have the same distribution.

• A random variable X has a cumulative distribution function defined as
cdfX(a) = P(X ≤ a). The Carathéodory extension theorem says that
X ∼ Y if and only if cdfX = cdfY .

• If X is continuous, then pdfX(a) = d cdfX(a)/da wherever the cdf is
differentiable. IfX is discrete, then pdfX(i) = limδ→0 cdfX(i)− cdfX(i−
|δ|).

• The survival function of random variableX is surX(a) = P(X > a) for real
a. Note cdfX(a) = 1− surX(a).

• For S a finite set with #(S) elements, say X ∼ Unif(S) if for all i ∈ S,
P(X = i) = 1/#(S).

• The conditional probability of event A being true given that event B is true
is

P(A|B) = P(A and B)/P(B)

when P(B) > 0.

• For X ∼ Exp(λ), the memoryless property says that for s ≥ 0, [X − s|X ≥
s] ∼ X .

13
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• Events A and B are independent if P(B = 0) or P(A|B) = P(A). This
holds iff P(AB) = P(A)P(B).

• A stream of random variables means for all i, given random variables
X1, X2, . . . , Xi in the stream, there exists a random variable Xi+1.

• A stream of random variables is independent, identically distributed (iid for
short) if for all i

[Xi+1|X1, . . . , Xi] ∼ X1.

2.1 Cumulative distribution function

Recall that the distribution of a random variable X is PX(A) = P(X ∈ A) for all
measurable sets A.

Definition 9
Say that X and Y have the same distribution (write X ∼ Y ) if
PX = PY .

Because there are so many possible measurable sets A, it can be very difficult to
ascertain if PX and PY are the same. The Carathéodory extension theorem helps
this process immensely, by stating that it suffices to check sets of the form (−∞, a].
In other words, if P(X ≤ a) = P(Y ≤ a) for all real a, then X ∼ Y . Call
cdfX(a) = P(X ≤ a) the cumulative distribution function, or cdf for short.

Definition 10
The cumulative distribution function of X (cdf for short) written
cdfX(a) = FX(a) has domain R, codomain [0, 1], and is defined as

cdfX(a) = P(X ≤ a)

Theorem 1 (Carathéodory extension theorem)
If for all a, cdfX(a) = cdfY (a), then X ∼ Y .

Some cdfs are easy to calculate.

Fact 3
If X ∼ Exp(λ), then cdfX(a) = (1− exp(−λa))1(a ≥ 0).

The opposite of the cdf is the survival function.
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Definition 11
The survival function of a random variable X is surX(a) = 1 −
cdfX(a) = P(X > a).

Fact 4
If X ∼ Exp(λ), then surX(t) = exp(−λt).

From the cdf of X , it is easy to find the density of X . That is, the pdf can be
found from the cdf.

Fact 5
If X is a continuous random variable, then pdfX = [cdfX ]′ wherever
the cdf is differentiable.
If X is a discrete random variable, then

pdfX(i) = lim
δ→0

cdfX(i)− cdfX(i− |δ|).

2.2 Partial information

What separates probability from other branches of mathematics is the notion of
conditioning, or partial information. That is, the probability of events occurring
can change as information is learned. Start with an example.

Notation 3
For a finite set S, #(S) is the number of elements of S.

For instance,#({a, b, c}) = 3, since there are three elements in S.

Definition 12
For a finite set S, say thatX is uniform over S (writeX ∼ Unif(S)) if
for all s ∈ S, P(X = s) = 1/#(S).

Definition 13
The conditional probability of A given B, written P(A|B) is the
probability that A is true given that B is true.

Example 2
Suppose that X is the outcome of a roll of a six sided die. So X ∼
Unif({1, 2, 3, 4, 5, 6}). So P(X = 1) = 1/6. Now suppose the given
information is that X ≤ 4. Now either X = 1, X = 2, X = 3, or
X = 4. Each is equally likely, so P(X = 1|X ≤ 4) = 1/4.
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Definition 14
Let A and B be events where B has positive probability. Then

P(A|B) =
P(AB)

P(B)
.

With this understanding of conditional probability, it is possible to solve the
question of the day.

Example 3 (Question of the day)
For X ∼ Exp(2), find P(X > 2|X > 1).

Answer By the conditional probability formula, this is

P(X > 2|X > 1) =
P(X > 2, X > 1)

P(X > 1)
=

P(X > 2)

P(X > 1)

=
exp(−(2)(2))
exp(−(2)(1))

=
exp(−4)
exp(−2) = exp(−2) = 0.1353 . . . .

More generally, conditional distributions describe how a random variable behaves
conditioned on partial information about the random variable.

Definition 15
LetX be a random variable and A be a set where P(X ∈ A) > 0. Then
the conditional distribution ofX givenX ∈ A is [X|X ∈ A], where
P[X|X∈A](B) = P(X ∈ B|X ∈ A) = P(X ∈ AB)/P(X ∈ A).

A uniform random variable over a set S will remain uniform when conditioned
to lie in a smaller set R ⊆ S.

Fact 6
Suppose X is a random variable uniform over the finite set S. Let R be
any subset of S. Then

[X|X ∈ R] ∼ Unif(R).

Proof. Let r ∈ R. Then

P(X = r|X ∈ R) =
P(X = r,X ∈ R)

P(X ∈ R)
=

P(X = r)

P(X ∈ R)
=

1/#(S)

#(R)/#(S)
=

1

#(R)

which is the desired result.
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Exponentials have a unique property among continuous random variables.

Fact 7
For X ∼ Exp(λ) and s ≥ 0,

[X − s|X > s] ∼ X.

This is called the memoryless property.

In other words, if T is an exponential random variable and it is known that T > 3.4,
then it is like T starts over at 3.4. The time yet to wait, T − 3.4 has the same
distribution as T itself! That is why exponential random variables are referred to
as memoryless, as they are continually forgetting how much time has passed.

Proof. Let s > 0, a ≥ 0. Then

P(X − s > a|X > s) =
P(X − s > a,X > s)

P(X > s)

=
exp(−λ(s+ a)

exp(−λs)
= exp(−λa).

2.3 Independence

Two events are independent if knowing if one is true or false does not change the
probabilities of the other event.

Definition 16
Two eventsA andB are independent if either P(B) = 0 or P(A|B) =
P(A).

Another characterization is useful when dealing with independence.

Fact 8
Events A and B are independent if and only if P(A,B) = P(A)P(B).

A time evolving process can be modeled using a stream. A stream is similar to
a sequence: it means that the first element of the stream exists, and given that
the first n elements of the stream exist, then element number n+ 1 of the stream
exists.
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Definition 17
A set of random variables is a stream if

• Begin with step 0 and the stream empty.

• At step i, given the i elements of the stream, the next element of
the stream can be generated.

For example, suppose a fair coin is flipped once to start our stream. Given a finite
number of flips, it is always possible to flip our coin one more time to generate a
new random flip from the stream.

Definition 18
A stream {Xi} of random variables is independent, identically dis-
tributed (iid for short) if for all n,

[Xn|X1, . . . , Xn−1] ∼ X1.

So Xn must be independent of (X1, . . . , Xn) and must have the same distribu-
tion asX1 for all n. Note that given the assumption of the induction axiom and the
integer axioms, any stream of random variables yields a corresponding sequence,
and so this term is often used instead. Here the term stream to emphasize that
for operations research applications their is no assumption that all these random
variables exist simultaneously, instead, they are generated from data or simulation
only as needed, and after a finite number of steps is a finite set of random variables.

Problems

2.1 Suppose A occurs with probability 0.3, B occurs with probability 0.7, and
both occur with probability 0.2.

a) Find P(A|B).
b) Find P(B|A).

2.2 Suppose A occurs with probability 0.4, B with probability 0.6, C with
probability 0.7, AB with probability 0.1, AC with probability 0.4, and
ABC with probability 0.1.

a) What is P(C|A)?
b) What is P(C|A,B)?

2.3 Suppose D ∼ Unif({1, . . . , 100}).

a) Find P(D = 1|D ≤ 60).
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b) Find P(D ≤ 60|D = 1).

2.4 Suppose Y ∼ Unif({1, . . . , 50}). What is P(Y ≤ 30|Y is even)?

2.5 Let X ∼ Exp(0.2).

a) What is the distribution of [X − 3|X > 3]?
b) What is P(X > 5|X > 3)?

2.6 Let Y ∼ Exp(3.2).

a) What is the distribution of Y − 1 given that Y > 1?
b) What is P(Y > 2|Y > 1)?

2.7 Let (B1, B2, B3) be the first three draws from a stream of iid random
variables where P(Bi = 1) = 0.3, P(Bi = 0) = 0.7 (writeBi ∼ Bern(0.3)
as this is a Bernoulli distribution.)

a) What is P(B1 = 1, B2 = 1)?
b) Find P(B1 +B2 +B3 = 1).

2.8 Let X1, X2, X3 be the first three draws from a stream of iid random vari-
ables where P(Xi = j) = 1/4 for j ∈ {1, 2, 3, 4}. Find P(X1+X2+X3 =
11).





Part II

Queuing Networks
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Chapter 3

Queues

Question of the Day

Customers arrive at a help desk according to a uniform distribution over [0, 10].
On average, what is the time between customer arrivals?

Summary

• Queues are composed of customers that are waiting for service. The number
of customers waiting for service is the queue length. The capacity is the
maximum value of the queue length. The channels of the queue is the
number of servers that handle customers.

• Queue discipline is how the next customer is selected for service.

• Each arriving customer has an arrival time. The difference between two
successive arrival times is called the interarrival time.

• The service time of a customer is the time between when a customer starts
service and finishes service.

• Basic queue notation uses three symbols separated by slashes. These three
symbols are the type of interarrival distribution, the type of service dis-
tribution, and the number of servers. M stands for a memoryless (aka
exponential) distribution, G stands for a general distribution, and D means
a deterministic value rather than a random one.

• The arrival rate is the multiplicative inverse of the average interarrival time.
The service rate is the multiplicative inverse of the average service time.

23
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Queues are a rich model in operations research. Many real life situations can be
reduced to one or more queues working in unison.

At the simplest level, a queue consists of customers that are waiting for service.
The term customer might refer to physical people waiting in line for service at a
food truck, to packets of information traveling through the Internet, injuries at
a crash awaiting medical care, theme park goers waiting to ride a roller coaster,
inventory awaiting shipment, or computer searches awaiting resolution by a
supercomputing cluster.

The notion of a queue is very general, which is why it is such awidely usedmodel.
Operations research deals with making decisions when resources are limited, and
queues are an inevitable part of life with limited resources. The more servers that
can be deployed, the faster customers will be served, but the more expensive it
will be to maintain and run the queue.

Basic queuing models can be analyzed mathematically, while more complicated
ones have behavior that is studied through simulation. We will start with the
queues that we can analyze, and later on show how simulations can be used.

3.1 Queueing terms

Deciding which customer to serve next might be a matter of life and death if
the queue is for treatment in an emergency room. In a more prosaic example, a
supercomputer might decide to give priority to certain types of jobs that are more
important. The way that a queue decides the next customer to serve is called the
queue discipline.

Definition 19
The queue discipline describes how the customers in the queue are
taken in for service. Three common methods of choosing which cus-
tomer to service next are:

• FIFO (aka FCFS). This stands for first in, first out (or first come,
first served) and means that the next customer to be served is the
one that has been waiting in line the longest.

• LIFO. This stands for last in, first out. Here incoming customers
are placed on a stack as they arrive, and the next free server picks
from the top of the stack and works down to the bottom.

• Priority. Here each incoming customer is assigned a priority, and
the highest priority customers are served first. This is typically the
case in an Emergency Room, where patients needing immediate
care are served first.

Many types of queue disciplines do not have names, and often real queues are a
mix of FIFO and priority disciplines.
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Definition 20
A customer refers to an entity that is awaiting a service. An entity
performing a service is called a server.

An important factor in customer satisfaction is how many customers are waiting
in line at any one time.

Definition 21
The number of customers waiting for service at a particular time is
called the queue length.

It is easier to model queues when the number of customers that can wait
is unbounded, but in the real world, there is a limit on the size of the
queue.

Definition 22
The capacity of a queue is the maximum number of customers that can
be waiting for service at any one time.

Definition 23
The channels of a queue refers to the number of servers that are avail-
able for servicing the customers.

Definition 24
The time needed for a server to service one customer is called a service
time.

Service times are typically modeled using a distribution. Each service is then
taken to be an independent draw from that distribution. The queue will serve
customers faster if service times are small and the number of channels is high.

Definition 25
The time from the arrival of one customer until the arrival of the next
customer in the queue is called the interarrival time.

A short interarrival time results in many customers arriving, and the length of
the queue grows. The actual time the ith customer arrives to join the queue is
called the arrival time.

Definition 26
The arrival time for the ith customer is the time that particular cus-
tomer joins the queue.
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Note that we can calculate the arrival times from the interarrival times.

Fact 9
If A1, . . . , An are the first n interarrival times, then

Tn = A1 + · · ·+An.

t
0 1.3

T1

6.7

T2

9.1

T3

A1 A2 A3

In the picture,A1 = 1.3, A2 = 5.4, andA3 = 2.4. So that means T1 = A1 = 1.3,
T2 = A1 +A2 = 6.7, and T3 = A1 +A2 +A3 = 9.1.

3.2 Notation

To describe the queue, queue notation is used. The simplest form has three slots,
for the arrival distribution, the service distribution, and the number of servers.

Notation 4
Queue notation has the form

∗/ ∗ /∗,

where the first entry indicates information about the arrival distribution,
the second entry indicates information about the service distribution,
and the third entry indicates the number of servers in the queue.

The information about distributions is either G for a general distribu-
tion, D for a constant time (D for deterministic), M for the exponential
distribution (M for memoryless or Markov) and Ek for an Erlang distri-
bution with shape parameter k.
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Example 4
The queue notation

M/D/2,

means that interarrival times follow an exponential distribution, service
takes a constant amount of time, and 2 servers work independently to
clear customers from the queue.
The queue notation

G/G/1

means that their in one server, but the distribution of the arrival times
and service times could be anything.

3.3 Expected value

The expected value of a random variable is a measure of central tendency. Not all
random variables have an expected value, but when they do, the sample average
of an iid stream of draws from the random variable will converge to this number.

Reminder 1
The expected value (aka expectation aka average akamean) of g(X)
is

E[g(X)] =

∫
R
g(s)fX(s) ds.

if X is a continuous random variable, and

E[g(X)] =
∑
R

g(s)fX(s)

if X is a discrete random variable.

Definition 27
If the expected value of X is a finite, real number, we say that X is
integrable.
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Example 5 (Question of the day)
If X is uniform over [0, 10] minutes, then what is E[X]?

Answer Write X ∼ Unif([0, 10]) to indicate that X is uniform over
[0, 10]. Then recall that the density of a uniform over an interval is the
indicator of that interval divided by the length of the interval. That is,

fX(s) =
1

10− 0
1(s ∈ [0, 10]).

Hence the expected value: E[X] = E[g(X)] where g(s) = s is:

E[X] =

∫
R
s
1

10
1(s ∈ [0, 10]) ds =

∫ 10

0

s

10
ds =

s2

2 · 10

∣∣∣∣10
0

= 5.

So the answer is 5 minutes .

Of course, it is not necessary to do this integral if the following fact is known.

Fact 10
For X ∼ Unif([a, b]),

E[X] =
a+ b

2
.

Once we know the average time between arrivals, the arrival rate is just the
inverse of that number.

Definition 28
The arrival rate for a queue is 1 over the average interarrival time.

A similar definition holds for services.

Definition 29
The service rate for a queue is 1 over the average service time.

Problems
3.1 Suppose customer 5 enters service at time 7.1 and finishes service at time

9.6. What is customer 5’s service time?

3.2 Customer 1 in a queue starts service at time 0 and finishes at time 5.2.
Customer 2 then immediately begins service and finishes at time 7.4. There
is no one in the queue at this point, but Customer 3 arrives at time 9.5
and finishes service at time 11.6. What are the service times for the three
customers?
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3.3 Suppose three customers, a, b, and c arrive to a queue in that order.

a) Under a FIFO queue discipline, in what order are the customers
served?

b) Under a LIFO queue discipline, in what order are the customers
served?

3.4 A queue serves Gold status customers before Silver, which are served
before Pearl. Otherwise the customers are served FIFO. Suppose we have a
single server, and customer a (who is Pearl status) arrives first. While a is
being served, b (who is also Pearl status) arrives next, followed by c (who
is Gold status). Assuming all three of these customers are served before
another customer arrives, what order are they served in?

3.5 If the first three interarrival times are A1 = 0.4, A2 = 1.34, and A3 =
0.013, what are the first three arrival times?

3.6 Suppose the first three interarrival times are all 1.5, but then the fourth
interarrival time is 2.6. What are the first four arrival times?

3.7 For interarrival times that are uniform over [0, 2] hours, what is the arrival
rate?

3.8 For service times that are uniform over [3, 5] seconds, what is the service
rate?





Chapter 4

Expectation and queues

Question of the Day

Suppose interarrival times are uniform over [0, 10] minutes. Lower bound the
average number of arrivals in the first hour.

Summary

Consider a queue with arrival rate λ.

1. Wald’s Equation allows us to find the expected value of the sum of a
random number T of iid random variables (sometimes). For T a stopping
time with respect to iid X1, X2, . . . such that either the Xi are nonnegative
or T has finite expected value,

E

[
T∑
i=1

Xi

]
= E[T ]E[X1].

2. Consider a G/G/s queue. Let E[N[0,t]] be the average number of arrivals
over the time interval [0, t]. Then

E[N[0,t]] ≥ λt− 1.

If the interarrival times are at mostm then

E[N[0,t]] ≤ λ(t+m)− 1.

A very important fact about expectation is that it is a linear operator. That means
(roughly speaking) that as an operator expectation distributes over addition and
multiplication.
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Fact 11
For any two integrable random variables X and Y and real numbers a
and b,

E[aX + bY ] = aE[X] + bE[Y ].

This can be extended by induction to any finite linear combination of random
variables.

Fact 12
For any integrable random variables X1, . . . , Xn and a1, . . . , an ∈ R,

E

[
n∑

i=1

aiXi

]
=

n∑
i=1

aiE[Xi].

Since arrival times in a queue are just the sum of the interarrival times, this
immediately gives the following.

Fact 13
For a G/G/s queue with integrable interarrival times {Ai}, if Ti is the
arrival time of the ith customer,

E[Ti] = iE[A1].

Proof. If A1, . . . , An are the first n interarrival times, then

E[Tn] = E

[
n∑

i=1

Ai

]
= E[A1] + · · ·+ E[Ai]

= iE[A1].

4.1 Stopping Times

Now suppose T1, T2, T3, . . . is a stream of arrival times. For any given time t, there
will be some of these times that are at most t, and some of these times that are
greater than t.
For instance, if (T1, T2, T3, T4) = (1.1, 2.0, 3.6, 4.7), then the set

{i : Ti ≤ 4} = {1, 2, 3},

since the first three times are in t and the fourth time is greater than t. Similarly,

{i : Ti > 4} = {4, 5, 6, . . .},
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since the Ti form an increasing sequence.
The smallest number in a nonempty set {4, 5, 6, . . .} is called the minimum of

the set. If the set is empty, then there is no minimum, which is why the minimum
can be generalized to the infimum of a set.
Think of the infimum as the greater number which is still less than or equal to

every element of a set. For a finite set, the infimum of the set is the same as the
minimum. For an empty set, every number is less than or equal to all elements
of the set, so make the infimum infinity. For a set with numbers that become
arbitrarily small (like {−1,−2,−3, . . .}, the infimum is taken to be minus infinity.
Say that a number is a lower bound for a set of real numbers if it is less than or

equal to all the elements of the set.

Definition 30
A number a is a lower bound for A ⊆ R if

(∀b ∈ A)(a ≤ b).

Reminder 2
The symbol ∀means for all, andmeans that what follows is true because,
for any choice of x > 4, it holds that x+ 1 > 5.
On the other hand, the statement (∀x > 4)(x > 6) is false because

there is a choice of x > 4 (such as x = 4.3) which makes x > 6 false.

Formally, the infimum is defined as follows.

Definition 31
Given a subset of real numbers A, the infimum is

• inf(A) =∞ if A = ∅.

• If A has at least one lower bound, then inf(A) is the maximum of
the set of lower bounds of A.

• inf(A) = −∞ if no lower bound exists.

In our example
inf{4, 5, 6, . . .} = 4.

That is, the infimum of a set is the largest number that is smaller than every
other number in the set. In our example, 4 is less than or equal to every number in
{4, 5, 6, . . .}, and if I try to use a larger number like 4.1, it is not less than or equal
to 4, so cannot be the infimum.
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Example 6
Some examples of the infimum operator in action:

• inf(∅) =∞.

• inf({4, 5, 6, . . .}) = 4. Some lower bounds for this set include
−6, 3, 3.5, 3.9999, 4, but the largest lower bound is 4, as anything
bigger than 4 is not a lower bound.

• inf({. . . ,−3,−2,−1, 0, 1, 2, 3, . . .}) = −∞ since there is no
lower bound, that is, there is no number that is less than or equal
to every number in the set.

Now suppose that the stream of arrival times starts as:

T1 = 1.2, T2 = 3.6, T3 = 6.1, T4 = 6.5, . . .

Then consider A = {n : Tn > 4}. This set will be A = {3, 4, 5, . . .} because
T3, T4, . . . are all greater than 4, butT1 andT2 are not. Note that inf({3, 4, 5, . . .} =
3, since that is the minimum value of the set.

In general, it holds that

M = inf{n : Tn > 4},
is the number of the customer who is the first to arrive after time 4.
That makes TM the first arrival time that is past time 4. In the example given

above, M = 3, and TM = T3 = 6.1.
Because the arrival times T1, T2, . . . are random, the value of M will also be

random. A random variable likeM is called a stopping time.

Definition 32
Given a stream of random variables X1, X2, . . ., a stopping time N is
a random variable where the statementN ≤ n can be determined using
only the first n values X1, . . . , Xn of the stream.

Example 7
For arrival times Ti and nonnegative real number t, let

M = inf{n : Tn > t}.

show thatM is a stopping time.

Answer Let n ∈ {1, 2, . . .}. Then M ≤ n if and only if Tn > t. This
can be determined to be true or false using only T1, . . . , Tn, soM is a
stopping time!
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4.2 Wald’s Equation

Linearity gives us that for a stream of integrable iid random variables X1, X2, . . .,

E

[
n∑

i=1

Xi

]
= nE[Xi].

How does that work with the sum of the Xi from 1 up to a stopping time N?
Wald’s equation tells us that it behaves much like the deterministic sum, as long as
the random variables are somewhat nice.

Theorem 2 (Wald’s Equation)
Let X1, X2, . . . be an iid stream of integrable random variables, and N
a stopping time for the stream. Then if either

• P(X ≥ 0) = 1 (so the random variables are nonnegative) or

• N is integrable (so E[N ] <∞), then

E

[
N∑

n=1

Xn

]
= E[N ]E[X1].

The arrival times can be found as the sum of the interarrival times. So

Tn = A1 + · · ·+An.

That means
M = inf{n : A1 + · · ·+An > t},

and

E

[
M∑
i=1

An

]
= E[M ]E[A1].

By definition,
∑M

i=1An > t, so

t < E[M ]E[A1],

and E[M − 1] > (t/E[A1])− 1. For a queue with arrival rate λ, this establishes
the following:

Fact 14
For a G/G/s queue, the expected number of customers that arrive in
[0, t] is at least

tλ− 1.
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Example 8
Suppose interarrival times are uniform over [0, 10] minutes. Lower
bound the average number of arrivals in the first hour.

Answer An hour is [0, 60] minutes. The arrival rate is one over the
expected interarrival time, so 1/5 per minute. Hence the expected
number of customers is at least

1

5 minutes · 60 minutes− 1 = 11 .

Note that if you tackle these problems correctly, the units of time should cancel,
since the final result will be a unitless number.
In this case, because a uniform random variable over [0, 10] is at most 10, it is

possible to upper bound the expected number of customers in the first hour.

Example 9
Suppose interarrival times are uniform over [0, 10] minutes. Upper
bound the average number of arrivals in the first hour.

Answer Let M be inf{n : A1 + · · · + An > 60 minutes}. Then∑M
i=1Ai ∈ [60, 70]. So byWald’s Equation E[M ]E[A1] ≤ 70, and since

E[A1] is 5 minutes,

E[M ] ≤ 70 minutes
5 minutes ≤ 14.

That makes the average number of arrivals in the first hour 14−1 = 13 .

This idea can be generalized to give the following fact.

Fact 15
For a G/G/s queue with arrival rate λ, if the arrival times are at most
m with probability 1, then the average number of arrivals in [0, t] is at
most

λ(t+m)− 1.

Problems

4.1 Suppose E[X] = 4.2 and E[Y ] = 5.6. What is E[2X − 4Y ]?

4.2 Suppose thatX1, X2, . . . are identically distributed random variables with
mean 2.1.
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a) Find E[X1 +X2 +X3].

b) Find E
[∑12

i=1Xi

]
.

4.3 Find the infimum of the following sets.

a) S1 = {1, 2, 3}.
b) S2 = {1, 2, 3, . . .}.
c) S3 = {x : x > 0, x < 5} =]0, 5[.

4.4 Find the infimum of the following sets.

a) A1 = {x : x ≥ 3, x ≤ 7} = [3, 7].
b) A2 = {x : x ≥ 7, x ≤ 3}.
c) A3 = {2, 4, 6, . . .}.
d) A4 = {. . . ,−4,−2, 0}.

4.5 Say that interarrival times for a G/G/2 queue have density 20x3(1 −
x)1(x ∈ [0, 1]) when measured in minutes. Lower bound the expected
number of customers to arrive in the first ten minutes.

4.6 Suppose that the interarrival times for a G/G/3 queue are Unif([10, 20])
seconds. Lower bound the expected number of customers to arrive in the
first minute.

4.7 Suppose interarrival times for a G/G/2 queue are 1 minute with proba-
bility 0.3, 2 minutes with probability 0.6, and 3 minutes with probability
0.1.

a) Lower bound the expected number of customers to arrive in the first
hour.

b) Lower bound the expected number of customers to arrive in the first
two hours.

4.8 Suppose interarrival times for a G/G/3 queue are 5.2 minutes with prob-
ability 0.4, 1.6 minutes with probability 0.2, and 3.4 minutes with proba-
bility 0.4.

a) Lower bound the expected number of customers to arrive in the first
thirty minutes.

b) Lower bound the expected number of customers to arrive in the first
hour.





Chapter 5

Memoryless queues

Question of the Day

Consider anM/G/2 queue with arrival rate 2.4 per hour. What is the distribution
of the number of arrivals in the first two hours?

Summary

Throughout this chapter, consider anM/G/s queue with arrival rate λ.

• Poisson random variables with parameter µ (write X ∼ Pois(µ)) have
P(X = i) = exp(−µ)µi/i!. The mean and variance of a Poisson random
variable is also µ.

• The number of arrivals in the time interval [a, b] has a Poisson distribution
with parameter λ(b− a).

• Say X is Erlang (aka Gamma) distributed with parameters k and λ if X
has density

fX(s) = λ exp(−λs)(λs)k−1/(k − 1)!1(s ≥ 0).

• The arrival time of the kth customer is Erlang with parameters k and λ.

ForG/G/s queues, the value ofE[Tn], the average time of the arrival of customer
n, can be found exactly. It is also possible to lower bound the average number of
customers that arrive in [0, t].
For an M/G/s queue, it is possible to do even more. For any n, it is possible

to determine exactly the distribution of the arrival time of customer n. It is also
possible to derive the distribution of the number of customers that arrive in [0, t].
For anM/M/s queue, even more can be calculated, such as the steady state (aka
long term) distribution of the number of people in the queue.

39
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5.1 Number of customer arrivals for theM/G/s queue
Suppose that the times between arrivals are exponential random variables with
rate parameter λ. Then a special name is given to the set of arrival times. It is
called a Poisson point process, or PPP for short.
It turns out that if we take a PPP and look at the number of points that fall

in [0, t] (so the number of customers that arrive in [0, t]) this will be a Poisson
distributed random variable. (This is why it is called a Poisson point process.)

Definition 33
Say that X has a Poisson distribution with parameter µ if for i ∈
{0, 1, 2, . . .},

P(X = i) =
µi

i!
exp(−µ).

Write X ∼ Pois(µ).

Poisson random variables are unitless numbers, and soX andX2 have the same
units. Compare this to something like L which measures length. In this case L
might have units of meters and L2 units of meters squared. Since Poisson random
variables count things, they are pure numbers with no units.

Fact 16
For X ∼ Pois(µ), E[X] = µ and V[X] = µ.

Normally the mean of a random variable has the same units as the random
variable, and the variance has units that are the square of the random variable.
Poisson (being unitless) is one of the few random variables over the nonnegative
integers with mean equal to the variance.
A PPP on [0,∞) has two great properties. The first is that the average number

of points in [0, t] is exactly λt. (Recall the earlier we could only lower bound it
by λt − 1.) The second is that for two time intervals [a, b] and [c, d] that do not
overlap (so b < c), then the number of arrivals in the two intervals are independent
of each other.
Even more amazing is that these two properties define what it means to be a

Poisson point process of rate λ over [0,∞).

Definition 34
A Poisson point process of rate λ on [0,∞) is P ⊆ R such that

• For all t, E[#(P ∩ [0, t])] = λt.

• For all a < b < c < d, #(P ∩ [a, b]) and #(P ∩ [c, d]) are
independent random variables.
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In words, a set of values is a Poisson point process if the values represent
customer arrival times, the average number of customers that arrive in an interval
has mean equal to the arrival rate times the length of the time interval, and for
two intervals that do not overlap, the number of customer arrivals in one interval
is independent of the number of customer arrivals in the other interval.

Fact 17
For a Poisson point process of rate λ on [0,∞),

#(P ∩ [0, t]) ∼ Pois(λt).

Example 10
Let P be a Poisson process on [0,∞) of rate 4. Then what is the chance
that exactly 10 points fall in [0, 2]?

Answer The number of points that fall into [0, 2] will be

#(P ∩ [0, 2]) ∼ Pois(2 · 4),

so the chance that this equals 10 is

810

10!
exp(−8) ≈ 0.09926 . . . .

Our big fact is that if you have a set of times with exponential interarrivals, then
the result is a Poisson point process of rate λ.

Fact 18
Let A1, A2, . . . be an iid stream of Exp(λ) random variables. Then

P = {A1, A1 +A2, A1 +A2 +A3, . . .}

forms a Poisson point process of rate λ over [0,∞).

So for ourM/G/s queue, the times of the customer arrivals will be a Poisson
point process.

Solving the Question of the Day

In the Question of the Day, anM/G/2 queue has rate 2.4 per hour. Therefore, in
the first two hours, the number of arrivals N[0,2] has a Poisson distribution with
parameter 2.4 · 2 = 4.8.

5.2 Arrival times for theM/G/s queue
Recall that the arrival time of customer n is the sum of the first n interarrival times.



42 CHAPTER 5. MEMORYLESS QUEUES

Reminder 3
If A1, . . . , Ak are iid Exp(λ), then the distribution of their sum is called
gamma or Erlang with parameters k and λ.

Fact 19
The density of X ∼ Erlang(k, λ) is

fX(s) =
λksk−1

(k − 1)!
exp(−λs)1(s ≥ 0).

This allows us to calculate exactly the probability that a particular arrival time
falls into a particular set.

Example 11
Suppose I have an M/M/s queue with arrival rate 4 per minute. What
is the chance that the fourth customer arrival comes in [1, 1.1] minutes?

Answer Using the gamma distribution, this will be:

P(T4 ∈ [1, 1.1]) =

∫ 1.1

1

44

3!
s3 exp(−4s) ds

=
44

3!

−(3 + 12s+ 24s2 + 32s3)

128
exp(−4s)|1.11 = 0.07402 . . . .

5.3 Intuition behind the Poisson and Erlang distributions

For a Poisson point process of rate λ, the average number of points that fall into
an interval of length t is λt. When t is very small, it is likely that the number of
points will either be 0 or 1.
Consider a differential interval of length dt, the probability that it contains a

point will be λ dt.
What is the chance, then that all the other differential points will be empty?

There are t/dt such intervals, each with a 1− λ dt of being empty.

(1− λ dt)t/dt = exp(−(λdt)(t/dt)) = exp(−λt).

Hence if the goal is to find the chance that 3 points fall in interval [0, t], it is
necessary to integrate over all the differential intervals where the points might
be. However, this overcounts things. A point set (x1, x2, x3) will only be valid if
x1 < x2 < x3. If x2 < x1 < x3 then these cannot be arrival times. Hence this



5.3. INTUITION BEHIND THE POISSON AND ERLANG DISTRIBUTIONS 43

number should be divided by the total number of orderings. That is,

P(#(P ∩ [0, t]) = 3) =

∫
(x1,x2,x3)∈[0,t]3

1

3!
(λ dt1)(λ dt2)(λdt3) exp(−λt)

=

∫
x1∈[0,t]

∫
x2∈[0,t]

∫
x3∈[0,t]

λ3

3!
dt3 dt2 dt1 exp(−λt)

=
t3

3!
exp(−λt).

This argument was for three points but can be extended easily to an arbitrary
number of points.
This is not a formal proof, but hopefully gives some intuition as to why the

formula for the Poisson distribution is the way it is.
A similar analysis gives us the density of an Erlang. For the third customer

arrival to fall in [t, t+ dt], there must be a point in [t, t+ dt] (this happens with
probability λ dt), there must be two points in [0, t] (this happens with probability
(λt)2/2! exp(−λt).

Also write P(X ∈ [t, t+ dt]) as P(X ∈ dt) where here dt refers to the interval
of length dt around t. In terms of density,

P(X ∈ dt) = fX(t) dt.

Hence
P(X ∈ [t, t+ dt]) = fX(t) dt =

(λt)2

2!
exp(−λt)(λ dt).

Problems

5.1 If P is a Poisson process of rate 2.5 per second over [0,∞), what is the
chance that there are at most 3 points of P in the first 2 seconds?

5.2 Let Q be a Poisson point process of rate 5.2 per hour over [0,∞).

a) What is the average number of points of Q in [0, 8]?
b) What is the chance that the number of points equals ⌊E[Q]⌋?

5.3 Consider an M/G/2 queue with arrival rate 3 per minute.

a) What is the average number of arrivals in the first minute?
b) What is the chance that there are at least 3 arrivals in the first minute?
c) What is the chance of no arrivals in the first 1.5 minutes?

5.4 Consider anM/M/3 queue with arrival rate 1.8 per minute.
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a) What is the average number of arrivals in the first minute?
b) What is the chance that there are at least 1.8 arrivals in the first

minute?
c) What is the chance of no arrivals in the first 2.6 minutes?

5.5 If the interarrival times between customers are modeled as iid Exp(8.4/s),
how many seconds (on average) are there between customer arrivals?

5.6 For service times that are modeled as iid Exp(2/hr), what is the service
rate?

5.7 For anM/G/2 queue of arrival rate λ, what is the distribution of the time
of the third customer arrival?

5.8 For anM/D/1 queue with arrival rate 1 per minute, what is the chance
the third arrival comes between time 3 minutes and 4 minutes?
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Queue capacity

Question of the Day

Suppose a single server averages 4.3 jobs per minute. How many servers are
needed if the arrival rate is 13.4 per minute to keep the queue from exploding?

Summary

• For Ai iid and Tn =
∑n

i=1Ai, call Tn a renewal process. The arrival times
for a G/G/s queue form a renewal process.

• The Elementary Renewal Theorem states that for a renewal process Tn

with associated process Xt = #(n : Tn ≤ t) the following holds

lim
t→∞

E[Xt]

t
=

1

E[Tn − Tn−1]
.

• For µ < λ, a queue will explode in length.

• For aG/G/1 queue with service rate µ, the queueG/G/s with same arrival
and service distributions has service rate sµ.

• A graph/network consists of nodes/vertices connected by edges/arcs
that connect two vertices. In directed graphs, the arcs have direction from
one node to another, in undirected graphs they do not.

• A queue network explodes if for any integer n and probability p < 1, there
is a time t such that there is at least a p chance that the number of customers
in the network exceeds n.

• A routing network is a directed graph where nodes are queues, and the
arcs tell you to which queue to go next. A queuing network consists of a
routing network, an arrival arrow to a node, and an exit arrow.

45
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• If there are multiple outputs from a queue, say that servers on the outputs are
working in parallel. If there is a single output, the two nodes are working
in series. For queues connected in series, the service rate is the minimum of
the service rates of the servers. For queues connected in parallel, the service
rate is the sum of the service rates of the servers.

• A server is a bottleneck if reducing the service rate of this server reduces
the rate for the whole system.

• The queue capacity is the infimum of arrival rates for customers entering
the queue that result in an explosion of the queue.

The worst thing that can happen in a queue is for the arrival rate to be faster
than the service rate. It is at that point that the queue starts backing up and the
customers waiting for service grows ever longer.
To see why, it is necessary to talk a bit about renewal theory.

Definition 35
If A1, A2, . . . are an iid stream of positive random variables, and Tn =
A1 + · · ·+An, then {Tn} is a renewal process. Call the times {Tn}
renewal times (or more simply renewals.)

Example 12
The arrival times of a G/G/s queue form a renewal process.

The name comes from the fact that since the Ai are independent, and Tn is
known, then it is like the process starts over (renews) from there. The set of values
Tn+1 − Tn, Tn+2 − Tn, . . . has the same distribution as T1, T2, . . .. For any time t,
let Xt = #{n : Tn ≤ t} count the number of renewals in the interval [0, t].

An important fact about renewal processes is the Elementary Renewal Theorem.
It is similar to the Strong Law of Large Numbers and shows how the expected
number of renewals in a finite time interval behaves.

Theorem 3 (Elementary Renewal Theorem)
For a renewal process T1, T2, . . ., and Xt = #{n : Tn ≤ t},

lim
t→∞

E[Xt]

t
=

1

E[Ti − Ti−1]
.

For a G/G/s queue with arrival rate λ, this says that the expected number of
customer arrivals in [0, t] divided by t converges to λ as t goes to infinity.
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Note that both the interarrival and service times can be used to form a renewal
process. Now consider the times when a customer completes service. Each of
those times is preceded by a random draw from the service time distribution. But
there could be times when the line of customers waiting for service is empty, so
the number of services is at most the number of service time draws that fit into
[0, t]. That is, if St is the number of services completed by time t,

lim
t→∞

E[St]

t
≥ µ,

where µ is the service rate.
So what happens if the service rate is strictly smaller than the arrival rate? The

number of customers waiting for service grows without bound!

Definition 36
Say that a queue system explodes if for any n there is a time t such
that the expected number of customers waiting in line for service is at
least n.

Fact 20
Suppose µ < λ. Then the queue system explodes.

Proof. Let ϵ = (λ− µ)/3, Nt be the number of customers arriving in [0, t], and St

be the number of services in [0, t]. Then by the definition of limit, there exists t1
such that for all t ≥ t1,

E[Nt]

t
≥ λ− ϵ, and E[St]

t
≤ µ+ ϵ.

Hence for all t ≥ t1.
E[Nt − St] ≥ t(λ− µ− 2ϵ).

By our choice of ϵ, λ− µ− 2ϵ > 0. So set t = max{n[(1− p)(λ− µ− 2ϵ)]−1, t1}
to complete the proof.

So in designing queues that work, it is essential that the service rate always
exceeds the arrival rate. Note that one simple way of doing this is increasing the
number of servers.

Fact 21
Suppose a G/G/1 queue has service rate µ. Then a G/G/s version of
the queue has service rate sµ.
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Example 13 (Question of the Day)
Suppose a single server averages 4.3 jobs per minute. How many servers
are needed if the arrival rate is 13.4 per minute to keep the queue from
exploding?

Answer To make the queue not explode, it is necessary for 4.3s ≥
13.4. Since 13.4/4.3 ≥ 3.11, this queue requires at least 4 servers to
make sure that the queue length does not explode.

6.1 Queuing networks

In the G/G/s queue notation, the s servers are taken to be working in parallel.
This means that as arrivals come in, they have a choice of which queue to move to.
This can be represented by a graph.

Definition 37
A graph (aka network) consists of nodes (aka vertices) together with
edges (aka arcs) that consist of two nodes. In a directed graph each
edge is an ordered pair, and in an undirected graph each edge is a set
of two nodes (so the nodes in the edge are unordered.)

Example 14
The following graph has four nodes {a, b, c, d} and four edges
{(a, b), (a, c), (b, d), (c, d)}.

a

b

c

d

Remark Some authors reserve the word graph to mean objects where the edges
have no direction, that is, they are subsets of nodes of size 2 rather than ordered
pairs. For edges that are ordered pairs, they call it a directed graph.

Definition 38
Given a set of queues, a routing network tells us where customers
serviced by one queue must go next.



6.1. QUEUING NETWORKS 49

Example 15
If the customers leaving Queue 1 and Queue 2 form the arrival process
for Queue 3, then the routing network looks like

Queue 1

Queue 2

Queue 3

A queueing network feeds a routing network with arrivals and then has an edge
representing customers leaving the system.

ABCD

Definition 39
A queueing network consists of an arrival arrow followed by a set of
queues connected by a routing network and completed by an exit arrow.

Example 16
Consider the following queue network:

Server 1

Server 2

Server 3

Here arriving customers go to either Server 1 or Server 2. Once they
complete service there, they move to Server 3, and after completing that
service, they exit. The part inside the rectangle is the routing network.

The previous example can also be written using subqueues.
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Queue 1 Queue 2

where the subqueues are

Server 1

Server 2

Queue 1

Server 3

Queue 2

In the previous example, the arriving customers have a choice of moving to
Server 1 or Server 2. Say that these two servers are in parallel.

Definition 40
In a routing network, if the output from a queue (or from the arrival
process) has a choice of which server to take, say that the servers are
arranged in parallel. If those customers exiting a queue immediately
enter a second queue, say that the queues are arranged in series.

Example 17
In the previous example, Server 1 and Server 2 are arranged in parallel,
while Queue 1 and Queue 2 are arranged in series.

6.2 Service rates for networks

A queueing network has an overall service rate called the queue capacity.

Definition 41
The queue capacity for a queuing network is the infimum of the set of
arrival rates that cause the queue network to explode.

The overall service rate for a routing network is determined by bottlenecks.
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Definition 42
A server in a queuing system is a bottleneck if reducing the service
rate for this server reduces the service rate for the entire system.

For queues connected in series, it is the slowest (lowest service rate) queues that
determine the overall service rate.

Fact 22
If queues Q1, Q2, . . . , Qn connected in series have service rates
µ1, µ2, . . . , µn, then the overall service rate is

min{µ1, . . . , µn}.

Any queue with µi = µ is a bottleneck in the system.

Queues that are in parallel are much better for the customer. But then every
queue is a bottleneck!

Fact 23
If queuesQ1,Q2, . . . ,Qn connected in parallel have service rates µ1, . . . ,
µn, then the overall service rate is

µ = µ1 + · · ·+ µn.

Every server in a queue connected in parallel is a bottleneck server.
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Example 18
Suppose S1, S2, and S3 connect in series to make Q1, and S4 and S5

connect in series to make Q2. Q1 and Q2 are then connected in parallel.
The service rates are

µ1 = 1.2, µ2 = 4.2, µ3 = 1.2, µ4 = 2.3, µ5 = 1.2.

1. Draw the queuing system.

2. What is the overall service rate of the queuing system?

3. What are the bottlenecks of the system?

Answer

1. From the description, the queuing system looks like this:

S1 S2 S3

S4 S5

2. Q1 has service rate q1 = min{1.2, 4.2, 1.2} = 1.2. Q2 has service
rate q2 = min{2.3, 1.2} = 1.2. Since Q1 and Q2 are in parallel,
their overall service rate is 1.2 + 1.2 = 2.400 .

3. The bottleneck is both Q1 and Q2 since they are in parallel. The
bottlenecks inside Q1 are S1 and S3, and inside Q2 is S5. So the
bottlenecks are {S1, S3, S5} . You can check that decreasing the
service rate for any of these three nodes will decrease the rate of
the overall system while decreasing the rate of S2 or S4 will not
affect the overall service rate.

Problems

6.1 A queuing network’s overall rate is limited by what type of server?

6.2 If a customer has a choice of servers, then the servers are arranged in
.
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6.3 An entry ramp to the freeway uses a stoplight that lets traffic on at a rate
of 2 cars every 3 seconds. If there are 24 cars waiting to get on the freeway,
on average how long are you going to have to wait?

6.4 a) Consider the following queueing network. What is the overall system
service rate?

ENTER

Server 1

µ1 = 10/min

Server 2

µ2 = 7/min

EXIT

b) What is the overall service rate for the following network?

ENTER Server 1

µ1 = 10/min

Server 2

µ2 = 7/min

EXIT

6.5 In the previous problem, what are the bottleneck servers?

6.6 What are the bottleneck servers of the following network?
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ENTER

Server 1

µ1 = 10 per min

Server 2

µ2 = 7 per min

Server 3

µ3 = 15 per min

EXIT

6.7 What is the capacity of the network in the previous problem? [In other
words, what is the overall service rate of this network.]

6.8 Continuing the previous problem, if the bottleneck server (or servers) is
(are) upgraded to serve at a rate 18 per minute, what is the overall service
rate of this network?



Chapter 7

Little’s Law

Question of the Day

Suppose that I buy four cans of tuna at the grocery store when it goes on sale every
two weeks. I then consume the tuna at random iid intervals. After collecting data
for six months I find that at home the average number of cans of tuna that I have
is 7.3. On average, what is the time between when I purchase the tuna and the can
of tuna is consumed?

Summary

• Consider a time interval [0, t]. During this interval, let Lt denote the average
number of customers in a queuing system, letWt denote the average time
customers spend in the system, and λt be the initial number of customers in
the system plus those that arrive in the interval all divided by t.

• Little’s Law says that for any queuing network

Lt = λtWt.

• These can be extended to an infinite time horizon. Let λt = limt→∞ λt,
L = limt→∞ Lt. If Ri is the time in the system for customer i, let W =
limn→∞(1/n)

∑n
i=1Ri.

• Little’s Law says that for the infinite horizon,

L = λW

when these limits exist.
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When entering a queue, the question of paramount importance to the customer
is: How long until my service is complete? Call this the time in system for the
customer.

Fortunately, there is a very general idea called Little’s law that relates the arrival
rate, the average size of the queue, and the average time that any particular
customer spends in the system.

Theorem 4 (Little’s Law)
Consider a queuing network over the time interval [0, t]. Let Lt denote
the average number of customers in a queuing system,Wt denote the
average time customers spend in the system, and λt be the initial number
of customers in the system together with customer arrivals during [0, t]
divided by t.

Lt = λtWt.
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Example 19
Suppose for a G/G/s the queue starts with one person in service. An-
other customer arrives at time 1.1, then the first customer finishes service
at time 1.3. The second customer finishes service at time 2.7. A third
customer arrives at time 3.3. Find L4,W4, λ4, and verify Little’s Law.

Answer The queuing network starts with 1 customer and two more
arrive during the interval, so

λt = 3/4 = 0.75.

How long does each of the three customers spend in the system?
Customer 1 is in the system over [0, 1.3), Customer 2 is in the system
over [1.1, 1.3) and Customer 3 is in the system (during interval [0, 4]
over [3.3, 4]. Therefore, the average time customers spend in the system
is

Wt =
(1.3− 0) + (2.7− 1.1) + (4− 3.3)

3
= 1.2.

Finding Lt is a bit more complicated. In interval [0, 1.1) there is one
person in the system. In interval [1.1, 1.3) there are two, then [1.3, 2.7)
there is one, [2.7, 3.3) there are zero, and [3.3, 4] there is one again.
Hence the average number of customers in the system over [0, 4] is

Lt =
1(1.1− 0) + 2(1.3− 1.1) + 1(2.7− 1.3) + 0(3.3− 2.7) + 1(4− 3.3)

4− 0

= 0.9.

Now Little’s Law can be verified: (1.2)(0.75) = 0.9. It is good!

The above example also shows why Little’s Law is true. On the right hand
side λtWt has the number of customers that arrive in both the numerator and the
denominator, so they cancel out. The value λt also has the length of the interval in
the denominator. This same length of the time interval is also in the denominator
of Lt.
In the numerator, Wt has the sum of the lengths of the intervals. Notice that

when the intervals overlap, the number of intervals that overlap for a particular
subinterval is exactly the number of customers in the system. Customer 1 was in
the system from 0 up to 1.3, and Customer 2 was in the system from 1.1 up to 2.7.
So there were two customers in the system from 1.1 up to 1.3. That 2(1.3− 1.1)
was one of the terms in Lt.

Altogether, the numerator of Lt equals in value the numerator of Wt, they are
just counting customers in two different ways. So Little’s Law always holds!
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7.1 Infinite time horizon

Often models operate over a finite time horizon, but it is good to understand
whether this can be extended to the infinite time horizon case.

The limits of Lt and λt give rise to new parameters of the queuing network as
t→∞.

Definition 43
Let

L = lim
t→∞

Lt,

λ = lim
t→∞

λt.

The fact that λ is used here when previously it was reserved for the arrival rate,
is not a coincidence.

Fact 24
For an G/G/s queue, the value of λ = limt→∞ λt is the arrival rate of
the queue.

This fact uses more renewal theory. A renewal here is a customer arrival–once a
customer arrives, the time until the next arrival in a G/G/s queue is independent
of the previous arrival. In renewal theory, this fact follows from the Elementary
Renewal Theorem and is very useful in understanding how these processes behave.
Let Ri denote the waiting time for customer i. Then the average waiting time

becomes as follows.

Definition 44
If Ri is the time in the system for customer i, let

W = lim
n→∞

1

n

n∑
i=1

Ri.

Theorem 5 (Little’s law, infinite time)
For any queuing network where the limits W and λ exist, L exists as
well, and

L = λW.

This theorem is quite amazing for several reasons. First, it makes virtually no
assumptions about the nature of the system. This is a universal law that works
regardless of the shape or characteristics of the network. It also does not depend
in any way on the distribution of the arrival times or the service times. And yet,
despite the universality of the result, it is surprisingly powerful.
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In a typical application of Little’s Law, two out of the three of L, λ,W are known
and the goal is to calculate the third.

Example 20 (Question of the Day)
In this situation, 4 cans of tuna are bought every two weeks. Therefore,
the arrival rate of the customers (which in this case are cans of tuna)
is λ is 4 cans per 2 weeks which equals 2 cans per week. The average
number of cans in the system is 7.3. Hence

7.3 cans = W (2 cans/week),

so
W = 3.650 weeks .

That is, on average any individual can stays 3.65 weeks in the system.

Note that the queue discipline was not important here! If I adopt a FIFO system
and eat the cans purchased the earliest first, then the average time I have a can
is 3.65 weeks. If I adopt a LIFO system and eat the cans purchased most recently
first (and just to be clear, do not try this at home) then the average time a can is in
the system is 3.65 weeks. Some cans will be eaten much earlier with this system,
and some much later, but the overall average will be the same.

Example 21
A manager wants to keep the average wait time for jobs in a supercom-
puting cluster below 0.1 seconds. If jobs arrive on average at 105 per
second, what must the average number of jobs in the system be kept
below to accomplish this?

Answer The goal is an average wait time below 0.1 seconds and the
arrival rate is 105, that gives the number of customers in the system as

L = (0.1 s)(105/s) = 104 .

7.2 Proof of Little’s Law

Let n(s) denote the number of customers in the system (either waiting for service
or in service) at any particular time s. Then the graph of the function n(s) over
[0, t] might look something like this.
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Each time a customer arrives, n(s) increases by 1, and each time a customer is
served, n(s) decreases by 1.
The rest of our notation is as follows.

λt Arrival rate of customers in time [0, t].
Nt The number of customers in the system at time 0 plus those that

arrive in time [0, t].
Lt The average number of customers in the system over [0, t].
Wt The average time customers spend in the system over [0, t].
At The area under the n(s) for s ∈ [0, t].

Using integral notation,

At =

∫ t

0
n(s) ds.

The proof of the finite version of Little’s law comes down to looking at the area
under the n(s) curve in two different ways.

Proof of Little’s law. The way you find the average height of a function like n(t) is
to find the integral over an interval and then divide by the length of the interval.
In this case, this means

Lt =
At

t− 0
= At/t.

The average arrival rate over the interval [0, t] is similarly Nt/t.
Let tw denote the total time that customers are waiting in the system over [0, t].

Note that when a customer arrives at time Ti, the graph of n(t) jumps up 1. If that
customer stays in the system until time t, then the waiting time of that customer
would be (1)(t− Ti).
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Note that if a point is to the right of two places where the function is increasing, it
is counted twice, and so on.
However, at some time values customers are leaving the system. If at time tℓ a

customer leaves the system, then that removes times t− tℓ from the overall waiting
time of all customers.

Therefore, the total waiting time is the area to the right of the curve when
the curve is increasing, minus the area to the right of the curve when the curve
is decreasing. But subtracting one from the other just leaves exactly the area
underneath the curve. That is, tw = At.

So the average waiting time is exactlyAt/Nt, the total waiting time of customers
divided by the number of customers in [0, t]. Hence

λtWt =
Nt

t
· At

Nt
=

At

t
= Lt.

Problems

7.1 The long term time customers spend waiting in a G/G/5 queue is 15
minutes, and the average long term queue length is 18.4.
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a) What is the arrival rate to this queue?
b) What is the expected time between arrivals in this queue?

7.2 A road network has cars spending 28.2minutes leaving City A and arriving
at City B. If there are on average 500 cars on the road between the two
cities, on average how many cars are trying to get from City A to City B?

7.3 A cafeteria has several queues (for food gathering and payment). If the
average number of customers in the cafeteria is 20.3 during the lunch hour
(call this time [0, 1] hours), and each customer spends an average of ten
minutes in the cafeteria, what is λ1?

7.4 If a queuing system has a long-term average of 13.1 jobs in the queue, and
each job waits an average of 1.1 days, what is the arrival rate?

7.5 Let n(s) denote the number of customers in a queuing system. Suppose
that the system starts with 2 customers. Customer 1 finishes service at
time 0.8, Customer 3 arrives at time 1.4, Customer 4 arrives at time 1.8,
Customer 2 finishes service at time 3.3, and Customer 3 immediately enters
service but does not finish before time 5.
Draw a graph of n(s) for s ∈ [0, 5].

7.6 Let n(t) denote the number of customers in a queue with one server at
time t. The queue starts with no customers, and then there are customer
arrivals at times 1.5, 2.1, 2.9, 3.4. The time needed to service the first four
customers are 1.2, 2.2, 0.8, 1.4. Graph n(t) over [0, 4].

7.7 Jobs arrive at a computer server at 11.4 per second. If the average number
of jobs waiting at any moment is 14.2, what is the average amount of time
a job waits before being served?

7.8 A construction site is getting bricks delivered at rate 4000 per day. If the
average number of bricks on site not yet set in a wall is 12300, what is the
average amount of time a brick waits at the site before being set in a wall?
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Idle time for G/G/s queues

Question of the Day

A Google server receives on average 200 requests a second, each of which takes
on average 0.001 seconds to resolve. What percentage of time is the server idle?

Summary

• Idle time for G/G/s queue is the long term average the queue has no cus-
tomers.

• Jump processes are stochastic processes that jump from one state to another
at discrete times.

• Continuous time Markov chains are jump processes where the time between
jumps are independent, and exponentially distributed with parameter that
only depends on the current state.

When dealing with queuing networks, when the arrival rate exceeds the service
rate, the length of the queue explodes. What happens when the arrival rate is
lower than the service rate?

8.1 Capacity Utilization

Suppose that for the Question of the Day, the interval of time under consideration
in [0, t]. Since requests are coming in at 200 per second, assuming t is measured in
seconds, the average number of requests in the interval [0, t] will be 200t.

Each of these (on average) 200t requests takes time (on average) 0.001 sections
to resolve. By Wald’s Equality, the time to resolve the average of 200t requests that
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each take an average of 0.001 time requires (on average) (200t)(0.001) = 0.2t
time.

So (on average) 0.2t time out of the [0, t] interval is spent resolving requests. In
other words, 20% of the time in the interval [0, t], the computer is busy, and 80%
of the time it is idle.
This is not a rigorous derivation because it assumes that all of the service jobs

that arrived in the interval [0, t] were actually serviced in [0, t]. This might not be
true. For example, the arrivals and service times might have looked something like
this:

× ×
0 t

That being said, when t large, that extra bit of service on the end is negligible
compared to the size of t.
The percentage of time that the server was busy was found by multiplying the

arrival rate times the average time of service. The average time of service is one
over the service rate. So the average percentage of time that the server is busy will
be (for large times) the arrival rate divided by the service rate.
Recall that for queues with s servers that each have service rate µ, the overall

service rate of the network is µ · s.

Definition 45
For a G/G/s queue, the capacity utilization is

ρ =
λ

µ · s.

When the capacity utilization is less than 1, the queue is capable of serving its
customers at a rate faster than they arrive. But for capacity utilization greater than
1, the arrival rate is faster than the service rate, so the queue will grow on average
to be infinitely long.

Definition 46
For a statistic St that refers to the queue over time [0, t], if S =
limt→∞ St exists with probability 1, then S is the long term (aka long
run aka steady state) value of the statistic.

These long run statistics were seen earlier in describing Little’s Law over the
infinite time horizon. The long run average queue length is the limit of the average
queue length over [0, t], and the arrival rate is the long term statistic of the arrival
rate over [0, t].
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Fact 25
For a G/G/s queue with finite expected service and interarrival times,
and ρ < 1, the long run (steady state) busy time is ρ.

Definition 47
The idle time for a queue is the long term fraction of time there are no
customers in the system.

When a queue is not busy, it is idle.

Fact 26
The long run idle time is 1− ρ.

For a single server, the busy time is the percentage of time the server is expected
to be servicing a customer. For multiple servers, the busy time is the percentage of
servers that are expected to be occupied at any particular time.

Proof idea For any given interval of time [0, t] some of the time will be spent
serving customers, and some of the time the system will be idle.
In time [0, t], the average number of customers that arrive is the arrival rate

times the time, or λt. Since the service rate is µs, on average each one of these
customers takes takes service time (on average) of 1/(sµ). Hence the time blocked
out by services is roughly λt/(sµ). That is, λ/(sµ) percent of the time is occupied
by services.

8.2 Stochastic Processes

The number of customers in the system at time t is an example of a stochastic
process.

Definition 48
A collection of random variables {Xt} is called a stochastic process.
The subscript t is the index of the variables.

Often the index t ∈ [0,∞) for a process that varies in time.
The idle time is measuring the time that the length of the queue is spending in

state 0. More generally, indicator functions can be used to measure the time spent
in other states.
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Definition 49
For a stochastic process {Xt}t≥0, the fractional time spent in state i
is

1

t

∫
s∈[0,t]

1(Xt = i) ds.

Of course, that makes the steady state time spent in state i

lim
t→∞

1

t

∫ t

0
1(Xs = i) ds.

So see how this works in practice, consider an example.

Example 22
Suppose the process X0 starts in state a, spends 1.5 seconds in state 0
and then jumps to state b, where it spends 1 second before jumping back
to a. The process then repeats. The process X0 looks like:

b

a

Then Ys = 1(Xs = a) picks out those times the state of Xs is a, and
replaces them with a 1.

1

0

The average time spent in state a is then just the average of Ys over
[0, t]. In the limit as t goes to infinity, this converges to 0.6.

The processXt is an example of a jump process. At a countable number of times
in [0,∞), it jumps from one state to another.

Definition 50
A stochastic process {Xt}t≥0 is a jump process if the path t 7→ Xt is
constant with a number of discontinuities that is countably infinite with
probability 1.

Recall that a set of values is countably infinite if it is finite, or infinite and can be
placed into a sequence d1, d2, . . .. So a stochastic process is a jump process if the
times at which it jumps is either finite or can be placed into a sequence of times.
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8.3 Continuous time Markov chains

If the time between jumps is memoryless (exponential) where the parameter only
depends on the current state, then call the process a continuous time Markov chain
or CTMC for short.

Definition 51
A stochastic process over state space Ω is a continuous time Markov
chain (CTMC for short) if it is a memoryless jump process. This means
there is a function λ : Ω → [0,∞) where at time t, given {Xt′}t′≤t,
the time τ of the next jump satisfies τ − t ∼ Exp(λ(Xt)), and the
distribution of Xτ only depends on Xt.

A nice fact about exponentials is that the minimum of two exponentials is still
exponential.

Fact 27
Suppose X ∼ Exp(λX) and Y ∼ Exp(λY ) are independent. Then
min{X,Y } ∼ Exp(λX + λY ).

Proof. Recall that A ∼ Exp(λ) if and only if P(A > a) = exp(−λa). So

P(min{X,Y } > a) = P(X > a, Y > a)

= P(X > a)P(Y > a)[independent]
= exp(−λXa) exp(−λY a)

= exp(−[λX + λY ]a)

which means min{X,Y } ∼ Exp(λX + λY ).

Consider theM/M/1 queue. There is an exponential amount of time until the
next arrival, and an exponential amount of time until the next service. So the next
time of either an arrival or service will also be exponential since it is the minimum
of two exponentials. This gives us the following result.

Fact 28
LetXt be the number of customers in anM/M/1 queue at time t. Then
{Xt} is a continuous time Markov chain.

When the state space Ω is discrete, a continuous time Markov chains can be
represented using an arc labeled directed graph.

• Nodes are states the chain can be in.

• Arcs are labeled with rate of jump between states.
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0 1 2 3 · · ·

λ λ λ λ

µµµµ

Problems

8.1 The capacity utilization is usually denoted by what symbol?

8.2 Fill in the blank: the value of the capacity utilization is an example of a
run statistic of the queue.

8.3 For a G/G/4 queue with capacity utilization 65%, what is the long run
idle time?

8.4 If a queue has capacity utilization 30%, what is the long run idle time?

8.5 Suppose aG/G/4 queue has arrival rate 4 per min, and the average service
time for a single server is 0.8 minutes. What is the capacity utilization for
the queue?

8.6 Suppose a G/D/3 queue has arrival rate 3.2 per min, and the time to
service a single job is 27.2 seconds. What is the capacity utilization for the
queue?

8.7 For a G/G/s queue with arrival rate 4.2 per second and the expected
time for a single server to serve a customer of 1.9 seconds, what is the
maximum number of servers we can have and still have less than 50% long
run idle time?

8.8 For aG/G/3 queue, if the service time of a single server is 3.2 minutes on
average and the capacity utilization is 80%, what is the arrival rate of jobs?
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Long term behavior of a CTMC

Question of the Day

In an M/M/1 queue with average wait between arrivals of 1 min and average
service time for each server of 0.75 min, what is the long term percentage of time
the system has at most 3 customers?

Summary

• The Ergodic Theorem says the following. For a countable state space
continuous time Markov chain, Ω the states with positive probability of
being reached from the starting state, and π a probability distribution over
Ω such that for all states i ∈ Ω,∑

j∈Ω
π(i)λ(i, j) =

∑
k∈Ω

π(k)λ(k, i),

the steady state amount of time spent in state i is π(i).

• Taken together for all i ∈ Ω, these are called the balance equations.

• For theM/M/s queue it is possible to analytically solve the detailed balance
equations.

AnM/M/1 queue is a continuous time Markov chain. To understand how these
chains evolve, consider the following example of a CTMC.
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a b

c d

0.7

1.2

1.4

2.1
0.4

If the chain begins in state a at time 0, this can represented using a probability
vector p0 = (1, 0, 0, 0). This means that the probability of being in state a is 1 and
the probability of being in state b, c, or d is 0. Now consider the probability vector
for times t > 0. The following shows how this vector evolves over time.

Time 2 Time 3

Time 0 Time 1

a b c d a b c d

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

State

P
ro

ba
bi

lit
y 

ve
ct

or

Note that by time 3 the chain has already mixed, that is, the probability vector is
not changing much at this point. It is very close to

p∞ = (0.4660 . . . , 0.2038 . . . , 0.1553 . . . , 0.1747 . . .).

This is the steady state probability distribution. The natural question is how
to calculate this distribution (if it even exists). The answer lies in the balance
equations.
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9.1 Balance

Think of the Markov chain as a series of pipes. The pipes reflect the rate at which
probability is flowing from one state to another. For instance, probability in state
a flows out to state b at rate 0.7.
Say that the probability distribution is in balance if the flow out of the state

exactly matches the flow into the state.
Let λ(i, j) be the rate at which state i jumps to state j. In the example above, for

instance, λ(c, a) = 2.1. The Ergodic Theorem states that for a countable state space
Ω CTMC, if the flow is balanced at a certain distribution, then that distribution is
unique, and will also be the steady state distribution.

Theorem 6 (Ergodic Theorem)
For a countable state space Markov chain, let Ω denote the states with
positive probability of being reached from the starting state of the chain.
Further, suppose there exists a probability distribution π over Ω such
that for all i ∈ Ω ∑

j∈Ω
π(i)λ(i, j) =

∑
k∈Ω

π(k)λ(k, i).

Then the steady state amount of time spent in state i is π(i).

Definition 52
The set of equations∑

j∈Ω
π(i)λ(i, j) =

∑
k∈Ω

π(k)λ(k, i).

for all states i are called the balance equations.

For the CTMC from earlier, there are 4 states, and so 4 balance equations. They
are

0.7π(a) = 2.1π(c)

[0.4 + 1.2]π(b) = 0.7π(a)

2.1π(c) = 0.4π(b) + 1.4π(d)

1.4π(d) = 1.2π(b).

This system of equations is underdetermined. So the best that can be done is to
solve them to say something like:

(π(a), π(b), π(c), π(d)) = π(a)

(
1,

7

16
,
1

3
,
3

8

)
.
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Recall that probabilities always add to 1. This gives one additional equation:

π(a) + π(b) + π(c) + π(d) = 1.

Then we get

(π(a), π(b), π(c), π(d)) =
1

103
(48, 21, 16, 18).

This solution looks like
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which is the same as the limiting behavior

9.2 Limiting behavior for the M/M/1 queue
For the M/M/1 queue, let Nt be the number of jobs in the system at time t
(including the one being serviced) andN∞ a draw from the steady state distribution.
Recall that our CTMC looks like:

0 1 2 3 · · ·

λ λ λ λ

µµµµ

It turns out we can write down explicitly what the steady state distribution is!

Fact 29
For theM/M/1 queue,

π(i) = (1− ρ)ρi

satisfies the balance equations.

Proof. Start with state 0:

π(0)λ(0, 1) = λ(1− ρ) = (λ/µ)µ(1− ρ) = π(1)λ(1, 0).
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Now suppose i > 0:

π(i)λ(i, i+ 1) + π(i)λ(i, i− 1) = (1− ρ)[(λ/µ)iλ+ (λ/µ)iµ]

= (1− ρ)[λi+1/µi + λi/µi−1]

and

π(i+ 1)λ(i+ 1, i) + π(i− 1)λ(i− 1, i) = (1− ρ)[(λ/µ)i+1µ+ (λ/µ)i−1λ]

= (1− ρ)[λi+1/µi + λi/µi−1].

So the balance equations hold!

This should look familiar!

Fact 30
Let π be the steady state distribution of an M/M/1 queue. Then for
L = L∞ ∼ π, the steady state line length satisfies

L∞ + 1 ∼ Geo(1− ρ).

In particular the average steady state line length is L = E[L∞] =
ρ/(1− ρ).

Example 23 (Question of the day)
Given anM/M/1 queue with average wait between arrivals of 1 min
and average service time of 0.75 min, what is the percentage of time
there are at most three customers in the queue?

Answer Since we are not given the starting value, we should take
this question to mean the steady state probability that there are at most
three customers in the queue. From our steady state distribution for the
M/M/1 queue, this will be

(1− ρ) + ρ(1− ρ) + ρ2(1− ρ) + ρ3(1− ρ).

Here ρ = (1/1)/(1/0.75) = 0.75, making the chance

0.25[1 + 0.75 + 0.752 + 0.753] = 0.6835 . . . .

Little’s Law can then be used to calculate expected wait time.
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Example 24
Suppose we have a Google server λ = 200 thousand per second, µ =
1000 thousand per second that is modeled as an M/M/1 queue. What
is the average time a job spends in the queue for the server?

L∞ + 1 ∼ Geo(1− 200/1000),

so
E[L+ 1] = 1/.8 = 1.25⇒ E[L] = 0.25.

By Little’s law:

L = λ ·W ⇒ 0.25 = 200 000W ⇒W = 1.250 · 10−6 seconds .

9.3 Modeling the M/M/2 queue
Now consider what happens when there are two servers working in parallel.

• Let Nt by the number of customers in the system at time t.

– When N ≥ 2 both servers are working.

– When N = 1 one server is working.

– When N = 0 no servers are working.

• The key difference is that when both servers are working, the service rate
doubles to 2µ because they are working in parallel.

The graph of the CTMC is as follows.

0 1 2 3 · · ·

λ λ λ λ

2µ2µ2µµ
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Fact 31
For the M/M/2 queue with ρ = λ(2µ)−1 < 1, the steady state distri-
bution is

π(0) =
1− ρ

1 + ρ

π(i) = 2ρi
1− ρ

1 + ρ
i ≥ 1.

and the expected steady state line length is

2ρ

1− ρ2
.

To prove this just verify that the balance equations are satisfied.
Note as ρ→ 1, the expected line length goes to infinity.

Problems

9.1 For an M/M/1 queue with arrival rate 3 per minute and service rate 5
per minute, what is the steady state length of the queue?

9.2 A food stand models their customers as anM/M/1 queue. If the servers
can serve on average 12 customers in an hour, and on average 8 customers
arrive in an hour, what is the average length of the queue?

9.3 For an M/M/1 queue with arrival rate 3 per minute and service rate 5
per minute, what is the steady state probability there are two or fewer jobs
in the system?

9.4 A help desk is modeled using anM/M/1 queue with arrival rate 20 per
hour and service rate 25 per hour. What is the steady state probability that
there are four or more customers in the queue?

9.5 The help desk from the last problem upgrades to two servers (each has the
25 per hour service rate). Now what is the probability that there are four
or more customers in the queue?

9.6 Consider anM/M/2 queue with arrival rate 3 per minute and service rate
per server of 5 per minute.

• What is the long term probability that exactly one of the servers is
idle?

• What is the long term probability that both of the servers are idle?
• What is the long term average number of servers that are idle?
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9.7 Draw a graphical model of the continuous time Markov chain that models
theM/M/3 queue with arrival rate λ and single server service rate µ.

9.8 Write down the balance equations for theM/M/3 queue.
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Studying data

Question of the Day

Douglas Consulting records queue length at 5 times during the day of
17, 21, 8, 7, 14. What is the average queue length? What is the standard devi-
ation?

Summary

• Given a dataset X1, . . . , Xn, basic statistics include the sample average

X̄ =
1

n

n∑
i=1

Xi,

and the sample standard deviation

σ̄ = sqrt

(
1

n− 1

n∑
i=1

(Xi − X̄)2

)
.

• R is an open source statistical toolkit and a programming language that can
calculate these statistics.

• Useful commands in R include c for making a vector, mean for finding the
sample average of the values of a vector, and sd for finding the sample
standard deviation of the values of a vector.
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10.1 Statistics

Statistics is the science of collecting and analyzing data in order to make informed
decisions. Often the mathematics used in building statistical models involve the
use of probability, and so that subject is seen as being very closely related.
One of the most important theorems from probability is essential to building

statistical estimators, the Strong Law of Large Numbers. This theorem says that for
an iid stream of random variables, the sample average converges to the expected
value of each random variable.

Definition 53
Let X1, . . . , Xn be random variables. Then

µ̂ =
X1 + · · ·+Xn

n

is the sample average of the data.

Often, the adjective sample is dropped, and this is called the average of the
random variables. It is important to be careful though, you do not want to confuse
the average of a set of numbers (which is a statistic) with the average of a random
variable (which is an integral or summation depending on the type of random
variable.)

The sample average is an example of a statistic.

Definition 54
Given data (X1, . . . , Xn), a statistic is any function of the data.

For the sample average, the function is

µ̂(X1, . . . , Xn) =
X1 + · · ·+Xn

n
.

The symbol µ (when not being used for the service rate of a queue) often
represents the average of a random variable X1. Note that µ̂ has a circumflex
symbol above it. That indicates that µ̂ is an estimate for µ. Because the word
“circumflex” is hard to say, statisticians use a simpler term, reading µ̂ as “hat mu”.

One of the hallmarks of a good estimate is that when more data is given, the
statistic is closer to the true value of a parameter. This idea is called consistency.

Consistent estimators

Definition 55
A sequence of estimates (θ̂1, θ̂2, . . .) is consistent for parameter θ if

P
(
lim
n→∞

θn = θ
)
= 1.
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Given a probabilistic model, it is impossible to guarantee that an estimate will
converge to the right answer. But for a consistent estimator, it is possible to
guarantee that convergence will happen with probability 1. The Strong Law of
Large Numbers essentially says that the sample average of iid data gives a consistent
sequence of estimators for the mean of the distribution the data is drawn from.

Theorem 7 (Strong Law of Large Numbers)
For X1, X2, . . . iid with finite mean,

P
(

lim
n→∞

X1 + · · ·+Xn

n
= E[Xi]

)
= 1.

In words, this says that the sample averages from an iid stream of data form a
consistent estimate for the expected values.

Standard deviation

Another important statistic is the sample standard deviation.
Recall that the standard deviation of a random variable is a measure of the spread

of the random variable away from its mean.

Definition 56
The standard deviation of a random variable X is√

E[(X − E(X))2].

Given a set of data, the value of E(X) is unknown. So use µ̂n to estimate that,
then find (almost) the sample average of (Xi − µ̂n), then take the square root of
the whole thing to get the sample standard deviation.

Definition 57
Given a set of data X1, . . . , Xn, the sample standard deviation is

σ̂ =

√∑n
i=1(Xi − µ̂n)2

n− 1
.

Why divide byn−1 instead ofn? The purpose of this is so thatE(σ̂2
n) = SD(X)2.

Practically, it is a reminder that the spread of a random variable cannot be estimated
with only a single sample! At least two draws from the distribution are needed
before it makes sense to talk about estimating the spread of the random variable.

Fact 32
The σ̂n statistic is consistent for SD(X1).
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10.2 Using R to calculate estimates

R is a statistical computing environment. That means that it contains built in
functions for calculating the most common statistics, and also has a programming
language that you can use to accomplish tasks that are not built in.

R is open source, which means that it is free to download and use. The examples
here will be written using RStudio, which is an integrated development environment
(or IDE) for working with R. The steps to download R and RStudio are as follows.

To install R

• Navigate your web browser to r-project.org.

• In the first paragraph of the Getting Started section of the webpage, click
the link to download R.

• Click the link to a mirror (a repository where the R software can be down-
loaded) in a place near you.

• You will be taken to a page with three options: download R for Linux,
download R for Mac, download R for Windows. Click the link appropriate
for your system.

To install RStudio The instructions for downloading R have not changed much,
since this is open source software. For the IDE RStudio, the instructions have
changed over the years. Googling “how to download RStudio” is the best way to
get to the current page for downloading the software. As of 2024, the company
that makes RStudio is called Posit, so look for that name in the website you are
downloading from.

When RStudio is first opened on a system, the screen will look something like
this.

https://www.r-project.org/
https://cran.r-project.org/mirrors.html
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The program consists of a window that is divided into panes. One pane should
be labeled console.

Start by typing some instructions into the console. You will see a > symbol next
to a blinking cursor. Try typing

3

into the console at the cursor and hit return. R should return with just 3. It will
display

[1] 3

where the [1] indicates that the result starts with the first number in the vector
containing only the number 3.

To enter our data from the Question of the Day, use the concatenate function in
R, which uses c as an abbreviation. Try entering

c(17, 21, 8, 7, 14)

into the console. The result should be

[1] 17 21 8 7 14

This data will be used more than once. So it makes sense to give this data a
name. That is, the data should be assigned to a variable. To accomplish this, use
the assignment operator in R, which looks like an arrow formed from the less than
symbol and a hyphen. Try the following command in the console.

x <- c(17, 21, 8, 7, 14)
x
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You should get the same result as before when you just typed in the data directly.
Now, whenever the data is needed, it can be recalled by using its name x.

In particular, calculate the sample average of the data by using the mean function
in R.
mean(x)

returns
[1] 13.4

The sample standard deviation can be calculated using the sd function in R.
That is,
sd(x)

returns
[1] 5.94138

Both mean and sd are examples of vector operations, as they take a vector of
data and return a single real value.

Problems

10.1 Suppose that data are stored in X1, X2, . . . , Xn.

a) The function M = max(X1, . . . , Xn) is an example of a
.

b) For (X1, X2, X3) = (4.2, 5.1,−1.6), findM .

10.2 For m = min(X1, . . . , Xn) and data (X1, X2, X3) = (4.2, 5.1,−1.6),
what ism?

10.3 Try out the following commands in R, and record the final result.
a <- c(4.2, 5.1, -1.6)
mean(a)

10.4 Try the following commands in R, and record the final result.
a <- c(4.2, 5.1, -1.6)
max(a)

10.5 Write an R command to put the following data

(2.3, 1.7, 2.3, 0.6)

into a vector named data.
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10.6 Write an R command to put the following data

(−6.2, 4.1, 0.7)

as a vector into a variable named x.

10.7 Consider data {2.3, 1.7, 2.3, 0.6}.

a) Find the sample average by hand.
b) Find the sample average using R.
c) Find the sample standard deviation using R.

10.8 A farmer studying crop yield finds the four different places on the farm
has yields of 410, 286, 317, and 422 bushels per acre of corn.

a) What is the sample average of the yield?
b) What is the sample standard deviation of the yield?





Part III

Simulation
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Chapter 11

Discrete Event Simulation

Question of the Day

How can queues and queuing networks be efficiently simulated and visualized?

Summary

• Simulation creates random runs of a stochastic process on a computer to
understand the average behavior.

• Discrete event simulation (DES) is a specific type of simulation where the
state of the system changes at a discrete set of times.

• An event representation graph (ERG) is a graph where nodes represent
events, and an edge from i to j indicates that executing event imight schedule
event j. These edges can be adornedwith times, distribution for times, and/or
conditions for scheduling.

Modeling and simulation Models more complicated than aM/M/1 queue are
difficult to analyze completely.

For instance, suppose interarrival times at a queue are Unif([0, 2]) while service
times follow a Unif([0, 1]) distribution. Since the service rate is faster than the
arrival rate, the queue will not become unbounded in length. What is the long
term average waiting time of a customer?

Even the G/G/1 queue will not have an exact solution for fairly simple arrival
and service distributions (although asymptotic analysis is possible in this case).
When queues are connected in series or parallel in a routing network, the situation
becomes far worse.
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In these cases, simulation provides an easier approach to understanding the
long-term behavior of the queue. In a simulation approach, a random instance of
the queue is generated by a computer program. The output from such a random
draw can then be analyzed using statistical tools to estimate the true average.

A computer program that has a random output is called aMonte Carlo algorithm,
after the famed casino located in Monte Carlo, Monaco. Side note: the English
spelling of Monte Carlo has no hyphen, whereas the French spelling does. Typically
Monte Carlo in relation to algorithms uses the English spelling, but not always!

Types of simulation There are multiple ways of performing such Monte Carlo
simulations. One way is to track each entity (and customer) as it moves through
the system. Some examples of this entity based type of simulation include

• particle simulations;

• traffic simulations;

• airplane boarding.

One the other hand, some simulations track only the state of the system, a
simplified version that only maintains information that is necessary to update the
system. Consider a queue system with 10 customers in it.

• The entity approach would keep track of all ten customers individually. Each
customer is updated individually as they move through the queue.

• The state approach just records that there are ten customers in the state of
the system. Events such as a service or an arrival change the overall state of
the system.

The state approach can use far less memory and be much faster in practice than
the entity approach. On the other hand it can also be more difficult to design the
model in the first place, and then program the model.

G/G/1 queue As an example, consider again the G/G/1 queue. For this queue,
the state of the system can be entirely described by the following quantities:

• length of the queue;

• current time;

• next arrival time;

• free/busy status of the server;

• next finish of service for a busy server.
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Definition 58
An event in a simulation is anything that changes the state of a system.

Note that this has nothing to do with an event in the probability sense of the
term! There are three types of events in the G/G/1 queue.

• A start service event moves the server to the busy status and reduces the
queue length by 1.

• An arrival event increases the queue length by 1 and might trigger a start
service event if the server is free.

• A finish service event frees up the server, and might trigger a start service
event if there are customers waiting in the queue.

11.1 Discrete Event Simulation

A particular type of simulation that is useful for these types of models is Discrete
Event Simulation, or DES for short.

Definition 59
A Discrete Event Simulation (DES) is a type of simulation which
focuses on the events that change the state of the system. The key
component is an event list which holds all currently scheduled events
and the times they occur.

This is a particular type of programming called event driven programming. Often
this type of programming is used for writing graphical user interfaces where the
events (such as mouse clicks) are generated by the user. Here, all of our events will
be generated randomly by the simulation itself.
The event list must keep track of

• the clock (current time),

• the current state of the system,

• the list of events and the times that are scheduled to occur.

When an event is scheduled to occur, it is executed. During execution, an event
can do either one or both of the following.

• Change the state.

• Schedule other events, that is, add events to the event list.
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Graphical representation A directed graph is a mathematical object consisting
of nodes and arcs that move from one node to another. Formally, we say G =
(V,E), where V is a set of nodes (aka vertices) and E ⊆ V × V is a set of ordered
pairs of the form (i, j) where the order between i and j matters. We say that the
arc (i, j) travels from i to j.

Definition 60
An event representation graph (ERG) for a DES uses nodes to repre-
sent events. Below each node, the states that event makes to the system
are written. An arc from i to j represents that event i schedules node j.
The label on the arc represents the time between when event i is exe-
cuted and event j is scheduled, and the label can be a random variable
indicating that each time the new event is scheduled, an independent
random variable with that distribution is drawn. Arcs (i, j) can also be
marked with a condition, in which case event i schedules event j if and
only if the condition is met.

A B
t

Event A schedules event B after t time has passed.

A B
t ∼

(condition)

Event A schedules event B after t time has passed only if condition is true.

11.2 A DES and ERG for the G/G/1 queue
The Question of the Day asks about a G/G/1 queue. Earlier, three types of events
were noted for this queue: start service, arrival, and finish service. It helps to add
one more event that begins the whole process. All DES simulations will have this
event, called a Run event.
The state of the system can be described using two variables. Let Q be the

number of customers waiting in line to enter service, and S be the number of
servers that are idle. Now examine each of the four events in turn.

Run event What the run event does is tell the system that there are no customers
waiting originally, and one server is free to serve customers. After a random amount
of time ta, the first customer will arrive.
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• Initializes Q← 0, S ← 1

• Schedules the first arrival.

• In graph form, this event is represented as follows.

Run

S ← 1
Q← 0

Enter
ta

ta ∼ Unif([0, 2])

Enter event The enter event will increase the queue by 1. If there is a server is
free, it also schedules a start of service. After a random amount of time given by
the interarrival distribution, it schedules another entry by a customer to the queue.

• Increases the queue by 1.

• If a server is free, schedules a start of service.

• Schedule the next arrival after a random amount of time.

Enter

Q← Q+ 1

ta ∼ Unif([0, 2])Start∼

(S > 0)

ta

Since there is no time on the edge from Enter to Start, the time of the start of
service is the same time that the enter event was executed.

Start event When service begins, it takes a customer from the queue, takes a
server from the available pool of servers, and decides how long service will take
by scheduling a Leave (as in leave service) event.

• Decreases the queue by 1.

• Decreases the available servers by 1.
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• Schedules the end of service, that is, a leave event.

Start

S ← S − 1
Q← Q− 1

Leave
ts

ts ∼ Unif([0, 1])

Leave event A customer finishing service frees up a server, and if there are more
customers waiting in the queue, should trigger another start service event.

• Frees up a server,.

• If the queue is nonempty, should schedule a new service.

Start Leave

S ← S + 1

∼

(Q > 0)

ts ∼ Unif([0, 1])

Putting everything together Drawing all four of these events together gives
the following graphical representation of the DES for the G/G/1 queue.
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Run

S ← 1
Q← 0

Enter

Q← Q+ 1

Start

S ← S − 1
Q← Q− 1

Leave

S ← S + 1

ta

∼

(S > 0)

ts

∼

(Q > 0)
ta

One server empty
queue Add arrival to

queue One server busy One server free

Start new service if queue nonempty
Start new service if server free

ta ∼ Unif([0, 2])

ts ∼ Unif([0, 1])

Problems

11.1 In an event representation graph, what do nodes represent?

11.2 In an ERG, what does a directed edge from i to j represent?

11.3 In the G/G/1 queue above:

a) What event(s) can the Enter event schedule?
b) What event(s) can the Start event schedule?

11.4 In the G/G/1 queue above:

a) What event(s) can the Run event schedule?
b) What event(s) can the Leave event schedule?

11.5 Events change the of the system in a Discrete Event Sim-
ulation.

11.6 For the following ERG for a simple DES, if ts is drawn to be 3.4, and event
A executes at time 2.2, what time is event B scheduled to occur?
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A

S ← S − 1
Q← Q− 1

B
ts

11.7 Suppose in the DES for the G/G/1 queue above, ta ∼ Unif([0, 4]) and
ts ∼ Unif([1, 2]) are both in terms of minutes

a) What is the arrival rate?
b) What is the service rate?
c) What is the capacity utilization?

11.8 How would you modify the system above to model a G/G/s queue?
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Flowchart for Discrete Event
Simulation

Question of the Day

How should ties be resolved in a DES?

Summary

• Themaster flowchart for DES tells us how to implement a simulation in
software.

• Ties and deadlocks can lead to unwanted behavior in the simulation if not
dealt with carefully.

Last time an event representation graph (ERG) for a G/G/1 queue was built.

Run

S ← 1
Q← 0

Enter

Q← Q+ 1

Start

S ← S − 1
Q← Q− 1

Leave

S ← S + 1

ta ∼

(S > 0) ts

∼

(Q > 0)
ta
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12.1 Watching the event list evolve

As events are executed, the event list, the current state, and the clock all change.
Consider starting the DES for the G/G/1 queue.

• The event list at the beginning just consists of a Run event at time 0. The
initial state has the number of customers waiting for service at Q = 0, and
the number of available servers S = 1. So the state is (Q,S) = (0, 1). The
current clock time is t = 0.

t state type of event

0.00 (0, 1) Run

• In the event list, the Run event occurs at the earliest time. So the first thing
to do is execute this event at t = 0.

– There is an arc leaving Run labeled ta. So roll a value for ta. Suppose
the roll is ta = 0.12. Then since the current time is 0.00, the Enter
event will be scheduled at time 0.12.

– Next, remove Run from the event list.

The event of executing the Run event is that the event list looks like this.

t state type of event

0.12 (0, 1) Enter

• The next event to occur must occur at time t = 0.12. So do the following.

– Advance the clock time to 0.12.
– Increase Q by 1.
– Since (S > 0) is true, schedule a Start event for the current time 0.12.
– Generate a value for ta. Suppose ta = 1.2.

– Schedule the next Enter event at time 0.12 + 1.2 = 1.32.

The resulting event list is as follows.

t state type of event

0.12 (1, 1) Start
1.32 Enter

• The clock is still at 0.12. The next event to occur is the Start event at t = 0.12.
The steps are
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– Update the state: S ← S − 1, Q← Q− 1.

– Roll ts ← 0.93.

– Schedule a Leave event at 0.12 + 0.93 = 1.05.

– Remove the Start from the event list.

t state type of event

1.05 (0, 0) Leave
1.32 Enter

• Execute Leave event at t = 1.05:

– Release our server to be available again: S ← S + 1.

– Since Q = 0, do not schedule a Start. Note that for conditions like this,
this is the only time the event scheduling can be activated.

–

t state type of event

1.32 Enter

Some things to note.

• Because the first Run event schedules an Enter event, and each Enter event
schedules a single Enter event before being destroyed, there will always be
exactly one Enter event.

• Usually in practice, the simulations quits (ends) after t greater than some
fixed tend.

12.2 The Event Scheduling Flowchart

Event-driven programming In the event driven programming paradigm, the
central object is the event list. It has certain properties for a DES.

• Each row of the event list is a time for an event and an event name.

• To run a DES, event list must be updated properly.



98 CHAPTER 12. FLOWCHART FOR DISCRETE EVENT SIMULATION

The following flowchart describes how the event list should be updated.

Initialize

State

Event list

Advance Clock to
Time of next event

Execute event

Change State

Cancel Events

Schedule Events

Remove event
from list

Stop?

Summary statistics

YES

NO
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12.3 Building the ERG for two variations of queues

Queue with limited capacity Suppose that for our queue the line is not allowed
to extend indefinitely. Rather, when it reaches a value B, then any customer
arriving at the queue decides to go elsewhere for service. This can be implemented
by the following ERG.

Run

S ← 1
Q← 0

Enter

Q← Q+ 1(Q < B)

Start

S ← S − 1
Q← Q− 1

Leave

S ← S + 1

ta

∼

(S > 0)

ts

∼

(Q > 0)
ta

When Q = B, then 1(Q < B) = 0, and so the Enter event no longer increases
the number of customers in line by 1.

A commonmistake with this type of problem is to put a condition on the arc from
Enter that schedules the next Enter. Do not want to do this! Adding a condition
like this could interrupt the infinite stream of Enter events. If the execution of
Enter does not schedule another Enter, it will cut off the stream of arrivals for all
time!

Two types of servers in parallel Suppose that the network has two servers in
parallel that could be of different types with different rates. Then every time there
is an arrival, it goes to Server 1 if that server is free, or Server 2 if Server 1 is busy
and Server 2 is free.

The new state will be (Q,S1, S2), where Q is the number of jobs in line, S1 is
the number of servers of type 1
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Run Enter Start 1 Leave 1

Start 2 Leave 2

ta

∼

(S1 > 0)

∼
(S1 = 0, S2 > 0)

ts1

ts2

∼

(Q > 0)

∼

(Q > 0)

ta

Event State changes

Run S1 ← 1, S2 ← S2, Q← 0
Enter Q← Q+ 1
Start 1 S1 ← S1 − 1, Q← Q− 1
Leave 1 S1 ← S1 + 1
Start 2 S2 ← S2 − 1, Q← Q− 1
Leave 1 S2 ← S2 + 1

12.4 Ties and deadlocks

Definition 61
A tie in a Discrete Event Simulation is when two events are set to
execute at the same time.

This can be a problemwhen two events are using or releasing the same resources.
For example, suppose that a queue with two entry lines uses two states labeled

Enter1 and Enter2 that have self-loops to create two streams of arrivals. Further,
suppose that at some time both Enter1 and Enter2 events occur simultaneously.
Each one wishes to use the last server.
There are two simple ways to resolve ties.

1. Assign each event a priority value and run tied events in order of priority.

2. Assign each time of event a small positive number (such as a uniform from
0 to 10−6) so that the probability that a tie occurs is zero.

Overall, ties might be bad or might be catastrophic. The worst situation is called
deadlock.
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Definition 62
Deadlock occurs when event A would release resources needed by event
B, and event B would release resources needed by event A. Then neither
order for A and B is acceptable.

The best solution to deadlock is usually avoidance, which means constructing
systems so that this type of situation does not arise in the first place.

Problems

12.1 When an event executes, it can change the state, cancel existing events, or
new events.

12.2 After an event is executed, what happens to it?

12.3 If event A executes at time 1.4 and rolls that event B is to be scheduled 2.3
time later, when is event B scheduled for?

12.4 If event A executes at time 0.7, and schedules event B for 1.1 time later,
and then when event B schedules event C immediately, at what time does
event C execute?

12.5 Before the next event is executed, the clock needs to be |.

12.6 When two events occur at the same time, what is it called?

12.7 Deadlock occurs when if either A or B goes first, the other event will not
have the it needs to execute properly.

12.8 The overall plan for coding a DES is called the master .





Chapter 13

Programming in R

Question of the Day

How can R Markdown be used to combine code together with text?

Summary

• R Markdown files offer a way to keep your code organized. It offers a
simple way to prepare text for publication along with methods for including
code.

• A function in R is created in the same way as any other variables using the
assignment operator <-. A function can have multiple inputs, and a single
output given through the return command.

13.1 Using R Markdown

R Markdown gives a way of organizing the code needed to accomplish tasks in R.
Commands that are entered directly into the console in R are executed immedi-

ately. The effects of the command can be felt but the command itself is not recorded
anywhere. By using an R Markdown file instead, the commands to be executed
can be saved in the same way that a word processor saves text for later use and
modification.
In an R Markdown file, the commands executed are saved in what are called

code chunks. Changes can be made later to this code if a mistake is discovered.
They can also be easily expanded upon if a more detailed analysis of the results is
needed.
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Creating a new R Markdown file To get started, open up RStudio. At the left
of the main menu is File. Under File is the New File option. Hold the mouse over
that option brings up a side menu. Selecting R Markdown from the side menu will
open a new R Markdown file.

Figure 13.1: Starting a new R Markdown file on a Mac. The Windows and Linux menu systems are
similar.

At this point a window will pop up that allows you to enter a Title and Author
Name. Change the title to First project, write in your name under Author, keep the
radio box on HTML and select the OK button when you are done.
This will open a new pane in RStudio with a template of an R Markdown file.

By default, this is in the upper left of the window. Now press the Knit button in
the toolbar right below the main menu.

Figure 13.2: Using the Knit button to turn the code into a document on Windows.

The first time you press the Knit button, RStudio will ask you to save your R
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Markdown file somewhere on your computer’s file directory. Go ahead and save
the file, without an extension. Then Knit will run, and the result will be an HTML
(Hypertext Markup Language, the same format used for webpages) file with your
document. A preview will automatically open.

Useful things to know about R Markdown

• When you want to start a new section, start the line with a # symbol. To
create a subsection, start with ##, subsubsections with ###, and so on.

• The lines at the beginning of the file between the -- lines form the YAML
header. The term YAML is a recursive acronym which stands for YAML
Ain’t Markup Language. Here you can change the title if you change your
mind about that, your name if you change your mind about that, and the
date as time progresses.

• Mathematics can be inserted into an R Markdown document using LATEX
formatting. The basic idea is that to insert mathematics as part of a sentence
put \( and \) around the mathematics. For instance, \( a^2 + b^2 =
c^2 \) will put an equation in the middle of a sentence. Using square
brackets, such as \[ a^2 + b^2 = c^2 \] will put the equation on
its own line in the output. A good tutorial to get started can be found at
https://www.latex-tutorial.com/tutorials/.

Putting commands for the console in your document A powerful aspect
of an R Markdown file is the ability to put commands directly into the R console.
These commands are preceded by a line that reads “‘{r} and end with a line that
reads “‘. For instance, if you type the following into your document:

‘‘‘{r}
x <- 4
y <- 5
x + y
‘‘‘

then you will see that portion of your document becomes shaded. This is called a
code chunk.
Now press the green arrow in the upper right corner of the shaded area. This

types these commands into the console, and displays the result right below the
shaded area.
In this way, you can add whatever commands you like to a document. If you

press the Knit button again, a new HTML document will be created with the code
you created and the output of it.

https://www.latex-tutorial.com/tutorials/
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Figure 13.3: The green arrow can be used to execute a code chunk. (Windows version pictured.)

13.2 Functions

So far variables have been numbers. For instance, x <- 4 assigns the value 4
to the variable x. The far more complex function type can also be assigned to a
variable as well.

A function consists of three parts.

• A set of inputs to the function.

• A set of commands to be executed.

• An output to the function.

Try adding the following code chunk to your document.

add <- function(x, y) {
return(x + y)

}
add(3, 4)

When you evaluate this code chunk outputs:

[1] 7

Here the function was placed in the variable named add. There are two inputs
to this function, x and y. The function returns the value of x + y. This is why
add(3, 4) returns the value 7.
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A function need not have any inputs, and it might not have any outputs either.
But be aware that you can always have inputs and an output if you need it.

13.3 Getting help

There are many ways to learn about functions in R. Outside of RStudio, an easy
way to learn about something is to Google <topic> in r. Inside Rstudio, if
you precede the name of a function with a ?, the help for that function will open
up in one of the panes. For instance, ?runif will take you to the help for the
runif function, which generates a uniform variate over [0, 1].

13.4 Strings

So far our variables have held numbers and functions. They can also hold a variable
type called a string. To denote a string in R, surround the characters with either
single quotes (’) or double quotes (").

x <- "Test"
print(x)

## [1] "Test"

y <- ’case’
print(y)

## [1] "case"

Whether using single or double quotes, the resulting variable is treated in exactly
the same way by R.

Problems

13.1 True or false: strings must always be enclosed in single quotes.

13.2 True or false: preceding a command in R by ? returns help on the com-
mand.

13.3 In R Markdown, mathematics can be included using the
typesetting system.

13.4 For each example, state if the mathematics will appear in the middle of a
sentence or on its own line.

a) \( (x - y)^2 \)

b) \[ (x - y)^2 \]
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13.5 True or false: the YAML header of an R Markdown file is at the beginning
of the file.

13.6 True or false: the YAML header of an R Markdown file is at the beginning
of the file allows the user to set the title and author of the file.

13.7 True or false: functions can be assigned to variables in R.

13.8 Functions take one or more , execute commands and re-
turn an output in R.
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Implementing a DES in R

Question of the Day

Consider a G/G/1 queue with interarrival times that are uniform over 0 to 2
minutes and service times that are uniform over 0 to 1 minutes. For this queue,
use simulation to estimate the average waiting time for a customer.

Summary

R can be used to simulate a DES as follows.

• A global variable can be used to keep track of the state of the system.

• One function can handle the selection and execution of the next event. For
different event types it calls the appropriate function to handle that event.

• The code follows closely the flowchart created earlier.

Review of Discrete Event Simulation At each step in a DES simulation, the
following tasks are performed.

• Pull the earliest scheduled event from the event list to execute.
• Execute the event. This has the following possibilities.

a. Update the state.
b. Schedule new events.

• Remove the event from the event list.

This cycle continues until either a stop condition is reached (such as passing a
specific time) or there are no events on the event list.
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14.1 R Code for the DES

In general, it is not good programming practice to make use of global variables.

Definition 63
A global variable can be accessed from anywhere in the computing
environment, not just in the function in which it was created.

Why are global variables looked down on? The problem is that any one of
the programmers working on a project can change the state of a global variable
without the rest of the team knowing. This can lead to issues if the variable is not
what the other developers thought.

That being said, the use of global variables here enormously simplifies the code
for implementing a DES in R. So they will be used here.
The two global variables will be the sim variable that contains the event list,

and the state variable that contains our state. In R a variable is made global by
using <<-, the global assignment operator.

Our first step in implementing a DES in R is to write a master function that runs
these steps. To accomplish this, create a variable sim that holds the event list.
This variable sim will be a tibble, which is a type of data variable in R that allows
for different types of variables to be combined in a tabular format.
To use a tibble data type, it is necessary to ensure that a package (also called a

library) named tidyverse has been loaded into the R environment. This can be
done with the library function.

Each time R is started, that creates a new instance or environment in R. It starts
with no variables or functions loaded. New functions (and variables) can be created
by coding them up. They can also be placed into the environment by loading a
library.
Before a library can be loaded into R it must be added to the installation of R

on the computer it is being used. This installation (like the installation of base R)
need only be done once. Once installed, a library can be loaded into R each time it
is needed without reinstalling it. The command to install the tidyverse library
into R is

install.packages("tidyverse").

Again, this needs only be done once per installation of R. Once it is installed, it
can be loaded into the environment with

library(tidyverse)

Unlike the install.packages command, the term tidyverse does not
need to be in quotes for the library command. Another library that will be
needed is knitr. Together, the code for loading these two libraries is
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library(tidyverse)
library(knitr)

Again, note that it might be necessary to use install.packages first to
install the tidyverse and knitr libraries before running this code.
The tidyverse library allows us to use a data type called a tibble which is a

table with extra information. The knitr library includes commands for displaying
tibbles either on the screen or the printed page. Try this out by creating a simple
event list as a tibble. Use a tibble to hold the event list. It can be created by calling
the function named tibble. For instance, the following code creates an initial
event list with just one event on it.

# Set up the event list as a global variable
sim <<- tibble(

time = 0,
type = "Run"

)

The first line starts with # to indicate that this is a comment. A comment is
text that is for anyone reading the code. It is not actually executed. The event list
created by the above code can be written as follows.

time type

0 Run

Next is the main loop. This loop runs the flowchart for the DES, by pulling an
event from the event list, removing it from the event list, and executing the event.

# main loop of the simulation
mainLoop <- function(maxsimtime, printFlag = TRUE) {
while((nrow(sim) > 0) & (sim[1, 1] < maxsimtime)) {

if (printFlag) {
print(sim)
cat(’\n’)

}
event <- slice(sim, 1) # take first event (Step 1)
sim <<- slice(sim, -1) # drop first event (Step 3)
executeEvent(event) # execute event (Step 2)

}
}

The mainLoop function used several new functions. Here is a breakdown of
these new commands.
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• slice(sim, 1) returns the first row of the tibble.
• slice(sim, -1) returns the tibble except the first row.
• nrow(sim) returns the number of rows in the tibble.
• sim[1, 1] returns the element in the first row and column of the tibble.
Given the way sim is laid out, this is the time of the first event in the event
list.

• The & symbol means logical AND in R. The statement thing1 & thing2
is true if and only if both thing1 and thing2 are true.

• A while loop repeats all the instructions surrounded by { and } until the
condition in parenthesis that follows the while keyword is true. In this
case, the loop will run over and over again as long as the event list still has
at least one event in it and the time of the next event does run past our limit
maxsimtime.

The final line in the while loop calls executeEvent. Until this function has
been defined, mainLoop cannot be used without throwing an error. So look at
that next.
To see how to build such a function, consider our ERG for the G/G/s queue

from earlier.

This has four events, Run (start the simulation), Enter (customer arrival),
Start (customer begins service), and Leave (customer leaves service). Use
if statements to accomplish this. An if statement executes the statement that
follows if the logical expression right after the if keyword is true. Otherwise, it
does nothing. More if statements are used to decide what type of event is being
executed. They are also used within events to decide if the conditions on ERG arcs
are true or not.

executeEvent <- function(event) {
et <- event$time # Time for new clock
if (event$type == "RUN") {
sim <<- add_row(sim, time = ta(), type = "ENTER")

}
if (event$type == "ENTER") {
state["q"] <<- state["q"] + 1;
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sim <<- add_row(sim, time = et + ta(), type = "ENTER")
if (state["s"] > 0)

sim <<- add_row(sim, time = et, type = "START")
}
if (event$type == "START") {

state["q"] <<- state["q"] - 1;
state["s"] <<- state["s"] - 1;
sim <<- add_row(sim, time = et + ts(), type = "LEAVE")

}
if (event$type == "LEAVE") {
state["s"] <<- state["s"] + 1;
if (state["q"] > 0)

sim <<- add_row(sim, time = et, type = "START")
}
sim <<- arrange(sim, time) # sort event list by times

}

The above used some new functions:

• add_row adds a new row to a tibble.
• arrange sorts a tibble according to the designated variable.

It also used a new logical operator

• When testing equality in an if statement, use == to test if two things are
equal.

These events call the functions ta and ts to generate interarrival and service
times. These functions use the runif command that generates draws from a
uniform distribution.

# Interarrival times Unif([0,2])
ta <- function()
return(runif(n = 1, min = 0, max = 2))

# Service times Unif([0,1])
ts <- function()

return(runif(n = 1, min = 0, max = 1))

At this point, one more function is needed to initialize the event list, initialize
the state, and then start the simulation by calling mainLoop. This function is
called runSim.
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runSim <- function(maxsimtime, printFlag = TRUE) {
# Initialize event list
sim <<- tibble(time = 0.0, type = "RUN")
# Initialize state of the system
state <<- c(1, 0)
names(state) <<- c("s", "q") # 1 server, 0 in queue
mainLoop(maxsimtime, printFlag)

}

The following call runs until time reaches 5.

runSim(5)

## # A tibble: 1 x 2
## time type
## <dbl> <chr>
## 1 0 RUN
##
## # A tibble: 1 x 2
## time type
## <dbl> <chr>
## 1 1.49 ENTER
##
## # A tibble: 2 x 2
## time type
## <dbl> <chr>
## 1 1.49 START
## 2 2.25 ENTER
##
## # A tibble: 2 x 2
## time type
## <dbl> <chr>
## 1 2.15 LEAVE
## 2 2.25 ENTER
##
## # A tibble: 1 x 2
## time type
## <dbl> <chr>
## 1 2.25 ENTER
##
## # A tibble: 2 x 2
## time type
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## <dbl> <chr>
## 1 2.25 START
## 2 2.45 ENTER
##
## # A tibble: 2 x 2
## time type
## <dbl> <chr>
## 1 2.45 ENTER
## 2 2.74 LEAVE
##
## # A tibble: 2 x 2
## time type
## <dbl> <chr>
## 1 2.74 LEAVE
## 2 3.90 ENTER
##
## # A tibble: 2 x 2
## time type
## <dbl> <chr>
## 1 2.74 START
## 2 3.90 ENTER
##
## # A tibble: 2 x 2
## time type
## <dbl> <chr>
## 1 3.23 LEAVE
## 2 3.90 ENTER
##
## # A tibble: 1 x 2
## time type
## <dbl> <chr>
## 1 3.90 ENTER
##
## # A tibble: 2 x 2
## time type
## <dbl> <chr>
## 1 3.90 START
## 2 5.88 ENTER
##
## # A tibble: 2 x 2
## time type
## <dbl> <chr>
## 1 4.33 LEAVE
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## 2 5.88 ENTER

The code is set up so that if printFlag is set to FALSE, then the simulation
does not print the event list at every step.

runSim(10, printFlag = FALSE)

Problems

14.1 A data type that is a table that holds extra information is called what in
the tidyverse?

14.2 What is the assignment operator in R that makes a variable global?

14.3 The command slice(1, A) returns the row of the
tibble A.

14.4 True or false: a tibble is one way to store an event list.

14.5 The function to sort the rows of a tibble with respect to a variable is called
.

14.6 The command to draw a uniform random variable from 2 to 4 would be
what?

14.7 What function adds a new row to a tibble?

14.8 True or false: the event list for the DES of the G/G/1 queue given in the
chapter can have at most two events on the list at the end of an iteration.
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Finding statistics for a simulation

Question of the Day

How can the average queue length of a G/G/1 queue be estimated from a simula-
tion?

Summary

• Little’s Law can be used to keep track of statistics that help in estimating
the average queue length.

• The use of a seed allows us to keep the output of a random simulation
constant rather than random.

• Bar plots and boxplots give an idea of how a random variable is distributed.

15.1 Adding statistics

In the Question of the Day, the goal is to both simulate a G/G/1 queue and to
estimate the average waiting time for the customers involved.
Last time global variables state (for the state of the system) and sim (for

the event list) were introduced. To gather statistics, add a new global variable
statistics.
There are an infinite number of times in the simulation, but the queue length

only changes at a finite number of values. It will be important to be careful about
keeping track of the queue length. The idea is to keep track of the area under the
graph of the number of customers in the system (much as we did in the proof of
Little’s law) and use this statistic to find the average waiting time in the end.

The initial mainLoop will need a statistics variable with three entries. One
entry keeps track cumulatively of the total area under customers in the system.
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This will be called Area. The second keeps track of the cumulative total of time
that the server is idle in an entry named Idle. Finally, the third entry keeps track
of the total number of arrivals to the queue. This component is named Arrivals.
The number of customers in the system consists of those waiting in the queue

plus any that are currently being served. In R code, this value is

(1 - state["s"]) + state["q"]

The above value is multiplied by the length of the time interval where there
is no change in the system. The result is added to the total area underneath the
customers in the system curve. The length of the time interval can be found by
taking the time of the next event minus the current time.

Similarly, the server is idle if state["s"] > 0, and multiplying by the time
the server is idle adds to the area underneath the idle graph. Finally, keep track of
the number of arrivals to the system. This is accomplished by adding one every
time the current event type is “ARRIVAL”.

mainLoopStat <- function(maxsimtime, printFlag = TRUE) {
time <- 0 # record original time
while((nrow(sim) > 0) & (sim[1,1] < maxsimtime)) {
if (printFlag)

print(sim)
event <- slice(sim, 1) # take first event (Step 1)
sim <<- slice(sim, -1) # drop the first event (Step 3)
executeEvent(event) # execute the event (Step 2)
# update statistics and clock time
time <- min(sim[1,1], maxsimtime)
statistics["Area"] <<-

statistics["Area"] +
(time - event$time) * ((1 - state["s"]) +
state["q"])

statistics["Idle"] <<-
statistics["Idle"] +

(time - event$time) * (state["s"] > 0)
if (event$type == "ENTER")

statistics["Arrivals"] <<-
statistics["Arrivals"] + 1

}
}

These statistics need to be initialized at 0 (and the components named) for this
to work properly.
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runSimStat <- function(maxsimtime, printFlag = FALSE){
# Initialize event list
sim <<- tibble(time = 0.0, type = "RUN")
# Initialize state of the system
state <<- c(1, 0)
names(state) <<- c("s","q") # 1 server, 0 in queue
# Initialize statistics for the system
statistics <<- c(0, 0, 0)
names(statistics) <<- c("Area",

"Idle",
"Arrivals")

# Run simulation
mainLoopStat(maxsimtime, printFlag)

}

Once these statistics have been collected, we can use them to find things like
the average time a customer spends in the system.

reportSimStat <- function(maxsimtime) {
# Turn totals into averages
avstat <<- statistics / maxsimtime
# Use this to estimate waiting time for arrivals
names(avstat) <<- c("Average system quantity",

"Idle percentage",
"Mean interarrival time")

hatW <- avstat["Average system quantity"] *
avstat["Mean interarrival time"]

names(hatW) <- "Estimating waiting time"
return(hatW)

}

Finally, we can do a run for an 8-hour (480 minute) day.

endtime <- 480
runSimStat(endtime)
reportSimStat(endtime)

## Estimating waiting time
## 0.6622592

15.2 Pseudo-random numbers

A random stream of numbers is a mathematical idealization of a lack of information.
It is possible to come close to this ideal by using complicated algorithms that make
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the next number in the stream unpredictable. It turns out that this is the same
kind of mathematics needed for cryptographic systems. Decades of the Cold War
followed by decades of Internet commerce have made our cryptographic schemes
(and hence our ability to generate random numbers) very good indeed.

To distinguish an ideal stream of random variables from the kind generated
by computers, the computer stream is called a pseudorandom stream of random
variables.

Definition 64
A stream of numbers generated by a deterministic computer algorithm
is called a pseudo-random stream of random variates.

Every time a simulation is run, the results will be (with very high probability)
different. However, sometimes (for debugging purposes or to compare different
codes) it is helpful to have the same pseudo-random variables used each time. The
way to accomplish this is to set the seed of the generator.

Definition 65
The seed of a pseudorandom stream completely determines the values
of the stream.

The set.seed function can be used to set the seed in R. For instance,

set.seed(123)
x <- runif(3)
set.seed(321)
y <- runif(3)
set.seed(321)
z <- runif(3)
kable(tibble(x, y, z))

x y z

0.2875775 0.9558938 0.9558938
0.7883051 0.9372855 0.9372855
0.4089769 0.2382205 0.2382205

The x and y variables receive different values, because the seed was set differ-
ently before each of these calls. If the seed is set before a simulation is run, then
it fixes the random variables generated by the simulation, and so the results will
come out the same way each time.
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set.seed(123454321)
runSimStat(endtime)
reportSimStat(endtime)

## Estimating waiting time
## 0.534187

The above three lines of code will set the seed to 123454321, and will always
result in an output of 0.534187 from the simulation no matter how many times it is
run.

15.3 Distributions of statistics

Suppose the goal is to know when the length of the queue gets very long, and how
often. This information can be estimated with a statistics variable with more rows,
and one way to do that is to make the statistics variable into a tibble.

statistics <<- tibble(
time = 0,
queue_length = 0,
avail_s = 1

)

Now insert this code into runSimStat:

runSimStat <- function(maxsimtime, printFlag = FALSE) {
# Initialize event list
sim <<- tibble(time = 0.0, type = "RUN")
# Initialize state of the system
state <<- c(1, 0)
names(state) <<- c("s","q") # 1 server, 0 in queue
# Initialize statistics for the system
statistics <<- tibble(

time = 0,
queue_length = 0,
avail_s = 1

)
# Run simulation
mainLoopStat(maxsimtime, printFlag)

}

Next, it is necessary to update our statistics handling in mainLoop. Note that
the row name of the tibble is one more than the current length of the queue.
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mainLoopStat <- function(maxsimtime, printFlag = TRUE) {
time <- 0 # record original time
while((nrow(sim) > 0) & (sim[1,1] < maxsimtime)) {
if (printFlag)

print(sim)
event <- slice(sim, 1) # take first event (Step 1)
sim <<- slice(sim, -1) # drop first event (Step 3)
# update statistics and execute event
statistics <<- statistics |>

add_row(time = event$time,
queue_length = state["q"],
avail_s = state["s"])

executeEvent(event) # execute the event (Step 2)
statistics <<- statistics |>

add_row(time = event$time,
queue_length = state["q"],
avail_s = state["s"])

time <- min(sim[1, 1], maxsimtime)
# Update time spent in each state
# state["q"] + 1 is the row
# 1 is the column

}
}

runSimStat(100, printFlag = FALSE)

With this more detailed data, it is possible to plot the queue length as a function
of time. For instance, the following plots the queue length between the times of 25
and 50.

statistics |>
filter(time >= 25 & time <= 50) |>
ggplot() +

geom_line(aes(x = time, y = queue_length),
color = "blue")
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This also gives the server availability over time. For instance, the following is
the server availability from times 0 up to 25.

statistics |>
filter(time >= 0 & time <= 25) |>
ggplot() +

geom_line(aes(x = time, y = avail_s),
color = "red") # +
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# xlim(0, 25)

Cumulative statistics of queue length

rm(statistics)
statistics <<- tibble(

queue_length = 0:20,
time_spent = rep(0, length(queue_length))

)

Now insert this code into runSimStat:

runSimStat <- function(maxsimtime, printFlag = FALSE) {
# Initialize event list
sim <<- tibble(time = 0.0, type = "RUN")
# Initialize state of the system
state <<- c(1, 0)
names(state) <<- c("s","q") # 1 server, 0 in queue
# Initialize statistics for the system
statistics <<- tibble(

queue_length = 0:20,
time_spent = rep(0, length(queue_length))

)
# Run simulation
mainLoopStat(maxsimtime, printFlag)

}

Next, it is necessary to update the statistics handling in mainLoop. Note that
the row name of the tibble is one more than the current length of the queue.

mainLoopStat <- function(maxsimtime, printFlag = TRUE) {
time <- 0 # record original time
while((nrow(sim) > 0) & (sim[1,1] < maxsimtime)) {
if (printFlag)

print(sim)
event <- slice(sim, 1) # take first event (Step 1)
sim <<- slice(sim, -1) # drop first event (Step 3)
executeEvent(event) # execute event (Step 2)
# update statistics and clock time
time <- min(sim[1, 1], maxsimtime)
# Update time spent in each state
# state["q"] + 1 is the row
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# 1 is the column
statistics[state["q"] + 1, 2] <<-
statistics[state["q"] + 1, 2] + (time - event$time)

}
}

Consider anM/M/1 queue with ρ = 1/2.

ta <- function() return(rexp(1, rate = 1))
ts <- function() return(rexp(1, rate = 2))

runSimStat(480, printFlag = FALSE)

Now make a bar graph of the results.

statistics |>
ggplot() +

geom_bar(aes(x = queue_length, y = time_spent),
stat = "identity", color = "blue",
fill = "gray") +

theme_classic()
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Does this fit with our understanding of continuous time Markov chains? Recall
that the analytical solution was that the total number of customers in the system
plus one is a geometric random variable with parameter ρ, which is 1/2 in this
example.
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Problems

15.1 Consider the following code.

ta <- function() return(rexp(1, rate = 4.3))

If function ta is the distribution of interarrival times, the distribution the
service time is a general distribution, and there are 3 servers, what is the
notation for this queue?

15.2 Consider the following code.

print(mean(rexp(1000000, rate = 4.3))

What value will the output be close to?

15.3 True or false: resetting the seed to the same value at start of two simulations
will result in the same random choices.

15.4 What will be the output of the following code?

set.seed(123)
x <- runif(3)
set.seed(321)
y <- runif(3)
set.seed(321)
z <- runif(3)
print(sum(x == y) + sum(y == z))

15.5 Running the following code would get output close to what value?

mean(runif(100000))

15.6 Running the following code would get output close to what value?

mean(runif(100000, min = 2, max = 4))

15.7 Suppose the queue length statistics are stored in a tibble df with columns
named queue_length and time_spent. Write code to create a bar
plot of this data where the bars are filled with blue color and the outline
of the bars is black using the classic theme.



15.3. DISTRIBUTIONS OF STATISTICS 127

15.8 Suppose the queue length statistics are stored in a tibble df with columns
named queue_length and time_spent. Write code to create a bar
plot of this data where the bars are filled with blue color and the outline
of the bars is black.





Chapter 16

Stochastic Petri Nets

Question of the Day

How can a G/G/3 queue be modeled using a Stochastic Petri Net?

Summary

• In a bipartite graph, nodes are divided into two sets. Edges must contain
one node from the first set and one node from the second set.

• A Petri Net is a bipartite graph where one set are called places and the
other set are called transitions. Each place is given a nonnegative integer
that represents how many tokens are in that place. Each transition fires
when all incoming places have at least one token. The firing removes one
token from each input and adds a token to each output.

• Stochastic Petri Nets assign either a number or distribution to each transi-
tion: the output tokens do not appear until a time equal to a random variate
generated from the distribution.

• Weighted arcs entering (leaving) transitions change the number of tokens
required to fire (output upon firing).

• Inhibitor arcs prevent a transition from firing when the place it comes from
is occupied. With inhibitor arcs, Petri Nets are Turing complete.

There are always tradeoffs in the methodology used to build simulations. For
instance, DES simulations are incredibly general and able to handle complex
situations. Unfortunately, this complexity also makes them difficult to analyze and
prove that they are acting as the user desires.
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Petri nets are a way to build a simulation that in some cases can be analyzed
completely to understand their behavior. They are also simpler for non-computer
science experts to understand. They are commonly used as an agent based simula-
tion system.

16.1 History

Petri nets were developed by Carl Petri in 1962 with the goal of understanding
issues in simulation where multiple events can happen simultaneously.
Formally, they are an example of a bipartite graph.

Definition 66
A directed graph with node set V is bipartite if there is a partition
(V1, V2) of V such that any edge (v1, v2) has one end in V1 and the
other in V2.

Definition 67
A Petri net is a bipartite graph where nodes are divided into places
and transitions. Each place has a nonnegative integer label that says
how many tokens occupy the place.

A Petri Net then works as follows.

• Say at a transition t is enabled if every place connected to t by an incoming
edge has at least one token.

• Choose any enabled transition to fire. When the transition fires it removes a
token from any place with an arc to t, and adds a token to all places connected
by an outgoing arc from t.

For example, consider the following state.

Here the transition is represented by a filled in skinny rectangle, the places are
represented by circles, and tokens are represented by small filled in circles.
Because the single place with an arc leading to the transition has a token, the

transition is enabled, and because it is the only enabled transition, it fires. This
removes the token from the incoming place and adds a token to the outgoing place.

Decisions, decisions

Sometimes there is more than one possible transition that can fire. The point of a
Petri Net is that no matter which transition fires first, the Petri Net should be able
to handle it. For instance, consider the following simple example.
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Here either T1 or T2 could fire first. If T1 fires first the state changes from (1, 0, 0)
to (0, 1, 0), while if T2 fires first the state changes from (1, 0, 0) to (0, 0, 1).

Say that states (0, 1, 0) and (0, 0, 1) are reachable from starting state (1, 0, 0).
The graph whose nodes are reachable states can be represented using a reachbility
graph.

Definition 68
A reachability graph consists of a node corresponding to a starting
state, with other nodes corresponding to states reachable via a finite
set of (enabled) transition firings. An arc (s1, s2) exists if there is an
enabled transition that takes the state from s1 to s2.

The reachability graph for the above example is

Why Petri nets?

The state at each time step consists of the number of tokens in each place. Because
of this, it is often possible to analyze completely the reachable states from a given
initial state. That gives the ability to ensure that the simulation stays under control,
and nothing unexpected can occur.
Moreover, the idea of a Petri net is that it should be constructed to be robust

under firing order. That is, no matter how the choice of which transition to fire is
made, the overall behavior of the system should be the same.

Generators

In a DES, a self-loop on an event creates a generator that keeps repeating over and
over again. This was used to create a set of arrivals for a G/G/s queue.
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In Petri nets, a generator is any transition that does not have any incoming
nodes. Such a transition is always able to fire.

Definition 69
A generator is a transition with no incoming places.

An example with two generators

Suppose a manufacturing station takes as input an inside piece and a case and puts
them together to make a USB drive.
Then for an initial state, the Petri net could look like this.

If T1 fires, the state changes to the following.

If T2 then fires, the state changes to the following.

At this point T1, T2, and T3 are all enabled. If T3 fires, the resulting state is:
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Absorber

The opposite of a generator is an absorber, which is a transition with no outgoing
edges. This is useful when serviced customers leave the system.

Definition 70
An absorber is a transition with no outgoing places.

16.2 Timed transitions

While the single time step Petri Nets are nice it is a simple extension to add a clock
and a time on the transition. In the following net, once the transition on the left
fires, the token on the outgoing place does not appear for 2 time steps. This would
be a D/D/1 queue.

If a random variable is given for the time, then it is independently rolled each
time the transition fires.

Definition 71
A Petri net is stochastic if transitions can be labeled with distributions,
and an enabled transition fires after an amount of time equal to a draw
from that distribution.

With these timed transitions, it is possible to create a G/G/1 queue.

Solving the Question of the Day

However, with more than one server, things become a bit harder. In the Question
of the Day, there are three servers.

The idea is to indicate when each server is busy or free with a token. The
presence of a token indicates that the server is free. Once it uses its token, it draws
in from the queue, and then when the server is finished, it returns the server free
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token to its place. The final result looks like this.

When a token arrives in the queue, any one of the three transitions with time 0
can fire, removing the server free token along with one token in the queue. Then
a token is created in the place before one of the three serving transitions. When
this transition fires after ts distributed time, it puts the server free token back
into position and is ready to accept another entry from the queue should one be
available.

16.3 Weighted transitions

A common extension is to assign a weight to each arc. The weight on an incoming
edge to a transition t represents the number of tokens needed to cause t to fire,
and this number of tokens is removed during firing. Similarly, the weight on an
outgoing edge represents the number of tokens created by t firing.

Consider the following example.

The two transitions on the left are generators, while the one on the right needs
2 tokens from Place 1 and 1 token from Place 2 to produce one token for Place 3.

The states for this net will depend on the order in which the transitions fire. If
the generators fire first, followed by the rightmost transition (when enabled), the
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states will be

(0, 0, 0)

(1, 1, 0)

(0, 1, 1)

(1, 2, 1)

(0, 2, 2)

...

No matter what order the transitions fire, Place 1 will be 2 bounded, but Places
2 and 3 are unbounded.

16.4 Inhibitor arcs

An inhibitor arc prevents a transition from firing when the place it comes from is
occupied. This can be useful in controlling which transition goes first. Moreover,
it extends the power of Petri nets greatly: with inhibitor arcs, Petri nets are Turing
complete.

Inhibitor arcs are usually denoted using an arc with an empty circle at the end. In
the following example, the arc from Place 2 to Transition 3 will prevent Transition
3 from firing as long as Place 2 has one or more tokens.

Problems

16.1 A graph where the nodes are partitioned into two sets, and edges must
have their head and tail in different sets, is called .

16.2 A Petri Net is a bipartite graph where one type of node is called
and the other type is called .

16.3 The following questions are about unweighted Petri Nets.

a) Transitions fire when there at least token(s) in all input
places.

b) True or false: every state is reachable in a Petri Net.
c) True or false: A Petri Net is allowed to fire any enabled transition.
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d) True or false: A Petri Net can be represented by a labeled bipartite
graph.

16.4 The following questions are about unweighted Petri Nets.

a) Places in Petri Nets are labeled with the number of they
contain.

b) True or false: Petri Nets have an order in which they fire their transi-
tions.

c) A transition with no generator is called a .
d) An arrival process for a queue appears as a in a Petri Net.

16.5 An inhibitor arc a transition from firing when the source
place is occupied.

16.6 Suppose a graph is created where the nodes are states of the Petri Net, and
an edge connects node i to node j if there is a transition that can fire from
node i that leads to node j. This graph is called the graph
of the Petri Net.

16.7 If the transition fires after a random amount of time, the Petri Net is called
.

16.8 True or false: in a weighted Petri Net, a certain number of tokens are
required to fire a transition indicated by the label on the arc, but only one
token is removed per firing from each place at the tail of the arc.



Part IV

Decision Theory
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Chapter 17

How to make decisions

Question of the Day

How should decisions be made?

Summary

• Decision theory is the study of how to make decisions.

• There are several ways to measure the quality of a decision, they often lead
to different decision making.

• The payoff matrix of a decision theory problem has a row for each state of
nature, a column for each decision, and entries corresponding to utility.

• The maximin decision is argmaxa∈X minθ∈ΩA(a, θ).

• Themaximax decision is argmaxa∈X maxθ∈ΩA(a, θ).

• Laplace’s principle of insufficient reason chooses argmaxa∈X
∑

θ∈ΩA(a, θ).

• The Hurwicz principle for each α ∈ (0, 1) is

argmax
a∈X

[
αmax

θ∈Ω
A(a, θ) + (1− α)min

θ∈Ω
A(a, θ)

]

What do decide, herbicide, and homocide have in common? They all end with
the Latin prefix -cide. This comes from the Latin caedere, which means to cut.
When someone de-cides, they are using de which is Latin for off. To decide is to
cut off the possible actions that might have been taken.
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If it is clear what the outcome of a decision will be, then there is no need for
decision theory. However, when there are random effects that interact with our
decision for the final result, then models can be helpful in deciding which decision
is best.

Definition 72
Decision theory is the mathematics of optimal decision making under
incomplete knowledge.

17.1 Variables and Payoffs

There are two types of variables in decision theory.

Definition 73
State variables are things that you cannot control.

For instance, the behavior of the U.S. economy over the next five years is out
of the control of a decision maker within most corporations. The decision maker
must treat this variable as something that is generated independent of their actions.
On the other hand, the number of workers to hire for the Christmas season is
within most corporation’s control. This would be a decision variable.

Definition 74
A decision variable has a value that you control.

Once you decide on how to set your decision variables, when the state variable
values are factored in, the result is a payoff.

Definition 75
Given a decision, there will be a payoff which is the benefit to you
based on the values of the state variables.

Definition 76
If there are a finite number of decisions a1, . . . , an possible, and only a
finite number of possible values for the state variables s1, . . . , sm, then
the payoff matrix is the matrix whose (i, j)th entry is the payoff from
employing decision ai when the true value of the state variable was sj .
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Example 25
The final in the course might be easy or hard. A student can choose
to study or not study for the final. The payoff matrix might then be as
follows.

Study Don’t Study
Hard Satisfaction Regret
Easy Wasted Time Relief

Usually, state variables are random because the decider only has partial infor-
mation. In the final example, the decider does not know whether the final will be
hard or easy, and must make a decision based not on the true answer, but instead
upon a probabilistic model of the true answer.

17.2 Utility

The first step in making this a mathematical problem is to assign a numerical value
to each outcome. This numerical value is known as the utility of the outcome.

Definition 77
A utility is a numerical score for each outcome that respects preferences.
That is, if the utility of one outcome is less than the utility of the second
outcome, the second is preferred over the first.

A note about money.

• Often monetary payoff can be a rough substitute for utility, especially when
the numbers are small relative to the decision maker’s relative wealth.

• For those with no money, however, utility rarely matches monetary payoff.

• For example, $10 to someone with no money has a much different value than
$10 to someone with $1 000 or $1 000 000.

• This effect is known as diminishing marginal returns.

• In terms of Calculus, this means that the derivative of the utility versus
money curve is a decreasing function.
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money

utility

Other terms for a decision are action and strategy. That is why the formal name
for a decision theory problem is a strategic form.

Definition 78
The strategic form of a decision problem is a triple (X,Ω, A) where

1. X is the nonempty set of strategies for the decider.

2. Ω is the nonempty set of states of nature.

3. A : (X × Ω)→ R is the payoff function.

17.3 Domination

Sometimes decisions are easy to make. If taking one action always results in equal
or higher utility than a second action, regardless of the value of the state variables,
then it makes sense to always take the first action. Say in this case that the first
action dominates the second.

Definition 79
For two actions ai, aj ∈ X , the action ai dominates aj if

(∀θ ∈ Ω)(A(ai, θ) ≥ A(aj , θ)).
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Example 26
Consider payoff matrix withX = {a1, a2, a3, a4} and Ω = {θ1, θ2, θ3}.

a1 a2 a3 a4
θ1 5 0 2 1
θ2 5 3 3 2
θ2 0 4 2 1

Note that a3 always beats a4, no matter what the state of nature is! So
in practice, a4 would never be chosen.

17.4 Algorithms for making a decision

Given a set of utilities in a payoff matrix, there are multiple ways that you can use
to decide what is the right decision.

Maximin The pessimist fears the worst. The strategy used by such an actor is
to choose the action where the worst payoff is the best possible. This is also called
the maximin choice.

Definition 80
The maximin strategy is

argmax
a∈X

min
θ∈Ω

A(a, θ).

Example 27
For our previous example, the worst outcomes from each column are:

a1 a2 a3
0 0 2

Hence pick a3, since that maximizes the minimum value of the payoff.

Maximax The optimist hopes for the best. The strategy here is to choose the
action that has the highest possible payoff over the state variables. That is the
maximax strategy.

Definition 81
The maximax strategy is

argmax
a∈X

max
θ∈Ω

A(a, θ).
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Example 28
Continuing our example, the largest payoff in each column is

a1 a2 a3
5 4 3

so the Maximax strategy chooses action a1.

Laplace’s Principle of insufficient reason Laplace considered how to make a
decision when you know absolutely nothing about a situation. In this case, it is
reasonable to use a uniform distribution. This model makes the state variable θ a
random variable where every possible outcome is equally likely. More recently, this
principle has become known as using a Bayesian approach with a noninformative
prior. If every state is equally likely, then it makes sense to pick the strategy that
maximizes the expected utility.

Example 29
Continuing our example, the expected utility of strategy a1 in our last
example is

E(A(a1, θ)) = (1/3)(5) + (1/3)(5) + (1/3)(0) = 10/3.

Calculating for all three strategies gives

a1 a2 a3
10/3 7/3 7/3.

So like the optimist, the noninformative prior together with the Bayesian
approach yields a choice of a1.

Of course, dividing each outcome by 3 did not change the relative merits of a1,
a2, and a3. Hence the choice made using Laplace’s principle is to pick the action
with the largest sum of utilities.

Definition 82
Laplace’s principle of insufficient reason chooses

argmax
a∈X

∑
θ∈Ω

A(a, θ).

Hurwicz Principle (Degree of optimism) The Hurwicz approach combines
the optimistic and pessimistic points of view by taking a linear convex combination
of their values.
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Definition 83
For α ∈ (0, 1), the Hurwicz principle is

argmax
a∈X

[
αmax

θ∈Ω
A(a, θ) + (1− α)min

θ∈Ω
A(a, θ)

]
.

Some notes:

• When α = 0 the result in just maximin strategy.

• When α = 1 the result is the maximax strategy.

• When α ∈ (0, 1) the result maximizes a mixture of the minimum and
maximum for each column.

• The optimal decision made can be thought of as a function of α.

Example 30
Continuing our example:

a1 a2 a3
5α 4α 3α+ 2(1− α)

Since 5α ≥ 4α for all α ∈ [0, 1], a2 can be taken out of the running
right now. That leaves the question of when is a1 better than a3? To
find out solve

5α ≥ 3α+ 2(1− α) = α+ 2

to get α ≥ 1/2. Hence the result is

• For α ∈ [0, 1/2], decision a3.

• For α ∈ [1/2, 1], decision a1.

Problems

17.1 True or false: higher utility is good.

17.2 True or false: a higher payoff is good.

17.3 True or false.

a) Decision variables are variables that you control.
b) State variables can be either variables that you control or variables

that you do not control.
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17.4 True or false.

a) There is one right way to make decisions based on a payoff matrix.
b) If the utility is always highest for one action regardless of the state

variables, that is the best action.

17.5 Suppose the utility of outcome s1 is 4, while the utility of outcome s2 is
4.2. Which outcome is preferred?

17.6 Suppose s1, s2, and s3 have utilities 4.1, 1.2, and 3.7 respectively. Which
outcome is preferred?

17.7 Consider the following payoff matrix:

a1 a2 a3 a4

Θ1 4 2 0 6
Θ2 2 6 0 5
Θ3 1 3 7 3

a) What decision should you make using the Maximin approach?
b) What decision should you make using the Maximax approach?
c) What decision should you make using the Laplace Principle of Insuf-

ficient Reason approach?

17.8 Consider the following payoff matrix:

a1 a2 a3 a4

Θ1 -1 3 4 3
Θ2 7 6 5 3
Θ3 2 4 -2 2

a) What decision should you make using the Maximin approach?
b) What decision should you make using the Maximax approach?
c) What decision should you make using the Laplace Principle of Insuf-

ficient Reason approach?

17.9 Consider the following payoff matrix:

a1 a2 a3 a4

Θ1 4 2 0 6
Θ2 2 6 0 5
Θ3 1 3 7 3
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a) What decision should you make using the Hurwicz principle? [For
every α ∈ [0, 1], state what decision is made.]

b) What decision should be made using the Savage minimum regret
principle?

17.10 Consider the following payoff matrix:

a1 a2 a3 a4

Θ1 -1 3 4 3
Θ2 7 6 5 3
Θ3 2 4 -2 2

a) What decision should you make using the Hurwicz principle? [For
every α ∈ [0, 1], state what decision is made.]

b) What decision should be made using the Savage minimum regret
principle?

17.11 Consider the following payoff matrix:

a1 a2 a3 a4

Θ1 4 2 0 6
Θ2 2 6 0 5
Θ3 1 3 7 3

Research indicates that Θ1 and Θ2 each have a 20% chance of occurring,
while Θ3 has a 60% chance. What decision maximizes expected utility?

17.12 Consider the following payoff matrix

a1 a2 a3 a4

Θ1 -3 2 0 3
Θ2 2 6 -2 5
Θ3 1 3 5 3

a) What decision should you make using the Maximin approach?
b) What decision should you make using the Maximax approach?
c) What decision should you make using the Laplace Principle of Insuf-

ficient Reason approach?
d) What decision should you make with the Hurwicz Principle for α ∈

[0, 1]?





Chapter 18

The Utility Theorem

Question of the Day

Under what conditions do utilities exist?

Summary

• For a particular action, regret is the difference between the best payoff and
the payoff you receive.

• The Savage regretmethod tries to minimize the maximum regret you might
have over a decision.

• The Bayesian approach places a prior distribution over states of nature
and makes the decision that maximizes expected utility.

• The von Neumann-Morgenstern Utility Theorem [vonneumannm1953]
gives sufficient conditions for a utility function to exist.

18.1 Regret

Suppose a decision maker chooses a particular decision a and then later discovers
that the true state of nature is θ. Armed with that knowledge, the actor might
have chosen differently and made a decision b that resulted in greater utility. The
regret the decision maker feels is the difference between the best payoff for that
state of nature and the payoff that was actually received based upon the initial
decision.
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Definition 84
The regret of decision a and outcome θ ismaxb∈X A(b, θ)−A(a, θ).

For example, suppose the payoff matrix has the following values.

Payoff Matrix
a1 a2 a3

θ1 5 0 2
θ2 5 3 3
θ3 0 4 2

For a given decision and outcome, the regret is well-defined. For instance, if the
original decision was a3 and the state ended up being θ1, the decision maker would
regret not picking a1, since that was higher. To be precise, it was 5− 2 = 3 higher,
leading to a regret of 3. This can be done for every decision/state pair to form the
regret matrix.

Regret Matrix
a1 a2 a3

θ1 0 5 3
θ2 0 2 2
θ3 4 0 2

Therefore, the maximum regret for each decision is

a1 a2 a3
4 5 3

The decision which minimizes the maximum regret for a decision is a3. This is
called the Savage regret decision.

Definition 85
The Savage regret decision is

argmin
a∈A

max
θ∈Ω

[
max
b∈X

A(b, θ)−A(a, θ)

]
.

18.2 Using partial information

Remember that the way to encode partial information about the state of nature is
to use a probability distribution. Consider the following payoff matrix.

Study Don’t Study
Final is Hard 8 2
Final is Easy 6 10
Sun explodes 0 12
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Laplace’s principle of insufficient reason would say that (1/3, 1/3, 1/3) is the
probability vector for these three states given no information about the three
possible states. Someone who knows anything at all about physics just might have
a slightly lower than 1/3 chance for the sun exploding.

The person using Maximin is a pessimist who makes P(worst option) = 1. But
even the worst pessimist would hesitate before putting P(sun exploding) = 1.
Another problem with Maximin is that it fails to have a property called row

linearity. The idea of row linearity is that if you add a constant to any particular
row, it should not affect the optimal decision.
For instance, the old decision was a2 (don’t study). Say that -3 is added to the

first row. The new table becomes:

Study Don’t Study
Final is Hard 5 -1
Final is Easy 6 10
Sun explodes 0 12

Our new minimum vector is:
S NS
0 -1

The new decision is a1 simply by changing the first row.

18.3 Expected Utility Hypothesis

The expected utility hypothesis goes back to Daniel Bernoulli in 1738 and is an
extension of Laplace’s principle. It does satisfy row linearity. The idea is as follows.

1. Assign a probability to each state indicating the partial information an indi-
vidual has about the truth of the statement (this is called a prior distribution
or a statistical model.)

2. Calculate the expected payoff from each decision.

3. Choose the decision that maximizes expected utility.

Example 31
If there is a 60% chance that the final is hard, 40% − ϵ that it is easy,
and ϵ chance that the Sun explodes

E[payoff|Study] = (0.6)(8) + (0.4− ϵ)(6) + ϵ(0) = 7.2− 6ϵ.

S NS
7.2− 6ϵ 5.2 + 2ϵ

So for small ϵ, the action should be to study.
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Row linearity To see why this has the row linearity property, suppose that we
add a constant C to a particular row. Suppose that row (that state of nature) occurs
with probability pi.

Then the effect of this is to add piC to each of the mean payoffs, regardless of
the decision made. This does not change the max expected payoff decision, because
every decision gets the same constant added to it, so they stay in the same relative
order.

Does this work? In 1947, John von Neumann and OskarMorgenstern considered
the condition that were needed to hold before the expected utility hypothesis could
be used to obtain the best decision. They came up with 4 rules that if an individual
made decisions according to these rules, then there must exist a utility function
underlying their decisions. First some definitions.

Definition 86
A utility function is a function that returns a utility value U given the
random state of nature θ ∈ Ω. That is, U : Ω→ R.

Definition 87
A lottery is a probability distribution on outcomes, together with a
utility function.

For instance, suppose Ω = {a, b, c}, and lottery L has

P({a}) = 0.4,P({b}) = P({c}) = 0.3

with
U(a) = 16, U(b) = 20, U(c) = 5.

Then because the state of nature is uncertain, the value of U is a random variable
and has an expected value. In this case,

EL(U) = 0.4 · 16 + 0.3 · 20 + 0.3 · 5 = 13.90.

A lottery distribution can be represented by a vector p which has an entry for
every state of nature and whose entries add up to 1.

Definition 88
Let P consist of the set of vectors in [0, 1]n such that the entries add up
to 1. This set is called the probability simplex.
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Definition 89
For lotteries L,M write

• L = M if the actor is indifferent to playing lottery L orM .

• L ≺M if the actor prefers lotteryM to L.

Note that having L = M does not mean that the probability vector and utility
functions are the same, just that given a choice between playing the two lotteries,
the actor would be equally happy with either one. Following the usual notation, if
L = M or L ≺M , then write L ⪯M .
Given two lotteries L and M , we can think about flipping a coin that comes

up heads with probability p and tails with probability 1 − p. If the coin comes
up heads, then we play lottery L, otherwise we play lottery M . This gives us the
convex linear combination of the lotteries.

Definition 90
Given two lotteries L andM , suppose X ∼ Bern(p) (where p ∈ [0, 1])
is independent of the state of nature. Let N = pL+ (1− p)M be the
lottery where the agent plays L if X = 1 and plays M if X = 0. Call
N the convex linear combination of L and M .

(Note often the word linear is dropped in practice.)

Definition 91
A set of elements where the convex linear combination of any two
elements are in the set is called convex.

Because of linearity of expectation, the convex combination of two lotteries has
a mean equal to the convex combination of the means.

Fact 33
For lotteries L and M with utility function U , then

(∀p ∈ [0, 1])(EpL+(1−p)M (U) = pEL(U) + (1− p)EM (U)).

Axioms of Utility Theory (vN-M Axioms) Originally, axioms meant things
that were self evident. Today, mathematicians use axiom as a synonym for def-
inition. However, while the axioms/definitions created by von Neumann and
Morgenstern might not be self-evident, they are also reasonable things to work
with. There are four axioms.
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Definition 92
The von Neumann-Morgenstern Axioms are:

1. Completeness For all lotteries L and M , exactly one of the
following is true:

L ≺M,L = M, or M ≺ L.

2. Transitivity If L ⪯M ,M ⪯ N , then L ⪯ N .

3. Continuity If L ⪯M ⪯ N , there exists a p ∈ [0, 1] such that

pL+ (1− p)N = M.

4. Independence If L ≺M , then for any lottery N and p ∈ (0, 1],

pL+ (1− p)N ≺ pM + (1− p)N.

Theorem 8 (Von Neumann-Morgenstern Utility Theorem)
A complete and transitive preference relation⪯ on a finite set of lotteries
satisfies continuity and independence if and only if there is a random
variable U such that for all lotteries L and M :

L ≺M ⇔ EL[U ] < EM [U ]

L = M ⇔ EL[U ] = EM [U ].

In other words, if the first two axioms hold, then there is a utility function whose
value allows us to compare all pairs of lotteries if and only if the last two axioms
hold.

18.4 The shape of the utility curve

The Utility Theorem is very powerful, but it tells us very little about the shape of
the utility curve as a function of monetary reward. It turns out that three particular
shapes are very important.

• Straight line

– 1st dollar exactly as valuable as the millionth dollar.
– This is a useful model when the money associated with outcomes is

small compared to the actor’s net worth.

• Risk Averse (RA)

– Shape concave (convex down).
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– Avoids big risks.
– Typical function when outcomes comparable to net worth.

• Risk Seeker (RS)

– Shape convex (convex up).
– Millionth dollar worth more than 1st dollar.
– Trying to be first to reach a milestone.
– Going for the big score.
– A monopoly will often behave this way.
– Venture capitalists.
– “With $100,000, I could open a restaurant!”

In 1979, Kahneman and Tversky designed and ran a series of experiments to see
what the utility curve of participants looked like in the real world. It turned out
that most people do not use well defined utility curves in making their decisions.
In fact, they found that they could alter the curve that was implicitly being used by
rephrasing the question in different ways. So while utility maximization is good as
a principle, it should not be taken to represent how real people make decisions in
practice.

Problems

18.1 True or false: Regret is the negative of utility.

18.2 True or false: The Savage regret method tries to minimize the maximum
regret possible.

18.3 For each of the following, say whether or not this vector is part of the
probability simplex.

a) (0.3, 0.5, 0.2)

b) (0.3, 1.2,−0.5)
c) (0.1, 0.1, 0.2)

d) (1− ϵ, ϵ/2, ϵ/2) for ϵ ∈ [0, 0.1).

18.4 For each of the following, say whether or not this vector is part of the
probability simplex.

a) (0.3, 0.1, 0.1, 0.2, 0.3)

b) (0.5, 0.5)

c) (−0.5, 1.5)
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18.5 Suppose that an actor’s preferences for lotteries are complete, transitive,
continuous, and independent with utility function U .

a) Suppose for lotteries L and M , U(L) ≤ U(M). What can be said
about the preferences between L and M?

b) Suppose for lotteries L and M , U(L) < U(M). What can be said
about the preferences between L and M?

18.6 Suppose that an actor’s preferences for lotteries are complete, transitive,
continuous, and independent with utility function U .

a) Suppose for lotteries L and M , U(L) = 17.1 and U(M) = 15.2.
What can be said about the preferences between L and M?

b) Suppose for lottery N , U(N) = 16. Illustrate the continuous axiom
by finding p such that pL+ (1− p)M = N .

18.7 If lotteries are transitive, and for lotteriesA, B, and C , A ⪯ B andB ⪯ C
what can be said about the preference between A and C?

18.8 Say lotteries are independent,A,B, andC are lotteries withA ≺ B. What
can be said about the lotteries 0.4A+ 0.6C and 0.4B + 0.6C?
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Proof of the Utility Theorem

Question of the Day

How is the von Neumann-Morgenstern Utility Theorem proved?

Summary

• Fortunately the axioms are set up so that other mathematical results from
analysis can be used to prove the von Neumann-Morgenstern Utility Theo-
rem.

Start by recalling what the Utility Theorem says.

If a set of lotteries is complete and transitive, then they are continuous and inde-
pendent if and only if there is a utility function that gives preferences.

These first two axioms say the following.

• Complete means that for any two lotteries L and M , one of the following
is true:

L ≺M,L = M,M ≺ L.

• Transitive means that if L ⪯M andM ⪯ N , then L ⪯ N .

The last two axioms then are as follows.

• Continuous means if L ⪯M ⪯ N , there is a p ∈ [0, 1] such that

pL+ (1− p)N = M.
157
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• Independence means that for L ≺M , any lottery N , and p ∈ (0, 1],

pL+ (1− p)N ≺ pM + (1− p)N.

Begin with the easier direction.

19.1 Proof that Completeness+Transitive+Utility implies

Continuity+Independence

Proof. Suppose L ⪯ M ⪯ N . For the case when L = N then any choice of
p ∈ [0, 1] will do. Suppose L ≺ N . Then EN [U ] > EL[U ], and EN [U ] ≥ EM [U ].
So let

p =
EN [U ]− EM [U ]

EN [U ]− EL[U ]
.

Recall that a mixture lottery like pL + (1 − p)N can be resolved by flipping
a Bernoulli B with parameter p. If B = 1, then use L, otherwise use N . By the
Fundamental Theorem of Probability,

EpL+(1−p)N [U ] = EB[EpL+(1−p)N [U |B]]

= EB[1(B = 1)EL[U ] + 1(B = 0)EN [U ]

= pEL[U ] + (1− p)EN [U ]]

= EN [U ]− p(EN [U ]− EL[U ])

= EN [U ]− (EN [U ]− EM [U ])

= EM [U ].

Since their utilites are equal, the player is indifferent to the lotteries. That means
M = pL+ (1− p)N and continuity is satisfied.
To show independence, suppose that L ≺M , so EL[U ] < EM [U ]. Then

EpL+(1−p)N [U ] = pEL[U ] + (1− p)EN [U ]

< pEM [U ] + (1− p)EN [U ]

= EpM+(1−p)N [U ].

19.2 Proof that

Completeness+Transitive+Continuity+Independence implies

Utility

The other direction is more difficult! Begin by proving a weaker form of the
theorem that only works when there is a maximal and minimal lottery.
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Fact 34
For any precedence relation on lotteries that is complete, transitive,
and continuous, if there exist lotteries L andM such that for all other
lotteries N , L ⪯ N ⪯M , then there is a utility function that respects
the precedence relation.

Proof. Set U(M) = 1 and U(L) = 0. Let N be any lottery. By the continuity
axiom there is a p ∈ [0, 1] such that

pL+ (1− p)M = N.

Set U(N) = 1− p.
The rest of the proof is to show that this choice of U respects the precedence

relation. Let N1 ⪯ N2 be two lotteries. Then N1 ⪯ N2 ⪯M so by the continuity
axiom there is a p ∈ [0, 1] such that N2 = pN1 + (1− p)M .
Say that for X ∼ Bern(p), N2 plays N1 if X = 1 and M if X = 0. Similarly,

N1 = p1L + (1 − p1)M . So for Y ∼ Bern(p1) say N1 plays L if Y = 1 and M
otherwise. Make X and Y independent.
That means that in order to end up playing L, first X = 1 so that N1 is used,

and then Y = 1 so L is played. Note P(X = 1, Y = 1) = pp1. If the lotteries do
not end up playing L then they playM .
By continuity, there exists p2 such that N2 = p2L+ (1− p2)M . By the above

argument p2 = pp1. Since p ∈ [0, 1] that makes p1 ≥ p2 and 1 − p1 ≤ 1 − p2.
But that makes U(N1) ≤ U(N2), and the precedence relation is preserved by the
utility function.

Proof for general lotteries If a set of lotteries has no maximal or no minimal
lottery, then the problem becomes much deeper. It is necessary to use a result from
analysis that for any convex set with a complete, transitive precedence relation,
there exists an affine function whose value respects the precedence relation. To
begin, consider when a function is affine.

Definition 93
A function f is affine if for all vectors x and y and λ ∈ [0, 1],

f(λx+ (1− λ)y) = λf(x) + (1− λ)f(y).

Example: f(x) = 3x− 2. Then

f(λx1 + (1− λ)x2) = 3(λx1 + (1− λ)x2)− 2(λ+ (1− λ))

= λ(3x1 − 2) + (1− λ)(3x2 − 2)

= λf(x1) + (1− λ)(x2)
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Fact 35
Suppose U is a utility function. Then so is U ′ = aU + b where a, b ∈ R
and a > 0.

Proof. Since a > 0, U ′ is an increasing function of U , so maintains the same
ordering. Suppose

EpL+(1−p)N [U ] = EM [U ].

Then

EpL+(1−p)N [U ′] = EpL+(1−p)N [aU + b]

= aEpL+(1−p)N [U ] + b

= aEM [U ] + b = EM [aU + b] = EM [U ′]

so continuity is preserved.

It turns out that for transitive and complete precedence relations, there is always
an affine utility function, a result that comes from the mathematical area of analysis.

Fact 36 (Mixture Space Theorem (Weak form), Herstein and Milnor)
LetΠ be a convex subspace, so (∀x, y ∈ Π)(∀λ ∈ [0, 1])(λx+(1−λ)y ∈
Π). Let ⪯ be a preference relation on Π that is transitive and complete.
If the preference relation ⪯ on Π is independent and continuous then
there exists an affine utility representation V : Π→ R of ⪯.
Moreover, if V : Π → R is an affine representation of ⪯, then

V ′ : X → R is an affine representation of ⪯ iff there exist a > 0 and
b ∈ R such that V ′ = aV + b.

The proof is beyond the scope of this course. Note that this theorem says that
there must be an affine representation, not that every utility is affine.
Affine for functions was defined to convex combinations of two vectors, of

course by induction that can be extended to any finite number.

Fact 37
Suppose f is affine and p1, . . . , pn add up to 1. Then for x1, . . . , xn,

f(p1x1 + · · ·+ pnxn) =
n∑

i=1

pif(xi).

Proof. When n = 2, this is just the definition of affine! So use induction on n.
Base Case: n = 1, this gives a tautology.
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Induction hypothesis: assume true for n, consider n+ 1. Let λ = p1 + · · ·+ pn
and y = (p1x1 + · · ·+ pnxn)/λ. Then

f(λy + (1− λ)xn+1 = λf(y) + (1− λ)xn+1 (affine)

= λ
n∑

i=1

pi
λ
xi + (1− λ)xn+1 (induction)

=

n+1∑
i=1

pixi,

which completes the induction.

At this point it is possible to prove that the continuity and independent axioms
imply the existence of a utility function.

Proof. The proof basically collects the facts that we have gathered.

• The set of all lotteries Π is an example of a convex set, and so by the Mixture
Space Theorem, there is an affine function V that represents the preference
relation ⪯ over lotteries. The plan is to use V (which is a function of the
lottery) to build a random variable U (which is a function of the outcome.)

• For outcomeω ∈ Ω, theDirac delta lottery is the lottery δ(ω)whereP(ω) = 1.
In other words, in the δ(ω) lottery, ω is the outcome with probability 1.

• Our random variable is then U(ω) = V (δ(ω)).

• Let L be any lottery in Π. It is a mixture of Dirac delta lotteries:

L =
∑
ω

L(ω)δ(ω).

where
∑

ω L(ω) = PL(Ω) = 1.

• Since V is affine,

V (L) = U

(∑
ω

L(ω)δ(ω)

)
=
∑
ω

L(ω)V (δ(ω)) = EL(U).

• Hence U is a utility representation since V (L) = EL(U) respects the pref-
erence relation.

Problems



162 CHAPTER 19. PROOF OF THE UTILITY THEOREM

19.1 If u(x) =
√
x and the payoff is X ∼ Unif([0, 1]), what is the average

utility?

19.2 If u(x) = x2 and the payoff is is X ∼ Unif([0, 2]), what is the average
utility?

19.3 Suppose N = 0.4L + 0.6M , and X ∼ Bern(0.4) is used to determine
which of the two lotteries is played in the mixture. IfX = 1, which lottery
is played instead of N?

19.4 Suppose R = 0.55L+ 0.45M , and Y ∼ Bern(0.45) is used to determine
which of the two lotteries is played in the mixture. If Y = 1, which lottery
is played instead of R?

19.5 True or false: for u a utility function, 3u+6 gives the same preferences as
u.

19.6 True or false: for u a utility function, −u+ 10 gives the same preferences
as u.

19.7 Suppose f is an affine function with f((1, 1)) = (4, 2), f((1, 2)) = (5, 3).

a) Using the usual rules for scaling and adding vectors in R2, what does
0.4(1, 1) + 0.6(1, 2) equal?

b) Find f((1, 1.6)).

19.8 Let g be an affine function with

g((0, 0)) = (3, 1)

g((2, 4)) = (−1, 2).

Find g((4, 8)).



Chapter 20

Decision Trees

Question of the Day

Archytas Electronics must decide whether to build a new tablet. The product is
expected to have a demand that is either high, low, or medium. Since the money
involved is small relative to the earnings of the company, the utility is just taken
to be the amount of money involved. If the tablet is not built, the company loses
nothing. But if it is built, then the expected payoff depends on whether demand is
Good, Moderate, or Bad.

Demand
Good Moderate Bad

Probability 15% 60% 25%
Payoff $1 500 000 $600 000 -$700 000

Summary

• A decision tree can be a useful tool for making decisions with many
branches and outcomes.

Often, decisions involve a series of simpler decisions, one after the other. A
decision tree can help keep track of the different possibilities.

163
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Definition 94
A rooted directed tree is a directed graph where there is a unique node
called the root, and there is a unique set of nodes connecting the root
to any node in the tree. There are four types of nodes.

• The root node is where the decision starts.

• Nodes with no outgoing arcs are leaves. These are labeled with a
utility value.

• Nodes other than the root and leaves are either decision nodes
or chance nodes. Outgoing arcs from decision nodes are labels
with actions. Outgoing arcs from chance nodes are labeled with
probabilities.

Definition 95
The optimal value (often abbreviated to just value) of a tree is the
maximum expected value of the tree assuming optimal decision making.

A common way to draw decision trees uses squares to draw decision nodes
and circles to draw chance nodes. Since all arcs are oriented away from the root,
typically these edges are not drawn with direction.



20.1. ANALYZING DECISION TREES 165

Example 32 (Question of the Day)
Archytas Electronics must decide whether to build a new tablet. The
product is expected to have a demand that is either high, low or medium.
Since the money involved is small relative to the earnings of the com-
pany, utility is just taken to be money here. The decision tree looks
like:

Launch
Tablet

Don’t Launch
Tablet

$0

Good 15%
$1 500 000

Mod 60% $600 000

Bad 25%
-$700 000

= decision

= random outcome

Should the tablet be launched?

Answer There is only one decision to make, right at the beginning.
If Archytas launches the product, the expected payoff is:

(15%)(1.5 · 106) + (60%)(0.6 · 106) + (25%)(−0.7 · 106)
= 106(.225 + .36− 0.175)

= (0.410)106 > 0

So the maximum expected utility decision is to launch the product!

20.1 Analyzing decision trees

To solve the Question of the Day, just evaluate the consequences of the first decision.
That gives the correct result. If there are multiple decisions and chance nodes,
this becomes too complex. Instead, start at the end point (or points) and work
backward.
Consider a chance node whose outgoing arcs all lead to leaves with utility

outcomes. If that chance node is reached, then the resulting expected utility is just
the sum of the probabilities on each branch times the utility value for the leaf it
ends up at.
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In this approach, replace the chance node with the expected value of the node and
the overall tree will retain the same value as before. This operation simplifies the
tree while keeping the optimal value the same. This gives the following procedure
for analyzing decision trees.

Find the optimal value of a decision tree

• While there are internal nodes (nodes that are either chance nodes or decision
nodes) do the following.

– Pick an internal node whose outgoing edges are all leaves.

∗ If this node is a chance node, replace the subtree of the node and
its leaves with a leaf node whose utility value is the sum of the
outgoing arcs’ probability times the leaves’ utility value.

∗ If this node is a decision node, replace the subtree of the node and
its leaves with a leaf node whose utility value is the maximum of
its leaves’ utility values.

A sample analysis Suppose the decision tree looks like:

60% 4

40%
2

20%

70% 3

10% -1

3
50%

2

50%
0

Replace random outcomes in leaves with expectation:

(50%)(2) + (50%)(0) = 1

(60%)(4) + (40%)(2) = 3.2
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3.2

20%

70% 3

10% -1

3

1

Now consider the decision in the upper right: each outcome of the decision is
a number, take the decision that maximizes the value. In this case, take the up
branch to gain 3 utility.

3.2

20% 3

70% 3

10% -1

Again trim by finding the expected value:

(20%)(3) + (70%)(3) + (10%)(−1) = 2.6
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2.6

3.2

Now there remains only one decision node. Take the down branch to maximize
the utility among the leaves.

Note that no matter how large the initial tree is, at each step a chance or decision
node is removed. Hence any size tree can be simplified to a root and leaf using this
approach!

Problems

20.1 Avatar Pharmaceuticals is thinking about whether or not to pursue a new
product. Not pursuing the product costs nothing. If they do pursue the
product and it is successful, there is a 30% chance that it will make 1.2
million dollars, but if it is a failure it will cost the company 0.3 million
dollars. If money is treated as utility, what should Avatar do to maximize
their utility?

20.2 Faramir Electronics is developing new solar cell technologies. The market
for their product is believed to have a 40% chance of earning 15 million
dollars, and a 60% chance of earning 2 million dollars. If the product costs
3million dollars to develop and their market cap means that they can treat
dollars as utility, what decision should Faramir make?
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20.3 A business is testing out a new wind turbine design. It would take
$10 000 000 to develop the design fully. If demand for green energy is
good (20%) the business stands to make 30 million dollars, but if it is
medium (50%) they will only make 12 million, and if it is bad (30%), they
will only make 2 million.

a) Draw the decision tree for this problem.

b) What decision should the business make?

20.4 A government agency is deciding whether to begin an estuary project.
The project will cost about three hundred thousand dollars to complete. If
severe flooding occurs (which will happen with probability 20%), this will
save about one million dollars, but otherwise, it will do nothing.

a) Draw the decision tree for this process.

b) Should the agency undertake the project?

20.5 After working with a consultant, Bender Incorporated has built the follow-
ing decision tree. What decisions at D1 and D2 would maximize expected
utility? (Write *up* or *down* for each of the two decisions.)

D1

D2

4.7

30%

50% 4.1

20% -2.7

5.0

2.3

20.6 Canal Incorporated are trying to make several decisions. If their decision
tree looks as follows, what is there optimal decision for D1 and D2?
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D1

D2

3229

15%

15%
2318

70% 3540

1804

1637

20.7 Suppose that a venture capital (VC) firm has an opportunity to either buy
into an IPO for an SSD maker or wait and see how the product performs.
If they wait, the SSD maker might sell out its shares, and the VC firm will
not be able to invest. The result will be making nothing, and this happens
with probability 50%.
If shares remain, then there is a further 35% chance that the shares will
be reduced in price, leading to a 23 million dollar windfall. But with 65%,
the VC firm will make nothing.
On the other hand, if the VC makes its decision right away, then it must
immediately make the next decision whether to buy or not to buy. If it
decides to not buy, then again it makes nothing. If it decides to buy, there
is an expected 60% chance that it still makes the 23million dollar windfall,
but now with 40% the VC firm loses 5 million dollars.
Draw a decision tree with D1 being the first decision to buy or not buy
and D2 being the second decision to buy in or not buy in.

20.8 Finish the previous problem and determine the optimal decision.



Chapter 21

Psychology of decision making

Question of the Day

What are the common decision making mistakes?

Summary

There are many ways people fail to be rational in decision making. Some of the
most common problems are:

• Loss aversion (the Zero illusion)

• Allais Paradox

• Gambler’s Fallacy

• Anchoring

• Sunk cost Fallacy

Mathematical models can aid in decision making but they do not tell the whole
story. Experiments have shown that people are not always rational when it comes
to making choices.
For instance, consider the following scenario. You plan to see a play that costs

$40 to attend and find yourself in one of two situations.

• You bought the ticket to the play ahead of time, but when you get to the
theater, you find that you have lost the ticket. You still have enough money
in your wallet to buy a ticket.

171
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• You did not buy the ticket ahead of time, planning to get it when you arrived
at the theater. However, when you open your wallet, you find $40 is missing.
You still have enough money in your wallet to buy a ticket.

The question is: in each of these scenarios, do you buy the ticket? It turns
out [kahnemant1982] that people in scenario 1 where the ticket was lost are
much less likely than people in scenario 2 where the money was lost to buy a
ticket.
But according to utility theory, that should not happen! In either scenario, you

find yourself at the theater without a ticket and down $40. It should not matter
how you lost the $40, whether directly, or by buying a ticket and then losing the
ticket. Still, it does seem to matter to people in making decisions.
This chapter explores the psychological pitfalls that lead to people deviating

from expected utility maximization when making choices.

21.1 Defaults

Making a decision is hard work, and so anything that helps us avoid the work of
making a decision will be justified by our own brains.
Johnson and Goldstein [johnsong2003] looked at data about participation

in organ donation programs, as recorded on driver’s licenses. They found the
following participation rates among European countries, presented in Figure 21.1.

Figure 21.1: Drawn from [johnsong2003].

There is a sharp gap between the four countries on the left and the seven on
the right. But there seems to be no pattern, either socially or geographically that
could explain the difference.
The difference was that in the countries on the left, people had to check a box

to opt in to organ donation. In the countries on the right, people had to check a
box to opt out of organ donation. The default decision was overwhelmingly the
reason for the difference.
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Why might that be? One theory is that this is a big decision, and big decisions
are hard. Much easier is to simply use the default position. When evaluating
possibilities, it is important to be careful to understand whether the status quo is
actually the right decision, or if the goal is just to avoid the difficulty of making a
decision.

21.2 Loss Aversion (Zero Illusion)

Loss aversion is the idea that decision makers tend to avoid losses more than enjoy
gains. For instance, if I offer two outcomes, a gain of $10 or a loss of $10, the loss
is felt as being worse than the gain. The utility curve looks like this.

There is a sharp change in the slope of the utility curve at zero (formally a
discontinuity in the derivative.) Therefore this phenomenon is also sometimes
called the zero illusion.
This manifests itself in several ways.

• When dealing with risk, a loss averse investor has a goal of at least breaking
even.

• Debt is unduly viewed as bad, and something to be avoided.

21.3 Allais paradox

Maurice Allais [allais1953] constructed experiments designed to test if expected
utility maximization is the way people make decisions, and ran into a bigger
problem than loss aversion. In his findings, there was no utility function at all that
would explain the results!

In his study, Allais asked participants to consider two lotteries.

Lottery 1A 100% win $1 million
Lottery 1B 89% win $1 million, 1% win nothing, 10% win $5 million

Given the choice, most people prefer Lottery 1A. Now change the lotteries.

Lottery 2A 89% win nothing, 11% win $1 million
Lottery 2B 90% win nothing, 10% win $5 million
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In the same study, they found that participants prefer Lottery 2B. The problem
is that this is inconsistent with utility maximization!

Why is this inconsistent?

• Consider a function U .

• Then 1B ≺ 1A implies E1B[U ] < E1A[U ].

E1A[U ] = U(1) > 0.89U(1) + 0.01U(0) + 0.1U(5) = E1B[U ].

• Now let’s play with E2A < E2B[U ]:

E2A[U ] = 0.89U(0) + 0.11U(1) < 0.9U(0) + 0.1U(5) = E2B[U ]

• Add 0.89U(1)− 0.89U(0) to both sides:

U(1) < 0.89U(1) + 0.01U(0) + 0.1U(5)

21.4 Gambler’s fallacy

Suppose a fair coin is flipped 40 times. If it comes up heads 40 times in a row, then
the Gambler’s fallacy is to believe that the next flip is more likely to be a tail. In
other words, those falling for this fallacy will think that the probability of a tail
coming next will be greater than 50%.
If fact, the situation is even worse than this. Suppose that before the coin is

flipped the actor starts with a uniform prior on the probability of heads. After
seeing heads come up 40 times in a row, the posterior probability found using
Bayes’ Rule will have moved most of the probability of heads to be close to 1. So
seeing this should cause the user not to believe that a tail is due, but rather the
assumption that the coin was fair was false.

21.5 Anchoring

The idea of anchoring is that hearing numbers that are unrelated to the problem
at hand can influence people towards that number. This problem also formed the
basis of experiments by Tversky and Kahneman.

Tvesky & Kahneman 1982 Experiment In their experiment, they asked par-
ticipants what their best guess was for the percentage of African countries that
are members of the United Nations. However, before they asked the question, they
rolled a random number X uniform from 1 up to 100, and told this number to the
participants.
The participants knew that the number was random, and yet they still gave

guesses that were closer to the number they were given. This random number X
served as an anchor for their predictions.
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21.6 Sunk Cost Fallacy

In a pure utility decision making framework, people make decisions based on the
future effects of a project. However, it is not uncommon for decisions to be made
based on past information as well.
For instance, suppose that a company starts a project by investing X dollars.

After learning of cost overruns, currently the project needs Y dollars to finish.
Should the project be finished?

If the decision makers are trying to maximize expected utility, they should only
consider Y and the utility of the outcomes in their decision. The value ofX should
have no bearing whatsoever on the result.
However, in practice, the amount of money already spent on a project can

sharply influence the chance of continuing. Examples where this is often seen
include

• Military conflicts,

• large scale real estate projects, and

• choice of undergraduate major.

21.7 What can be done to avoid these fallacies?

The most important thing is to be aware of the various fallacies that prevent
rational decision making.

• Try to be explicit about your assumptions in decision making. What are
your prior beliefs about probabilities? What are your beliefs about the utility
of outcomes?

• At this point you can decide whether you need more information to make
an informed decision!

You should also be aware that very smart people have succumbed to these
fallacies. Being intelligent does not bring immunity! Some examples.

• Newton lost his fortune in the South Sea Tulip Bubble.

• D’Alembert (who studied in detail the wave equation for the first time)
believed the Gambler’s fallacy to be true.

• Leibniz (one of the inventors of Calculus and highly regarded philosopher)
thought 12 and 11 were equally likely on the sum of two dice.

Everyone has blind spots. Being aware of these problems in our cognition is the
first step towards avoiding them.

Problems
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21.1 A survey question reads

Over 80% of U.K. members surveyed favored greater government expansion.
What percentage of U.K. voters do you believe also favored expansion?

This question is an example of what type of problem in psychological
decision making?

21.2 A company is trying to decide to continue their EV project, or abandon
it. A board member raises the point that the company has already spent
four billion dollars in research on the project. This is an example of what
fallacy?

21.3 A company has seen market data that has a good outcome four quarters in
a row. They assume that a bad quarter must be coming. This is an example
of what fallacy?

21.4 A survey begins with a description that informs participants that 54% of
teenagers use their product. The first question of the survey then asks
what the person thinks is the percentage of adults that use their product.
This is an example of what fallacy?

21.5 Consider lottery N where everyone participating wins 100 dollars, and
lottery M where 81% win 100 dollars, 2% win nothing, and the remaining
17% win 250 dollars. Among those surveyed, there is a clear preference for
lottery N over lotteryM .
In lottery R, 81% win nothing, but 19% win 100 dollars. In lottery S, 83%
win nothing, but 17% win 250 dollars. Among those surveyed, there is a
clear preference for lottery S with lottery R.
Prove that these choices are not compatible with any utility function.

21.6 Suppose there are lotteriesL1, L2, L3, L4. LotteryL1 has outcome 34with
probability 85%, 0 with probability 1% and 70 with probability 14%. L2

always has outcome 34. Those surveyed prefer lottery L2 with guaranteed
winnings to L1.
Lottery L3 has outcome 0 with probabiity 85%, and 34 with probabiity
15%. Lottery L4 has outcome 0 with probability 86%, and 70 with proba-
bility 14%. Those surveyed prefer lottery L4 to L3.
Show that these preferences are incompatible with the use of expected
utility maximization.

21.7 Consider a lottery A with outcomes of 25 dollars and 5 dollars with prob-
abilities 60% and 40$ respectively. Similarly, lottery B is always worth 10
dollars. If an actor prefers to play B to A, show that this is incompatible
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with any affine utility function, that is, one of the form U(m) = am+ b
for any positive constant a andm the monetary amount.

21.8 Consider a lottery L1 that returns $10 with probability 1/2, and costs $10
otherwise. A second lottery L2 is always worth $0. If the person prefers
to play L2 to L1, show that this is inconsistent with a utility function of
the form U(m) = am+ b wherem is the monetary payoff and a > 0.





Chapter 22

Expected value of perfect information

Question of the Day

Suppose that the economy is expected to be hot, neutral, or cold over the next year.
An investor is considering investing either in one of two stocks, or the money
market. The payoff matrix is:

Stock 1 Stock 2 MM

hot 2000 900 600
neutral 200 300 600
cold −600 −200 600

Given a prob vector for the market of (40%, 30%, 30%), what is the expected value
of perfect information to see the future?

Summary

• The Expected value of perfect information is the difference between the
optimal value of a decision tree where a chance node is replaced with its
true value and the optimal value of the decision tree.

Suppose that I can pay $2 to play a game where I roll a fair single sided die,
and receive a number of dollars equal to the roll on the die. Assuming utility
equals payoff, then since the game pays $3.50 on average, the average utility from
deciding to play the game is 3.5− 2 = 1.5.

Now suppose the person running the game is willing to show me the die before
I have to decide whether or not to pay my $2. How much should the game runner
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charge for that information? Well, if the die roll is greater than 2, then I would
still make the decision to pay the money and play the game. If the die roll is 1 or 2,
then I would make the decision not to play and save my money. In this case, I earn
$0. Therefore, on average, each game is worth:

(1/6)(0)+(1/6)(0)+(1/6)(1)+(1/6)(2)+(1/6)(3)+(1/6)(4) = 10/6 = $1.666 . . . .

So without the information I earn on average $1.5, with the information I earn
on average $1.6666 . . ., a slightly higher amount. Therefore the value of the
information is (on average)

10/6− 3/2 = 1/6 = 0.1666 . . . .

Call this amount the expected value of perfect information, or EVPI for short.
More generally, call the mean amount of money that can be made given a certain

piece of information minus the mean amount of money that can be made without
the information the expected value of perfect information.

Definition 96
LetW (I) be the utility gained by making an optimal decision given the
presence of random outcomes encoded in I . Then the expected value
of perfect information is the difference between the expected optimal
value given the information, and the optimal value without. That is,

EV PI = E
[
max
L(I)

EL(I)(W (I) | I)
]
−max

M
EM (W (I)).

To find EVPI

1. Find mean utility of the best decision with no information.

2. Find mean utility of the best decision given the information.

3. Subtract 1 from 2

Question of the day First, it is necessary to find the mean utility without
knowledge of the future. There are three investments, each of which have a
different expected utility.

E[U1] = 2000(0.4) + 200(0.3)− 600(0.3) = 680

E[U2] = 900(0.4) + 300(0.3)− 200(0.3) = 390

E[U3] = 600.

Therefore, with no information, stock 1 is the decision to make that maximizes
expected utility.

On the other hand, let I ∈ {hot,neutral,cold} tell us the exact state of the market.
There are several options.
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• If I = hot, choose stock 1 to gain 2000. That means

W (I|I = hot) = 2000.

• Similarly,
W (I|I = neutral) = 600

because when the market is neutral our best choice is to invest in the money
market.

• Last,
W (I|I = cold) = 600,

because our best option under these market conditions is also to pick the
money market.

Given the probabilities for each of these three outcomes,

E[W (I)] = E[E[W (I)|I]] = (0.4)(2000) + (0.3)(600) + (0.3)(600) = 1160.

That makes the information worth

EVPI = E[W (I)]− E[U ] = 1160− 680 = 480 .

What does this mean? EVPI measures the expected value of reducing uncer-
tainty. In this problem, if a fortune teller could tell you what the market was
going to do, you should be willing to pay up to 480 to learn the answer. The EVPI
depends on what the information is, and gives a way of measuring the importance
of various pieces of information.

22.1 EVPI for continuous information

In the question of the day, the information was discrete, but the same idea works
just as well for information contained in a continuous setting.

Example Archytas Electronics models demand for their new USB converter
in the following way. First, the average consumer demand µ is taken to have
distribution Gamma(10, 0.01). Once µ is chosen, actual consumer demand is
modeled as Pois(µ). So if D is consumer demand:

µ ∼ Gamma(10, 0.01)

[D|µ] ∼ Pois(µ).

Now it costs around $1800 to change the setting on the factory floor to make the
new model. Once the change has been made, the factory will make $2 per unit
sold. So if the decision is to make the new product, the utility will be 2D − 1800.
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1. Given the uncertainly about µ, should we make the product?

2. What is the EVPI to know the value of µ?

This type of model where one parameter is chosen randomly and then another
is chosen based on the first is called a hierarchical model.

So how did the parameters of 10 and 0.01 introduced in the first place? Presum-
ably, these came from talking to experts and getting information from products
introduced earlier.
To solve this problem, it is necessary to understand how conditioning and

expected values interact. The most important thing to know is the Fundamental
Theorem of Probability.

Theorem 9 (Fundamental Theorem of Probability)
For random variables A and B where A, B and [A|B] all have finite
mean,

E[E[A|B]] = E[A].

Consider using this to find E[D]. The distribution of D is very complicated to
determine exactly. Fortunately, it is not necessary to know the distribution of D
in order to find its expected value! Recall that E[D|µ] = µ because the mean of a
Poisson distributed random variable equals its parameter.
The FTP says to take the expected value again to get rid of any conditioning.

This means
E[D] = E[E[D|µ]] = E[µ] = 1000.

Using this to find the expected utility without information gives:

E[2D − 1800] = E[E[2D|µ]]− 1800

= E[2µ]− 1800 = 2 · 1000− 1800 = 200.

So without any information, the decision that maximizes expected utility is to
make the product!

Now consider how much information about µ is worth. If µ was known exactly,
then it is possible to decide more effectively whether or not to make the product.
The expected utility conditioned on µ is

E[2D − 1800|µ] = 2µ− 1800.

If this value is nonnegative, the decision is to make the product, otherwise do
not make the product. Hence

W (D) = (2D − 1800)1(2D − 1800 ≥ 0) = (2D − 1800)1(D ≥ 900).

The easiest way to estimate E[W (D)] is to use Monte Carlo simulation The idea
is to generate various values of D and then take the mean to get an estimate.
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This can be done in R with the rgamma command to generate a random gamma
distributed random variable, and the rpois command to generate a random
Poisson distribution random variable.

w <- function(n = 1) {
mu <- rgamma(n, shape = 10, rate = 0.01)
d <- rpois(n, mu)

return((2 * d - 1800) * (d > 900))
}

Next generate several values and report.

set.seed(123456)
n <- 10^8
res <- w(n)
mean(res)

## [1] 355.7944

sd(res) / sqrt(n)

## [1] 0.0479123

Notice that the estimate of the standard deviation of our result is the standard
deviation estimate divided by the square root of the number of trials we made. To
see why, recall that when independent random variables are added together, their
standard deviations are added in quadrature. This means

SD(X1 + · · ·+Xn) =
√
SD(X1)2 + · · ·+ SD(Xn).

Now, the sample average estimate looks like

µ̂ =
X1 + · · ·+Xn

n
.

Then

SD(µ̂) =
1

n
SD(X1 + · · ·+Xn) =

√
n SD(X1)2

n
=

SD(X1)√
n

.

Therefore, the EVPI for knowing µ is approximately

355.7944 . . .− 200 = 155.8 . . . .
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22.2 Eliciting priors in hierarchical models

So how was the prior distribution µ ∼ Gamma(10, 0.01) chosen earlier? In our
case it was given by the problem, but in practice these types of priors from expert
knowledge. Once the family of the prior (Gamma) has been determined, experts
are asked questions questions like: What are average sales going to be for this
product?
A deeper question is to ask: What is a value k such that 50% of time sales are

within k of average?
This second question is asking about quantiles of the random variable. That is

because it is typically easier for most people to understand quantiles rather than
the relatively abstract notion of standard deviation.
Suppose our expert answered 1000 and k = 215. One reason to use a Gamma

distribution is to ensure that demand is always positive. Next, the goal is to find
parameters (α, β) such that these constraints are met. The expected value of such
a random variable is α/β, so β = α/1000.
The next step is to find α values such that the probability that X ∼

Gamma(α, α/1000) satisfies P(X ∈ [785, 1215]) = 0.5. In R, the command
to find this probability is
pgamma(1215, alpha, alpha / 1000) - pgamma(785, alpha,

alpha / 1000)

If alpha <- 20 the result is 0.6674633. The value alpha <- 5 gives
0.368343. Using the bisection method allows us to narrow in to get α = 9.75019
as the best answer.
Of course, since everything is approximate here, using α = 10 will not give

results much different.

Problems

22.1 Suppose that E[X] = 4.3 and E[Y |X] = 2X . What is E[Y ]?

22.2 Say E[A] = 1.2, E[B|A] = A − 3, and E[C|B,A] = B − A. What is
E[C]?

22.3 Suppose T ∼ Exp(λ), where λ ∼ Unif([1, 5]).

a) What is E[T |λ]?
b) What is E[T ]?

22.4 Suppose demand is modeled as D ∼ Pois(µ) where µ is uniform over
[1, 2] million units. What is E[D]?

22.5 An investor believes there is a 30% chance of tariffs being enacted on
aluminum soon. If the tariffs are put in place, then purchasing stock in an
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aluminum mining company will result in a $2 000 000 profit. if the tariffs
are not put in place, then the investor will lose $500 000.

a) Draw the decision tree for this problem.
b) Should the investor invest?
c) What is the EVPI for I = 1(tariffs are enacted)?

22.6 An NGO is trying to decide if it should expend resources to apply for a
grant from one program (call this strategy G1), another program (G2), or
both (G12). The results will depend on the availability of funding, which
can be described as low or high.
The payoff matrix looks as follows:

G1 G2 G12

high 3 5 6
low 3 0 1

The NGO believes the chance of low funding is 60%, while that of high
funding is 40%.

a) Draw a decision tree for this problem.
b) What is the optimal decision assuming the expected utility hypothe-

sis?
c) What is the expected value of perfect information for the information

about the state of funding?

22.7 In mathematical finance a call option with strike price K returns S −K if
a stock ends a time period with value S that is greater than or equal to K ,
or nothing otherwise. That is, the payoff of the call as a function ofK is

P = max(S −K, 0)

a) For a stock modeled as S ∼ Unif([75, 150]) and a strike price of
K = 110, what is E[P ]?

b) If the call costs $50 to purchase, should the call be bought? (Use
expected utility maximization with utility equal to monetary value.)

22.8 Continuing the last problem, what is the expected value of perfect infor-
mation on the future value S in respect to the decision of whether or not
to buy the call option?
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Framing and a two-envelope problem

Question of the Day

Suppose two envelopes contain two different positive amounts of money. You are
allowed to look inside one envelope, then either keep it or switch to the other. Is
there a way to choose the envelope with more money more than half of the time?

Summary

• Framing phrases a decision either as a gain or loss to change the preferred
outcomes.

• Two envelope problems deal with random variables with only two values.
They are used to illustrate various paradoxes in probability.

23.1 Framing

Framing extends the problem of loss aversion by phrasing a decision either in
terms of gain or terms of loss. Unfortunately, this can bend in either direction.

• People tend to avoid risk when the outcomes are good.

– “A bird in the hand is worth two in the bush”

• People embrace risk when outcomes bad

– “He who hesitates is lost”
– “In for a penny, in for a pound”

187
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The same question can often be presented in two different ways that elicit
different answers. A choice that emphasizes a positive result can lead to risk
avoiding behavior but becomes risk seeking when the negative frame is presented.

Tvesky & Kahneman 1981 Experiment In this experiment the researchers
asked two versions of the same question. Each person surveyed was asked to
choose between Treatment A or Treatment B for a disease that a group of 600
people had. The two versions of the question were the positive frame and the
negative frame.

1. Positive frame. Treatment A: This treatment will save 200 lives for sure.
Treatment B: This treatment has a 33% chance of saving all 600 people, but
also has a 66% possibility of saving no one.”

2. Negative frame. Treatment A: This treatment will lead to 400 deaths for sure.
Treatment B: This treatment will have a 33% chance that no people die, but
a 66% probability that all 600 will die.”

In the positive frame, 72% of participants chose Treatment A, while in the negative
frame, only 22% did so. Of course, the outcomes are exactly the same, only how
they are presented is different.
So how can the issue of framing be dealt with? The simplest approach is to

present both the positive and negative frame simultaneously.

• Simultaneous frame. Treatment A: This treatment saves 200 lives, but 400
will die. Treatment B: This treatment has a 33% chance that everyone lives
and no one dies, but a 66% probability that no one lives and everyone dies.

This effect is well known and used in marketing to try to convince consumers
to make certain decisions. For instance, we have the following strategies.

• Two week trial with a money back guarantee.

– This is a good outcome so the money back guarantee manages the risk
for the customer.

• Discount for cash: rarely do policies state they have a surcharge for using
credit.

Frames and happiness The way outcomes are phrased can also affect regret
(or its opposite, happiness.)

• Movie Theater promotion #1:

– June wins $100 for being the millionth customer.
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• Movie Theater promotion #2:

– Betty wins $10 000 for being the millionth customer.

– Mike wins $1 000 for being customer 1 000 001.

So which customer should be happier with the outcome, June or Mike? In
practice, it would typically be June, although objectively Mike should be happier
with more money.

Other approaches to minimizing irrational behavior Here are some more
ways to minimize irrational behavior based on framing.

• In surveys, present the questions in a random order.

• Make the target aware of biases.

• Use feedback from the results of model.

• Redundant questioning: ask the same question using multiple frames.

• Do not let humans decide which they prefer. Instead, elicit probabilities, try
to determine utilities, and then use an automated method to find the best
decision. (This is why linear regression routinely outperforms experts in
decision making.)

23.2 Two envelope problems

There are a number of simple problems involving decisions with unknown amounts
of money in each of two envelopes, that illustrate some of the difficulties in building
a consistent philosophy of decision making.

Switch or no switch? Start with the following problem. Suppose two envelopes
contain different amounts of money, x and y. You do not know what x or y is, but
you do know that y > x.
Here is how the game is played: you are allowed to look in one envelope and

see the amount of money that is inside. After looking in the envelope, you are
allowed to switch to the other envelope or stay with your existing envelope. What
should you do?
Surprisingly, there is a strategy that guarantees (even though you don’t know

either x or y ahead of time) that you have a better than 50% chance of picking the
envelope with the higher amount of money.
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Procedure Start with a probability density f that is positive over [0,∞). For
instance, the absolute value of a normal or Cauchy random variable will accomplish
this.

1. Look in an envelope chosen uniformly at random, call result A.

2. Draw X ∼ f .

3. If X ≤ A, keep the envelope with A, otherwise switch.

What is the chance that the player ends up with the good envelope? Suppose
that X ≤ x < y. Then the strategy means the player does not switch no matter
which envelope they received. There is a 1/2 chance of initially getting the good
envelope, so that is their chance of winning.
Similarly, if x < y < X , then the algorithm says to switch. This means that

when y < X , the chance of ending up with the right envelope equals the chance
that the player initially received the wrong envelope, so still 1/2.
The final case is when x < X ≤ y. In this case, when the player receives the

envelope with x they switch. If they receive the envelope with y they don’t switch,
so the player always wins, no matter what envelope they started with!
Hence

P(win) = 1

2
P(X ∈ (−∞, x]) + P(X ∈ (x, y]) +

1

2
P(X ∈ (y,∞))

and since

P(X ∈ (−∞, x])) + P(X ∈ (x, y]) + P(X ∈ (y,−∞)) = 1,

this gives
P(win) = 1

2
+

1

2
P(X ∈ (x, y]).

This last term is positive since X has positive density over R.

Two envelope paradox Now suppose that you know that one envelope contains
exactly twice as much as the second envelope. In other words, y = 2x, so the
envelopes contain x and 2x amount of money.
Now consider the following expectation maximization method.

• Say you look inside and see $1000

• Then you know the other envelope has $500 or $2 000

• Since each is equally likely if you pick the other envelope, you expect to
change the amount of money you have by

E(switch) = (1/2)500 + (1/2)2000 = 1500.
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• So you should always switch.

Wait a minute, though that cannot be correct. That argument works no matter
what amount was seen in the envelope! So we can switch without even seeing
what’s in the envelope!

But earlier we showed that we can get at least a 50% chance of getting the higher
amount by using extra randomness.

Solving the paradox Interestingly, there is no one accepted solution to this
problem. Philosophers have written books on it!

That being said, here is one way of resolving the paradox. The original amounts
of money in the two envelopes are X and 2X . Here X is a random variable that
has an unknown distribution.
If you chose your initial envelope randomly, then the amount of money in

the envelope is [N |X] ∼ Unif({X, 2X}). If you switch, you obtain money M .
Because initially you picked the envelope at random, [M |X] ∼ Unif({X, 2X}) as
well, and there is no paradox as

E[N ] = E[M ] = E[E[N |X]] = (3/2)E[X]

and you are indifferent to switching.
The mistake in the paradox was in saying that given your choice of N , the

envelopes were equally likely to contain {N/2, N} as {N, 2N}. But this ignores
the fact that whoever set up the envelopes had to put the money in first, and so
it is {X, 2X} no matter which envelope you pick. In other words, your choice
of envelope cannot magically change the set of values of the money inside of the
envelopes!
A more sophisticated resolution considers that the person who set up the en-

velopes did not choose between (500, 1000) and (1000, 2000) with equal probabil-
ity, and that is where the error in reasoning in the paradox lies.
In this approach to the paradox, a model is needed for how the original x

was chosen. Once again (as with the maximum expected utility), the notion of a
Bayesian prior on the choice of x can be used.

Consider the following example. Suppose that the smaller amount of money was
chosen as a geometric random variable with mean 3. That is, sayX ∼ Geo(1/3) if

(∀i ∈ {1, 2, 3, . . .})(P(X = i) = (2/3)i−1(1/3)).

Once we look in the first envelope and see N dollars, that is data, and we need
to update our probabilities for X given N . In other words, we want to know the
distribution [X|N ], but our statistical model only gives us [N |X] (P(N = X|X) =
P(N = 2X|X) = 1/2).

To use [X] (the prior) and [N |X] (the statistical model) to get [X|N ] (the poste-
rior), we use Bayes’ Rule.
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Theorem 10 (Bayes’ Theorem)
Let A and B be events with positive probability. Then

P(A|B) =
P(A)P(B|A)

P(B)
.

• Let N be amount seen, X be amount in smaller envelope

• Suppose that the data is N = 4. What is the new distribution of X given
this data?
First, we know that X = 2 or X = 8, since N ∈ {X, 2X}. Next,

P(X = 2|N = 4) =
P(N = 4|X = 2)P(X = 2)

P(N = 4)

=
P(N = 4|X = 2)P(X = 2)

P(N = 4|X = 2)P(X = 2) + P(N = 4|X = 4)P(X = 4)

=
(1/2)(2/3)(1/3)

(1/2)(2/3)(1/3) + (1/2)(2/3)3(1/3)

= 1/[1 + (2/3)2] = 9/13.

So the expected benefit of switching is

9

13
· (−2) + 4

13
(4) = −4/13 < 0,

so don’t switch!

Problems

23.1 A new disease is spreading! Vaccinations are guaranteed to prevent 90% of
infections but have a 1% chance of causing nausea. Among those infected,
3% will require hospitalization.

a) Write this using a positive frame for the vaccination.
b) Write this using a negative frame for the vaccination.

23.2 A metropolitan area typically experiences 36 suicides per year. A new ad
campaign is expected to reduce that number by 20%.

a) Write the choice of running the ad campaign or not using a positive
frame.
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b) Write the choice of running the ad campaign or not using a negative
frame.

An awareness campaign will prevent 200 suicides in a metropolitan area.

23.3 In 2007, a contest for best pie gave $100 to each of the three top finishers.
In 2008, they gave $500 to first place, $300 to second place, and $150 to
third place. Would you rather have won third place in 2007 or 2008?

23.4 A supermarket chain is planning to run an ad campaign where they give
$100, $200, and $300 to random customers every hour. Does this seem
like a good idea? What might you suggest to the client to improve the
outcome?

23.5 Suppose that (unknown to the player) there are two envelopes one with
$10 and one with $5. The player is allowed to open one envelope, then
has the choice to stay or switch to the other.
The player decides to use the following strategy: randomly generate a
Cauchy random variable and take the absolute value. This gives a random
variable X with density

fX(x) =
4

τ(1 + x2)
1(x ≥ 0).

The player then plans to open one envelope uniformly at random and see
the value x of money inside. The player then generates X . If X ≤ x, the
player keeps the envelope, otherwise they switch. What is the chance that
they end up with the $10 envelope?

23.6 Continuing the last problem, if the smaller envelope had no money in it,
what is the chance that they end up with the $10 envelope?

23.7 Suppose that X ∼ Unif({1, 2, 3, 4}), and two envelopes are presented,
one with X dollars, and one with 2X dollars. You are allowed to select
one envelope, look inside, and then switch if you’d like.
You decide to randomly choose a continuous uniformW over [0, 10]. If the
amount in the envelope is smaller thanW , switch, otherwise keep your
envelope. What is the chance that you end with the larger dollar amount?

23.8 Continuing the last problem. Suppose you now know that X ∼
Unif({1, 2, 3, 4}. You look inside the envelope and see 4 dollars. To maxi-
mize your expected dollars, should you switch?





Chapter 24

Creating utility functions to test
beliefs

Question of the Day

Consider the multiple choice question:

What is the capital of Louisiana?

a) New Orleans
b) Bon Temps
c) Baton Rouge
d) Lousiannaville

How can your true beliefs about the correct answer be elicited?

Summary

• There exists a utility function such that the optimal strategy is to write down
your true probability beliefs for multiple choice questions.

• Suppose there are n choices and you must give as your answer a probability
vector (p1, . . . , pn). You then receive ln(pc) as your payoff, where c ∈
{1, . . . , n} is the correct outcome. Then the choice that maximizes your
expected utility is to put down your true beliefs about the probabilities.

So far expected utility and EVPI have been calculated given a prior on the
possible outcomes. But how is that prior determined in the first place? One method
is to try to elicit beliefs about probabilities from experts in the field.

195
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24.1 Using share prices/betting odds to estimate probabilities

Suppose I offer you a financial instrument with the following properties. If event
A occurs (for instance, the Los Angeles Dodgers win the World Series this year),
then the stock will be worth $100. If they don’t then the stock is worthless. How
much would you be willing to pay for the stock?

If $100 is small enough that you are risk neutral to this amount, then you would
be willing to pay 100p, where p is your belief about the probabiltiy that event A
occurs. If the stock was being sold for value less than 100p, you would want to
buy the stock, and if you could sell the stock for more than 100p, you would.

This idea is the basis for a prediction market, which puts this idea into action
by allowing the buying and trading of stocks for amounts between 0 and 100%.
By allowing anyone to buy or sell the stock, a prediction market is an example of
crowdsourcing probabilities.

The downside to prediction markets is that they are subject to the same irrational
behavior as other markets, including bubbles and crashes. If someone invests in A
not because they believe the probability warrants it but because the price of stock
A is on the rise, that defeats the purpose.

24.2 Weighted answers for multiple choice questions

Now consider how to elicit correct probabilities for multiple choice questions.

Definition 97
An exam question is multiple choice if the set of possible answers is a
finite set and there is one correct result.

For a given multiple choice test question, let X denote the true answer. For the
test taker, X is a random variable that measures how much information is known
about each possible answer.

Suppose that instead of just marking one answer correct, students are allowed to
write positive numbers that add to 1 when answering a multiple choice question.
Callm(i) the weight given to answer i.
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Example 33
If a multiple choice question has choices a, b, c, and d, one possible
choice of answer is

m1(a) = 0.2,m1(b) = 0.3,m1(c) = 0.25,m1(d) = 0.25.

If the test taker is sure that the answer is c, then they might put all of
their weight on c:

m2(a) = 0,m2(b) = 0,m2(c) = 1,m2(d) = 0.

If they thought the right answer was either c or d and they were not
sure, they might write:

m3(a) = 0,m3(b) = 0,m3(c) = 0.5,m3(d) = 0.5.

Consider a user with a probability distribution forX given by the vector p. That
is,

P(X = i) = p(i).

Now think about what the test taker might write down for their answer based
on various utility functions.

24.3 The usual grading scheme

The usual grading scheme for a multiple choice test is to give 1 point if the answer
is correct, and 0 points otherwise. A reasonable extension of this to the system
where someone writes down a vector that adds to 1 is to give the student whatever
they put down on the answer that turns out to be true. This can be encoded as:

U(m) = m(X).

Example 34
Continuing the last example, suppose that X = 4. Then

U(m1) = m1(X) = m1(4) = 0.25.

U(m2) = m2(X) = m2(4) = 0.

U(m3) = m3(X) = m3(4) = 0.5.

Of course the true answer is rarely known, instead, the user has a probabilistic
model. Given the model, the expected utility can be found given a particular choice
ofm.
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Example 35
Continuing our example, suppose P(X = i) = p(i) is given by

p(1) = 0.5, p(2) = 0.2, p(3) = 0.15, p(4) = 0.15.

Then

E[U(m1)] = E[m1(X)]

= (0.5)(0.2) + (0.2)(0.3) + (0.15)(0.25) + (0.15)(0.25) = 0.235,

E[U(m2)] = E[m2(X)] = (1)(0.15) = 0.15,

E[U(m3)] = E[m3(X)] = (0.5)(0.15) + (0.5)(0.15) = 0.15.

So if the choice of m was between these three possibilities, with this
probability vector m1 yields the highest expected utility.

Ism1 the best choice for this problem? To answer it is necessary to maximize
E[U(m)], and that is done by placing all the weight on the answer with the largest
value of p(2). In this case

m4(1) = 0, m4(2) = 2, m4(3) = 0, m4(4) = 0,

yields E[U(m4)] = 0.3, and that is the best possible

E[m(X)] =
3∑

i=1

p(i)m(i) ≤
3∑

i=1

[
max

i
p(i)

]
m(i)

=

[
max

i
p(i)

] 3∑
i=1

p(i) =

[
max

i
p(i)

]
.

Incidentally, the value
B = argmax

i
p(i)

is often called the best guess or mode for a multiple choice question.

Eliciting probabilities Knowing the best guess is useful, but does not tell as
much as what you know about the answer to a question as the entire probability
distribution p. So consider, is there a choice of utility function U such that

argmax
m

E[U(m)] = p?

It turns out a risk averse utility function will elicit the correct probabilities.
Specifically, use

U(m) = ln(m(X))
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as the utility function.
This utility function is kind of weird. Since ln(1) = 0, and ln(m(X)) < 0 for

any m(X) < 1, the best value that can be scored for a question is 0, and most
scores will be negative!

Example 36
Consider m1 = (0.2, 0.5, 0.25, 0.25) from earlier, and p =
(0.5, 0.2, 0.15, 0.15). Then for U(m) = ln(m(X)),

E[U(m)] = E[ln(m(X))]

= (0.5) ln(0.2) + (0.2) ln(0.5) + (0.15) ln(0.25) + (0.15) ln(0.25)

= −1.359237.

Is it possible to do better? Suppose the true probabilities are written down as
the answer. What is the expected utility then? For m = p,

E[m(X)] = ln(0.5)(0.5) + ln(0.3)(0.3) + ln(0.15)(0.15) + ln(0.15)(0.15)

= −1.276901.

which is slightly better than before.
It turns out that it is not possible to do any better than using the correct proba-

bilities.

Fact 38
Let Ω be the set of positive probability vectors, so positive vectors
whose components add to 1. Let p > 0 be a probability vector on
outcomes. For m ∈ Ω and random variable X drawn according to p, let
U(m) = ln(m(X)). Then

argmax
m

E[U(m)] = p.

Proof. Proving this result means solving the following optimization problem:

maximize f(m) =
∑

i p(i) ln(m(i))

subject to g(m) = m1 + · · ·+mn = 1
(∀i)(mi > 0).

This has linear constraints but is not a linear program since the objective function∑
i ln(m(i))p(i) is not a linear function of the argumentm.
There is a bit of a difficulty here. The set Ω of feasible points is bounded but

not closed, since it only allows positive probability vectors. To get around this,
for ϵ > 0 let Ωϵ be points in Ω such that for all i, mi ≥ ϵ. Then Ωϵ is a closed
bounded set, and so it is possible to find the optimum value of f(m) subject to
g(m) = 0 by evaluating the objective function at the critical points and at the
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boundary. Because the constraint is an equality constraint, the critical points are
found using the method of Lagrange multipliers.
First, find the critical points. Both f and g have continuous first order partial

derivatives in the interior of Ωϵ, so the critical points satisfy:

∇f = λ∇g

for some nonzero λ. Here

∇f =

(
∂f

∂m1
, . . . ,

∂f

∂mn

)
=

(
p(1)

m(1)
, . . . ,

p(n)

m(n)

)
.

Similarly,
∇g = (1, 1, . . . , 1).

So a Lagrange multiplier critical point is any point where

p(1)

m(1)
= · · · = p(n)

m(n)
= λ.

These equations have a solution whenever p(i) = λm(i) for all i. Since this is
true for all i, adding these equations together gives

p(1) + · · ·+ p(n) = λ[m(1) + · · ·m(n)]⇒ 1 = λ.

Hence p = m is the only critical point, at which point

f(p) =
∑
i

p(i) ln(p(i)).

Second, consider the boundary. If m is on the boundary of m(i), there must be
an i with m(i) = ϵ. So that contributes p(i) ln(ϵ) to the overall sum. Because the
natural logarithm of values in [0, 1] are nonpositive,

∑
j ̸=i p(j) ln(m(j)) ≤ 0. So

f(m) ≤ p(i) ln(ϵ), and for ϵ sufficiently small, this is at most f(p).
Hence for ϵ below some threshold, f(p) is the maximum value of the nonlinear

program, and p is the unique argument which maximizes the objective function.

What this shows is that if your reward is based on the numbers you write on
the answers to a multiple choice question is the natural logarithm of the number
you put on the correct answer, then to maximize your expected score you should
put your true beliefs about the correct probability on each answer.

Problems

24.1 Suppose a user has p = (0.2, 0.2, 0.3, 0.3) for a four answer multiple
choice test question. Of the four choices, which maximizes the chance that
the answer is correct?
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24.2 Suppose a test taker has a belief that of three answers, answers 1 and 2 are
equally likely, and answer 3 is twice as likely as the others. What is the
chance that answer 3 is correct?

24.3 Suppose a user has p = (0.2, 0.2, 0.25, 0.35) for a four answer multiple
choice test question. The test taker is allowed to write a probability vector
(m1,m2,m3,m4) as the answer. If the reward for answering correctly is
U(mX) = mX , where X is the correct answer, then what is the choice of
probability vector m that maximizes the expected utility?

24.4 A test taker has beliefs of p = (0.4, 0.3, 0.3) for each of three answers
to a multiple choice test question. The test taker is allowed to write
a probability vector (m1,m2,m3,m4) as the answer. If the reward for
answering correctly isU(mX) = mX , whereX is the correct answer, then
what is the choice of probability vector m that maximizes the expected
utility?

24.5 Suppose a user has p = (0.2, 0.2, 0.25, 0.35) for a four answer multiple
choice test question. The test taker is allowed to write a probability vector
(m1,m2,m3,m4) as the answer. If the reward for answering correctly
is U(mX) = ln(mX), where X is the correct answer, then what is the
choice of probability vectorm that maximizes the expected utility?

24.6 A test take has beliefs of p = (0.4, 0.3, 0.3) for each of three answers
to a multiple choice test question. The test taker is allowed to write
a probability vector (m1,m2,m3,m4) as the answer. If the reward for
answering correctly is U(mX) = ln(mX), where X is the correct answer,
thenwhat is the choice of probability vectorm that maximizes the expected
utility?

24.7 Suppose the economy either does well, medium, or poorly next quarter.
An expert believes the chance of each outcome is 40%, 30%, and 30%
respectively. Let X be the true answer. Find the value of m ∈ [0, 1]3 that
maximizes E[Ui(m)], where

a) the utility function is

U1(m) = m(X),

b) or the utility function is

U2(m) = ln(m(X)).

24.8 A surgeon believes a patient will either recover completely with probability
15%, get to 80% function with probability 70%, and experience worse
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function with probability 5%. If the goal of a decision maker is to elicit
the true probabilities from the surgeon, what should the reward be for
predicting the correct outcome?

24.9 The set of points (x, y) such that x2 + y2 = 1 forms a closed, bounded set.
Find the maximum value of x+ y subject to x2 + y2 = 1 using Lagrange
multipliers.

24.10 The set of points (x, y) such that 2x2 + y2 = 1 forms a closed, bounded
set. Find the maximum value of x + 2y subject to 2x2 + y2 = 1 using
Lagrange multipliers.
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Shannon Entropy

Question of the Day

How much can randomly generated data be compressed?

Summary

• Shannon entropy is a numerical score of how much randomness (uncer-
tainty) there is in a discrete random variable X . The value of the Shannon
entropy is

H(X) = −E[log2(p(X))].

In chemistry entropy refers to the lack of information about particles in a gas or
other system. In mathematics, the entropy is the lack of information in a system.

For instance, sayX ∈ {1, 2, 3, 4} has probability vector (0, 1, 0, 0). ThenP(X =
2) = 1 and P(X ̸= 2) = 0. This is the maximum information a probability vector
can deliver, and the lowest amount of entropy.
Now suppose that my probability vector is (0.5, 0.2, 0.15, 0.15). Last time it

was shown that if the reward given to value X is

U(m) = ln(m(X)),

then an optimal choice of m is just exactly p. Of course, multiplying by a constant
c > 0 so

U(m) = c ln(m(X))

also forces the player to behave optimally. Recall that logarithms of different bases
only introduce a multiplicative constant into the function. For instance,

U(m) = log2(m(X)) = ln(m(X))/ ln(2).
203
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Becausem(X) ∈ [0, 1], log2(m(X)) ≤ 0. Given that a player plays optimally,
say that the negative of the average reward obtained is the entropy of the random
variable X .

Definition 98
The entropy (aka Shannon entropy aka information entropy) ofX
with probability vector p is

H(X) = −E[log2(p(X))].

Example 37
Let Y ∼ Bern(1/2). Then P(Y = 0) = P(Y = 1) = 1/2, and

H(X) = −[(1/2) log2(1/2) + (1/2) log2(1/2)]

= −[(1/2)(−1) + (1/2)(−1)] = 1.

Example 38
For X ∼ p = (0.5, 0.2, 0.15, 0.15), the average reward (playing opti-
mally) is about −1.276901 and there is no way to do better. Therefore
the entropy of X is about 1.276901.

Since 1.276901 is slightly higher than 1, X has more randomness in it than a
single fair coin flip. Say that X has roughly as much randomness as 1.276901 iid
fair coin flips.
For (0, 1, 0, 0) the average reward is 0, which is the best possible: since p(i) ∈

[0, 1] for all i, E[V ] ≤ 0.
For a discrete random variable, p(i) is the density of the random variable with

respect to counting measure. The definition of entropy can be generalized to
include arbitrary density functions.

Fact 39
For X ∈ {x1, x2, x3, . . . , xn}.

H(X) = −
n∑

i=1

p(xi) log2(p(xi)).

More generally, if X ∈ Ω has density fX with respect to measure µ,

H(X) = −
∫
Ω
log2(fX(s))fX(s) dµ.

Notation: What looks like a capital “H” letter is actually the capital of the Greek
letter eta, standing for entropy.
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Earlier, the entropy of a Bern(1/2) random variable was found to be 1. It turns
out that p = 1/2 in Bern(p) maximizes the entropy.

Fact 40
Let H(Bp) be the entropy of Bp ∼ Bern(p). Then argmaxH(Bp) =
1/2 andmaxH(Bp) = 1.

Proof. Using the product rule

[H(Bp)]
′ = − ln(p)− p/p+ ln(1− p) + (1− p)/(1− p) = ln((1− p)/p).

SoH(Bp) is increasing for (1− p)/p ≤ 1 and decreasing for (1− p)/p ≥ 1 which
gives a unique maximum at p = 1/2.

In other words, for a single bit, entropy is maximized when the distribution on
the bit is uniform.

25.1 Claude Shannon

Shannon is one of the more amazing mathematicians of the 20th century. He is
considered to have founded information theory with the 1948 paper “A Mathe-
matical Theory of Communication” which appeared in the Bell System Technical
Journal.
He was also one of the founders of what is now called Theoretical Computer

Science, when he proved that digital circuits could solve all the problems that
could solved using Boolean algebra (logic) for his Master’s thesis in 1937. At this
point computers were either analog (where states varied continuously) or digital
(taking on discrete states) and this was a major step forward in understanding the
capabilities of digital computers.

DuringWWII, he worked for Bell Labs on fire-control systems and cryptography.
That is when he became interested in understanding how to transmit information
when there is randomness laid on top of it.

A side-note: he also worked with Edward Thorp (who was noted for counting
cards at blackjack) to build a wearable computer capable of winning at roulette by
analyzing the wheel. Unfortunately, the wires from the computer to the speaker in
his ear kept breaking, so they never considered it a success. Today most casinos
ban the use of computers when gambling because of their efforts.

25.2 Compressing data

The Shannon entropy also limits howmuch data can be compressed. To understand
this, first consider an example. Digital computers work with bits (binary digits),
numbers that are either 0 or 1. Suppose the goal is to compress the set of bits
01110111. One way to do that is with a map. For instance, consider the map:

01 7→ 0, 11 7→ 1.
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Then the bit string 01110111 is mapped to 0101. Because the mapped string is
half the length of the original string, say this code compressed the data by a factor
of 2.
The reason the code was effective is that out of the possible two-bit outcomes
{00, 01, 10, 11}, only the two {01, 11} appeared in our string. Unfortunately, most
real messages would contain all four possible two bit strings. To handle this
situation, a more complicated code is needed. The map should be invertible. This
means that given any coded message there is a unique original message that would
have been mapped to that coded message.
For instance, consider the following code:

11→ 1

01→ 01

10→ 001

00→ 0001.

This map can be uniquely decoded. That means that given a coded sequence
100101001 there is a unique original sequence that would give that code. That
is because for each 1 in the coded message, there are either 0, 1, 2, or 3 zeros
before the previous 1 appears. And that number tells us if the decoded message
bits should be 11, 01, 10, or 00.
Is this a good code? Well, that depends on the message to be encoded. If the

original message contains lots of 11 subsequences, then it is a good code because
these only take 1 bit to encode. If the original contains lots of 00 subsequences,
then the code will be inefficient, as these subsequences require twice as many bits
to encode as the original string.

Let p be a probability vector over the outcomes (11,01,10,00). The expected
number of bits used by our code is

(1)p(1) + 2p(2) + 3p(3) + 4p(4).

So for vector (0.5, 0.2, 0.15, 0.15), our code uses on average 0.5+0.4+0.45+0.6 =
1.95 bits to encode 2 bits of information.

A natural question then arises. Given a sequence of bits X what is the best on
average that a code can do? Shannon answered this question in his 1948 paper.
As Shannon did, begin by setting up the idea of an alphabet and words formed

from the alphabet. For a set of letters A, use A∗ to denote the set of words formed
from those letters.
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Definition 99
LetA be a finite set called an alphabet. The elements of the alphabet are
called letters. Then aword is a vector of any length whose components
are all in A. That is,

A∗ = ∅ ∪A ∪A2 ∪A3 ∪ · · · .

For a word w ∈ A∗, the length of the word is the value i such that
w ∈ Ai.

For example if our alphabet is {a, b, c}, then a, bcabb, and ∅ are all words but
aaaaa · · · is not since it contains an infinite number of letters from our alphabet.
Given a code f that transforms the alphabet of A1 into a word in A2 (so f :

A1 → A∗
2), a natural question to ask is if f can be extended to a code on A∗

1 to A∗
2.

To do that, introduce the idea of concatenation.

Definition 100
Given words w = (w1, . . . , wn) and v = (v1, . . . , vm), the concate-
nation of the vectors, denoted w||v or con(w, v), is the single word
(w1, . . . , wn, v1, . . . , vm). This definition can be extended naturally to
the concatenation of a finite number of words.

Next comes the notion of a one-to-one (also called a 1-1) function.

Definition 101
Say that f : A→ B is a one-to-one function if for every b ∈ B there
exists an a ∈ A such that f(a) = b, and if f(a1) = f(a2) then a1 = a2.

If using a code on letters to create a code on words results in a one-to-one
function, then the code is uniquely decodable.

Definition 102
For finite alphabets A1 and A2, and given code f : A1 → A∗

2, and word
(a1, . . . , an) ∈ A∗

1, define

g(a1, . . . , an) = con(f(a1), f(a2), . . . , f(an)).

Say that f is uniquely decodable if g : A∗
1 → A∗

2 is a one-to-one
function.

For example, suppose A1 = {a, b, c, d}, f(a) = 1, f(b) = 01, f(c) = 10 and
f(d) = 11. Then g(aa) = 11 and g(d) = 11, so g is not a one to one function.
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Theorem 11 (Shannon source coding Theorem)
LetA1, A2 be two finite alphabets. Suppose thatX is a r.v. taking values
in A1, and f is any uniquely decodable code from A∗

1 to A∗
2. Let Sf be

the length of the word f(X). Then

H(X)

log2(#A2)
≤ E[Sf ].

Moreover, there exists a code f∗ such that

E(Sf∗) <
H(X)

log2(#A2)
+ 1.

For our example, the output words are {1}, {01}, {001}, {0001}. These are
elements of A∗

2, where A2 = {0, 1} are the letters that these words are formed
from. The probability distribution of the output is

p = (0.5, 0.3, 0.15, 0.15).

This gives

−
n∑

i=1

pi log2(pi) = 1.842179

Because#(A2) = 2 it holds that log2(#(A2)) = 1. So any code for the two-bits
problem must use at least 1.842179 bits on average. So our code that uses 1.95
bits on average is not bad!

25.3 Combining messages

Now suppose thatX is a random message and Y is a random message. How much
information/entropy is in the combined message (X,Y )?
Unsurprisingly, the information in two or more messages X and Y that are

independent random variables is the sum of the information stored in each message.

Fact 41
Suppose X1, X2, . . . , Xn are independent random variables. Then

H(X1, X2, . . . , Xn) = H(X1) +H(X2) +H(X3) + · · ·+H(Xn).

Proof. Recall that for independent random variables X1, . . . , Xn, the joint density
is the product of the individual densities. That is,

fX1,...,Xn(s1, . . . , sn) =
n∏

i=1

fXi(si).
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Taking the log base 2 of both sides gives

log2(fX1,...,Xn(s1, . . . , sn)) =
n∑

i=1

log2(fXi(si)).

Setting si to Xi and taking the negative expectation gives:

−E[log2(fX1,...,Xn(X1, . . . , Xn))] = −E
[

n∑
i=1

log2(fXi(Xi))

]
.

Using linearity of expected value complete the proof.

So what does that mean for the highest entropy state? Well, for a single bit the
highest entropy state is uniform. Therefore, for an iid stream of random bits, the
highest entropy state will also be uniform.

Fact 42
For a finite set A, the highest entropy distribution on A is the uniform
distribution.

Proof. LetX be a random variable over A. Suppose P(X = a) ̸= P(X = b). Then
−x ln(x) is a strictly concave function in (0, 1]. So creating a new random variable
with the same probabilities as X but with P(X ′ = a) = P(X ′ = b) = (P(X =
a)+P(X = b))/2 has a strictly greater entropy thanX . That means that ifX has
maximum entropy, then all the probabilities must be equal.

Problems

25.1 What is log2(1/8)?

25.2 What is − log2(1/64)?

25.3 True or false: The Shannon entropy is always nonnegative.

25.4 Prove that X ∼ Bern(p) and Y ∼ Bern(1 − p) have the same Shannon
entropy.

25.5 What is the Shannon entropy of X ∼ Unif({0, 1})?

25.6 What is the Shannon entropy of X ∼ Unif({0, 1, 2, 3})?

25.7 Consider the code from {a, b, c} to {0, 01, 10} defined as

f(a) = 0, f(b) = 01, f(c) = 10.

Is f uniquely encodable?
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25.8 Show that the code generated by

11→ 1

01→ 01

10→ 001

00→ 011.

is not uniquely encodable.

25.9 Suppose X1, . . . , Xn are iid Bern(0.7). For a given code/compression
scheme, what is the minimum number of bits on average needed to encode
a length n sequence?

25.10 Suppose Y1, . . . , Yn are iid Bern(0.3). For a given coding, what is the
minimum number of bits on average needed to encode a lengthn sequence?
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Game Theory
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Chapter 26

Introduction to Game Theory

Question of the Day

Suppose you are randomly paired with another student in the class. Each of you
secretly writes down either α or β. The payoffs are as follows:

• If you put α, other β, you get an A, other gets a C .

• If both put α, both get B−.

• If you put β, other α, you get C , other gets a A.

• If both put β, both get B+.

What should a rational person do?

Summary

• Game Theory involves decision making when games are not being played
against nature, but rather against another opponent who is also trying to
make decisions to maximize their utility.

Decision theory presents various ways of making optimal decisions given partial
information. Decision theory can be viewed as a contest between the player and
the state of nature. This state of nature is random (not totally known) but is not
inherently antagonistic towards the player.

In game theory, there are two or more players that are each trying to maximize
their own utility by individually making decisions. Players do not know the
decisions that other players are making. Often, this gives the players a chance to
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cooperate with each other and each achieve higher rewards, or compete against the
other player and cost utility for all.

As with decision theory, often there is a function that reveals the payoff to each
player based on the decision each player makes. For n players, this function takes
n inputs (the actions for each player) and returns n outputs (the payoff for each
player).

When n = 2, this can be written in the form of a payoff matrix where the entries
are 2-tuples. For the question of the day, this payoff is as follows.

other
α β

me α (B−, B−) (A,C)
β (C,A) (B+, B+)

Another way of describing the actions is that the two players can either work
together, or each can try to undercut the other player.

Competition Suppose everyone is out for themselves, and always tries to un-
dercut their opponent. Assuming that the grades are ranked A > B+ > B− > C ,
the utility assigned to the grades might be

u(A) = 3, u(B+) = 1, u(B−) = 0, u(C) = −1.

This would make the payoff matrix

other
α β

me α (0, 0) (3,−1)
β (−1, 3) (1, 1)

What should I choose if I am out for myself? Consider the options

• If the other player chooses α and I choose α then I get 0. If I swap on my
own to β I get −1 and do worse.

• If the other player chooses β and I choose α get 3. If I swap on my own to β
I get 1 and do worse.

• In either case, choosing α gives a better payoff for me than β!

This makes choosing α a dominating strategy. No matter what the other player
does, if I choose α I will do better.

That means that everyone pursuing a policy of local rationality chooses α, and
suffers for it. Here (β, β) would be better for both players, but the players will not
get there without effort. The economics term for this is that the payoff matrix is
Pareto inefficient.
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This payoff matrix is fairly famous and has been given a name. It is known as
the Prisoner’s dilemma (Flood & Dresher at RAND in 1950)
In the original, story, two criminals are taken prisoner. Each can talk or stay

silent. If both stay silent then each serves 1 year. If one talks and the other keeps
silent, then the talker is freed, and the other serves 3 years. If both talk, then both
serve 2 years. In this setup, the dominant strategy for each is for both to talk.

Cooperation The alternative of cooperation makes more sense. But does it
happen?

Well, psychologists have run this test, and it turns out that people will cooperate
much more often than might be predicted by self-interest. One theory for why this
happens is the notion of empathy.
Suppose that each player not only cares about their own grade but also they

want their fellow players to do well. This effectively changes the payoff matrix.
Suppose that if a player gets A while other gets C , guilt changes their overall

reward to -1. The payoff matrix becomes:

other
α β

me α (0, 0) (−1,−1)
β (−1,−1) (1, 1)

Unlike earlier, now there is no dominating strategy. If other picks α, best choice
α. If other picks β, best choice β.
That is not enough to guarantee that they pick the global optimum, but it is a

good start.

Selflessness The notion of selflessness goes a bit further than empathy. With
selflessness, a player will be happy for the other player when they receive a
desirable result. The payoffs for such players could be as follows.

other
α β

me α (0, 0) (−1, 3)
β (3,−1) (1, 1)

Now β is a dominating strategy: it’s better no matter what the other player chooses.
If everyone thinks this way, leads to taking the best solution! In experiments, about
30% of participants choose β.

So empathy and selflessness are not just about being good people, these traits
actually can help society as a whole make decisions that are better overall!

Problems

26.1 True or false: Decision theory can be used to analyze two-person games.
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26.2 True or false: Game theory can be used to analyze two-person games.

26.3 True or false: In the Prisoner’s Dilemma, cooperation can be undermined
by self-interest.

26.4 True or false: In the Prisoner’s Dilemma, cooperation can be enhanced by
selflessness.

26.5 Suppose that 3 players are making decisions that affect the payoff. The
payoff function has how many inputs?

26.6 Fill in the blank. Suppose that 3 players are making decisions that affect
the payoff. The payoff will then be a -tuple?

26.7 Consider the following payoffmatrix, where each of two players is deciding
between strategies a1 and a2.

Player 1
a1 a2

Player 2 a1 (0,−1) (4,−2)
a2 (−3, 4) (3, 2)

a) If Player 1 is self-interested, what decision will they make?
b) If Player 2 is self-interested, what decision will they make?

26.8 Consider the following payoffmatrix, where each of two players is deciding
between strategies a1 and a2.

Player 1
a1 a2

Player 2 a1 (2, 0) (2,−2)
a2 (1, 3) (0, 1)

a) If Player 1 is self-interested, what decision will they make?
b) If Player 2 is self-interested, what decision will they make?



Chapter 27

Two person zero sum games

Question of the Day

In the game of Rock, Paper, Scissors, two players each shake their hands then throw
either Rock, Paper, or Scissors. The winner is then determined using Rock beats
Scissors, Paper beats Rock, and Scissors beats Paper.

The outcomes of this game can be represented by a payoff matrix. The entry in
row i and column j has payoff (a, b). This means that if Player I makes decision i
and Player II makes decision j then Player I wins a and Player II wins b.

Player II
r p s

r (0, 0) (−1, 1) (1,−1)
Player I p (1,−1) (0, 0) (−1, 1)

s (−1, 1) (1,−1) (0, 0)

What is the best strategy for players to use?

217



218 CHAPTER 27. TWO PERSON ZERO SUM GAMES

Summary

• In a zero sum game, the outcomes (a, b) all satisfy a+ b = 0. So in a two
person zero sum game, it is like Player II is giving a dollars to Player I.

• The Minimax Theorem states that every finite two person zero sum game
has a value V . There is a mixed strategy for Player I such that they earn on
average at V payoff regardless of what Player II does, and a mixed strategy
for Player II such that II loses on average V payoff regardless of what Player
I does.

27.1 Zero sum games

A particular type of game is when the payoffs earned by the players must sum to
zero. For one player to receive a positive payoff, another player must receive a
negative payoff.

Definition 103
In a zero sum game with n players, the outcome (a1, a2, . . . , an) all
satisfy a1 + · · ·+ an = 0.

Example 39
Consider the Odd-Even game where two participants play. The first
player chooses an integer, and so does the other player. If the sum of
the numbers picked is even, the first player pays the second one dollar,
otherwise, the second player pays the first one dollar.
The payoff matrix can be written as

Player II
odd even

Player I odd (−1, 1) (1,−1)
even (1,−1) (−1, 1)

If I play this game a lot of times in a row, and I always pick odd, then after a
while my opponent will figure out my strategy and I will always lose. Using a
random (mixed) strategy can help!
Note that if I pick even or odd as my strategy, each with 50% probability, then

no matter what strategy my opponent uses, the average payoff for myself will be 0.
Also, the average payoff for my opponent will be 0. Say that the value of the game
is 0.
On the other hand, the opponent could do the same thing, in which case no

matter what strategy I employ, the expected return will be 0.
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This is not a coincidence! In general, for these types of games there is always
a random strategy for Player I that no matter what Player II does, the expected
return has at least value V . Similarly, there is a random strategy for Player II such
that no matter what Player I does the expected return is at most the same value V .
This value V is called the value of the game.

Other common games similar to this are Rock, Paper, Scissors, and the more
complicated game of Rock, Paper, Scissors, Lizard, Spock invented by Sam Kass
and Karen Bryla.
Note that for two person zero sum games, it is not necessary to specify the

payoff in the form (a1, a2), because it is always the case that a2 = −a1.

Definition 104
A two person zero sum game is said to be in strategic form (akanormal
form) if it is a triple (X,Y,A) where

1. X is the nonempty set of strategies for Player I.

2. Y is the nonempty set of strategies for Player II.

3. A : (X × Y )→ R is the payoff function.

The game then proceeds as follows.

• Player I and Player II both choose their action simultaneously. Say Player I
chooses x ∈ X and Player II chooses y ∈ Y .

• Player II then pays A(x, y) utility to Player I.

How to optimize mixed strategies Consider a game where each player holds
either 1 or 2 fingers behind their back, and then brings out their arm at the same
time. Then

X = {1, 2}
Y = {1, 2}.

The payoff matrix is

Player II
1 2

Player I 1 −2 4
2 3 −5

Optimizing Player I’s strategy The question to answer is: Does one side have
an advantage in this game? First, consider the expected payoff if Player I plays
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strategy 1 with probability 3/5. This expected payoff depends on the strategy used
by Player II. That is,

II plays 1 : (3/5)(−2) + (2/5)(3) = 0

II plays 2 : (3/5)(4) + (2/5)(−5) = 2/5

This is a strategy where Player I never loses utility to Player II (on average), but
can Player I do better?
Player I’s mixed strategy can be fully described by a single parameter p equal

to the probability that Player I plays strategy 1. If this occurs, then the expected
payoff depends on the strategy played by Player II:

II plays 1 : p(−2) + (1− p)(3) = 3− 5p

II plays 2 : p(4) + (1− p)(−5) = 9p− 5

So if II plays 1, then Player I wants to make p small, but if II plays 2, then Player
I wants to make p large.
There is a unique value p in [0, 1] where these two lines cross. That is, there

is a unique value p such that no matter what strategy Player II uses, the average
amount given from Player II to Player I is the same.

3− 5p = 9p− 5⇒ p = 8/14.

Therefore, the optimal strategy for Player I is to use action 1 with probability
8/14, and otherwise use strategy 2. This returns an expected value of

3− 5

(
8

14

)
= 9

(
8

14

)
− 5 = 2/14 = 0.1428 . . . .

So on average, Player I wins 1/7 utility from Player II.

Optimizing Player II’s strategy The same technique can be applied to optimize
Player II’s strategy. Let q be the probability that Player II plays strategy 1.

I plays 1 : q(−2) + (1− q)(4) = 4− 6q

I plays 2 : q(3) + (1− q)(−5) = 8q − 5

Setting these two the same gives

4− 6q = 8q − 5⇒ q = 9/14,

and leads to an expected payoff of

−2(9/14) + 4(5/14) = 3(9/14)− 5(5/14) = 2/14 = 1/7.



27.1. ZERO SUM GAMES 221

If Player II uses their optimal strategy, then they can limit how much they
transfer to Player I to 1/7 on average. This seems a remarkable coincidence! By
playing as best they can, both players can get a payoff from Player II to Player I of
1/7, regardless of what the other player does!

It turns out this is not a coincidence! There will always be a random choice
of action for Player I and a random choice of action for Player II such that the
expected payoff is the same regardless of the other player’s strategy! This common
payoff is called the value of the game.

Terminology To make this a bit more precise, refer to elements of X or Y as
actions, or pure strategies. Mixing these pure strategies together gives a mixed
strategy.

Definition 105
A random variable over a set of strategiesX is called amixed strategy.

The Minimax Theorem states that the best mixed strategy for Player I has the
same expected rewards as the best mixed strategy for Player II.

Theorem 12 (The Minimax Theorem [vonneumann1928])
For every finite two person zero sum game

1. There is a number V called the value of the game.

2. There is a mixed strategy for Player I such that Player I wins on
average V regardless of what Player II does.

3. There is a mixed strategy for Player II such that II loses average
V regardless of what Player I does.

Example 40
In the Question of the Day, the strategy (1/3, 1/3, 1/3) for both Player
I and II leads to a value of 0. Hence these are the best strategies to use.

The value V tells us whether Player I is on average winning, Player II is on
average winning, or if the game is fair.
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Definition 106
Consider a two person zero sum game with value V .

• If V = 0, then the game is fair.

• If V > 0, then the game favors Player I.

• If V < 0, then the game favors Player II.

Example 41
Change the Odd-Even payoff matrix again so that A(1, 2) = 2 (call the
odd strategy 1, and the even strategy 2):

Player II
1 2

Player I 1 −2 2
2 3 −4

What is the value of this game?

Answer

• Can analyze from either Player I or Player II perspective.

• Say Player I plays strategy 1 with probability pI and strategy 2
with probability pII .

• Player I:

II plays 1 : pI(−2) + (1− pI)(3) = 3− 5pI

II plays 2 : pI(2) + (1− pI)(−4) = 6pI − 4

• Setting them equal gives: 3− 5pI = 6pI − 4⇒ p = 7/11

• This makes the value V = 3− 5(7/11) = −2/11

This value could also have been found from Player II’s perspective.

• From Player II’s point of view:

I plays 1 : pII(−2) + (1− pII)(2) = 2− 4pII

I plays 2 : pII(3) + (1− pII)(−4) = 7pII − 4
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• So 2− 4pII = 7pII − 4⇒ p = 6/11

• So the value is V = 7(6/11)− 4 = −2/11

• Same value as above! (As guaranteed by the Minimax Theorem)

Relation to linear programming

It turns out that the minimax theorem is a special case of a much bigger theorem
called linear programming duality. Here the examples were for games in which
each player has only two decisions to keep things simple. The same result applies
when Player I has n decisions, and Player II has m decisions for any positive
integers n andm.

In this case, to find the optimal value of the game, the method of linear program-
ming can be used.

Problems

27.1 Fill in the blank: If the outcomes of a game all satisfy for entry

(a1, a2, . . . , an)

that
a1 + a2 + · · ·+ an = 0,

call it a(n) game.

27.2 Fill in the blank: if a player chooses which strategy to use according to a
probability distribution, this is a(n) strategy.

27.3 Consider a zero-sum game with payoff matrix:

Player II
a b

Player I a −6 2
b 4 −3

Answer the following questions about the strategic form of this two person
zero sum game.

a) What is X?
b) What is Y ?
c) What is the payoff function A?

27.4 Consider the zero-sum game with entries
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Player II
1 2

Player I 1 −5 5
2 5 −5

Answer the following questions about the strategic form of this two person
zero sum game.

a) What is X?
b) What is Y ?
c) What is the payoff function A?

27.5 Consider the zero-sum game with entries

Player II
1 2

Player I 1 −5 5
2 5 −5

If Player I plays strategy 1 with probability 40% and strategy 2 with
probability 60%, then what strategy should Player II use to maximize
expected utility for Player II?

27.6 Consider the zero-sum game with entries

Player II
a b

Player I a −6 2
b 4 −3

If Player II flips a fair coin to decide which strategy to play, what strategy
should Player I play to maximize expected utility?

27.7 Consider the game with entries

Player II
1 2

Player I 1 −5 5
2 5 −5

What is the value of this game?

27.8 Consider the game with entries
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Player II
1 2

Player I 1 −10 10
2 10 −10

What is the value of this game?





Chapter 28

Nash Equilibria

Question of the Day

Is there an optimal mixed strategy when dealing with 3 or more players? How
about for non zero sum games?

Summary

• For games that are not zero sum or zero sum games with 3 or more players,
there is no guarantee that a single strategy is the right option.

• There will exist, however, at least oneNash equilibrium, which is a strategy
for each player that is locally stable, whichmeans that none of the players can
change their strategy unilaterally without reducing their expected payoff.

When dealing with a two person, zero sum game, there will be a unique value
of the game V . Player I will have an optimal strategy such that when played, the
expected payoff to Player I is V regardless of the strategy employed by Player II.
Similarly, there is an optimal strategy for Player II such that when played, the

expected payoff to Player I is V regardless of the strategy used by Player I. However,
if the game is not zero sum, or if there are three or more players, there is no such
value for the game. Instead, the best that can be done is a weaker result.
To begin, consider the strategic form when there are three or more play-

ers.

Definition 107
The strategic form (aka normal form) for an n-player game is G =
(S1, . . . , Sn, u1, . . . , un) where Si is the set of strategies for player i,
and ui : (S1× · · ·Sn)→ R tells the payoff for player i given the choice
of strategies from all the players.
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As usual, assume each player is trying to maximize their expected utility. Con-
sider the following game:

Player 2
a b

Player 1 a (1, 2) (0, 0)
b (0, 0) (2, 1)

For this payoff table, no pure strategy for either Player 1 or 2 is dominant. On
the other hand, there are strategies where once used, neither player can switch
strategies without lowering their payoff.

• For strategy (a, a), neither can switch without lowering their payoff.

• For strategy (b, b), neither can switch without lowering their payoff.

• Call strategies (a, a) and (b, b) that have this property Nash equilibria.

Now look at the following game

Player 2
a b

Player 1 a (1, 2) (4, 0)
b (3, 0) (2, 1)

From any pure strategy, some player wants to switch. This means that no pure
strategies are Nash equilibria. To achieve a Nash equilibrium one or both of the
players will have to randomly decide which strategy to play.
Recall that a probability distribution over a set of strategies is called a mixed

strategy.

Notation

• Let σi be the mixed strategy played by player i.

• Let σ−i = (σ1, . . . , σi−1, σi+1, . . . , σn) be the mixed strategies played by
every player other than i.

• Let ui(σ1, . . . , σn) be the expected payoff for Player iwhen each player uses
mixed strategy σi.

Definition 108
A strategy σ is a Nash equilibrium if for all i

ui(σ) = max
σ′
i

ui(σ
′
i, σ−i).
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In other words, a set of mixed strategies is a Nash equilibrium if changing one
player’s mixed strategy leads to a lower expected payoff for that person.

Theorem 13 (Nash 1951 [nash1951])
Any finite game has at least one Nash equilibrium.

The proof uses Kakutani’s fixed point theorem from analysis, and is beyond the
scope of this course.

Another way to say it is that at the Nash equilibrium, every player is insensitive
to changes in strategy. This is illustrated in the following example.

Example 42
Consider again the payoff matrix:

Player 2
a b

Player 1 a (1, 2) (4, 0)
b (3, 0) (2, 1)

Show that no pure strategy by the players is a Nash equilibrium.

Answer There are four pure strategies.

• From (a, a) (so Player 1 plays a and Player 2 plays a), Player 1
would do better by moving to strategy b.

• From (a, b), Player 2 does better to move to strategy a.

• From (b, a), Player 2 does better to move to strategy b.

• From (b, b), Player 1 does better to move to strategy a.

So none of the four pure strategies can be a Nash equilibrium.

Despite no pure strategies being a Nash equilibrium, there are mixed strategies
that use randomness that form a Nash equilibrium.
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Example 43
Consider the payoff matrix from the last example. Find the Nash equi-
librium.

Answer Say Player 1 uses a mixed strategy where a is played with
probability p. Then the expected payoff for Player 2 depends on whether
or not Player 2 plays a or b:

E[Payoff for Player 2|Player 2 plays a] = 2p+ 0(1− p)

E[Payoff for Player 2|Player 2 plays b] = 0p+ 1(1− p)

The first expression is increasing in p, and the second is decreasing in
p. Suppose Player 1 chooses p in order to make these expected returns
equal.

2p = 1− p⇒ 3p = 1⇒ p = 1/3.

When Player 1 plays a with probability 1/3, then no matter what strat-
egy Player 2 uses (random or deterministic), Player 2 has the same
expected return. But two can play at that game (so to speak)!
Suppose Player 2 plays a with probability q and b with probability

1− q.

E[Payoff for Player 1|Player 1 plays a] = 1q + 4(1− q)

E[Payoff for Player 1|Player 1 plays b] = 3q + 2(1− q)

Choosing q to make these expected returns equal:

1q + 4− 4q = 3q + 2− 2q ⇒ 2 = 4q ⇒ q = 1/2.

So a Nash equilibium is:

((1/3, 2/3), (1/2, 1/2))

Problems

28.1 If a Player has a 50% chance of playing a, and a 50% chance of playing b,
this is what type of strategy?

28.2 If a Player always chooses option c, this is what type of strategy?

28.3 Consider the following payoff matrix.
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Player 2
a b c

Player 1 a (−3,−4) (−1, 2) (2,−3)
b (−1, 2) (3,−2) (0, 0)

Show that this is not a zero sum game.

28.4 Consider the following playoff matrix.

Player 2
a b

Player 1
a (6, 4) (5, 5)
b (3, 4) (7, 1)
c (8, 2) (3, 4)

Show that this is not a zero sum game.

28.5 Consider the following payoff matrix.

Player 2
a b c

Player 1 a (−3,−4) (−1, 2) (2,−3)
b (−1, 2) (3,−2) (0, 0)

Show that no pure strategies for the players form a Nash equilibrium.

28.6 Consider the following playoff matrix.

Player 2
a b

Player 1 a (6, 4) (5, 5)
b (3, 4) (7, 1)
c (8, 2) (3, 4)

Show that no pure strategy for the players is also a Nash equilibrium.

28.7 Consider the following payoff matrix.

Player 2
a b

Player 1 a (−2,−3) (2, 2)
b (1, 1) (0, 0)

Find three Nash equilibria.
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28.8 Consider the following playoff matrix.

Player 2
a b

Player 1 a (6, 4) (5, 5)
b (3, 4) (7, 1)

Find the Nash equilibrium (or equilibria).
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Chapter 29

Randomized Algorithms

Question of the Day

Suppose that at least one element of an array of n elements has value a. What is
the fastest way to find such an element?

Summary

• Randomized algorithms are allowed to make random choices of which
step to take next.

• One type of randomized algorithm is a Monte Carlo algorithm, where the
output is itself a random variable.

• Another type of randomized algorithm is a Las Vegas algorithm, where
the number of steps taken by the algorithm is a random variable.

• Big-O, Big-Omegea, Big-Theta, and little-o notation give an idea of how
a function grows as the size of its input grows.

In decision theory, the user strategizes as though they are playing against an
adversary. Usually, the best approach in this situation is to make random decisions.
This enabled the expected return to be optimized. It turns out that even when
our “adversary” is not another person, but a fixed set of data, it also helps to apply
random choices!
When randomness is intentionally introduced into an algorithm, it is (unsur-

prisingly) called a randomized algorithm.
235



236 CHAPTER 29. RANDOMIZED ALGORITHMS

Definition 109
A randomized algorithm is an algorithm that can take steps based on
the value of one or more random variables.

In general, the assignment of values to a random variable in a randomized
algorithm is taken to be independent during each run of the algorithm. That means
that two runs of the same algorithm might generate different values. Another way
of saying this is that the output of the algorithm is itself a random variable!

Definition 110
A Monte Carlo algorithm has output that is a nontrivial random vari-
able.

An early user of Monte Carlo algorithms was Stanislaw Ulam, who advocated
for their use during the Manhattan Project, the United States effort to build an
atomic bomb. His friend Nicholas Metropolis knew that Stanislaw liked to gamble:
and so he jokingly called them Monte Carlo algorithms after the famous casino in
Monte Carlo, Monaco.
In the question of the day, the goal is not to have a random result. Instead, the

goal is the correct result, but it is possible to use a random number of steps to get
it. An algorithm like this is named after another famous location for gambling.

Definition 111
A randomized algorithm whose result is always a deterministic function
of the input is a Las Vegas algorithm.

For the question of the day, a Las Vegas type of algorithm is what is needed. The
next chapter will explore more general Monte Carlo algorithms and what they are
capable of.

29.1 Deterministic and random search

Consider the question of the day. The input is an array of n elements. That means
any number from 1 to n can be passed to the computer and the computer will
return the value of the array at that position. The goal is to search for a value
known to appear somewhere in the array.
One simple approach is just to query each of the values of the array in order

until the value is found. Pseudocode for this approach might use a for loop.

Deterministic_search Input: Array x, Value a

1) For i from 1 to n
2) If x(i) = a then return i

In order to analyze the running time of such an algorithm, computer scientists
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use two common approaches, the average time and the worse-case time. The worst-
case time assumes that the data is chosen as badly as possible to make the number
of steps used by the algorithm as many as possible. For this algorithm, the worst
thing that can happen is to make x(n) = a and x(i) ̸= a for all i < n. Then the
algorithm has to check n different values of the array in order to find one with
value a.

Now suppose that instead of starting at 1, start with a random number drawn
uniformly from 1 to n. Then search the array in order as before. After reaching
the final element of the array, wrap around and start searching from the beginning
again.

Random_search Input: Array x, Value a

1) Draw X uniformly from 1 to n
2) For i from X to n
3) If x(i) = a then return i
4) For i from 1 to X − 1
5) If x(i) = a then return i

On average, this approach uses half as many elements as a deterministic search.

Lemma 1
Let T denote the number of elements of x accessed by Random_search.
Then E[T ] = (n+ 1)/2.

Proof. Suppose x(j) = a. Then ifX ≤ j, then the number of elements searched is
j −X + 1. If X > j, then the number of elements searched is n−X + 1 + j.

E[T ] = E[(j −X + 1)1(X ≤ j) + (n−X + 1 + j)1(X > j)]

= E[j −X + 1 + n1(X > j)]

= j − n+ 1

2
+ 1 + n

(
1− j

n

)
= j − n+ 1

2
+ 1 + n− j

=
n+ 1

2
.

29.2 Measuring running time

For randomized search, E[T ] = (n+1)/2. For this notation to make sense, really T
should be dependent on n, so E[T (n)] = (n+ 1)/2. Usually, the input parameters
that T is dependent on are clear from the context of the algorithm, and so are
omitted in practice.
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In this case, the algorithm only saved a factor of 2 by using randomness, but often
it is possible to save more than a constant factor. Sometimes using randomness can
save a factor that depends on n itself. In analyzing the running time of algorithms,
often the lower order terms do not matter.
For example, suppose an algorithm runs in 4n3 + n2 steps. For n = 100,

4n3 = 4, 000, 000 and n2 = 10, 000. The n2 is small relative to the 4n2. It
becomes even smaller in relative terms the larger n is. That makes n2 a lower
order term compared to 4n3 in this example.

Order notation is designed to ignore these lower order terms. Technically, order
notation defines sets of functions. For a function g, the four most commonly used
sets are O(g(n)), Ω(g(n)), Θ(g(n)), and o(g(n)).

Definition 112
Say that f(n) ∈ O(g(n)) if

(∃C)(∃N)(∀n ≥ N)(f(n) ≤ Cg(n)).

Example 44
Show that n2 + 10n ∈ O(n2).

Proof Let C = 20 and N = 1. Let n ≥ N = 1. Then

20n2 = 10n2 + 10n2 ≥ n2 + 10n.

This is often called Big-O notation. If f(n) ∈ O(g(n)) this means that as n gets
large, g(n) dominates f(n) when constant factors are ignored. Note that we could
have also shown that n2 + 10 ∈ O(n3). Making the function inside the Big-O
bigger does not change the truth of the statement, it just makes the statement less
useful.
Constants do not matter in Big-O notation.

Lemma 2
If f(n) ∈ O(g(n)), then for any c1, c2 ∈ R, c1f(n) ∈ O(c2g(n)).

There is also a corresponding lower bound notation: Big-Omega.

Definition 113
Say that f(n) ∈ Ω(g(n)) if

(∃C)(∃N)(∀n ≥ N)(f(n) ≥ Cg(n)).
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Example 45
Show that n2 + 10n ∈ Ω(n2).

Proof Using N = 1 and C = 1, let n ≥ 1. Then n2 + 10n ≥ n2.

When we have a function that is both Big-O and Big-Omega of a function, then
it is Big-Theta.

Definition 114
If f(n) ∈ O(g(n)) ∩ Ω(g(n)), then f(n) ∈ Θ(g(n)).

There’s one more order notation that is used, and that is little-o. Little-O (like
Big-O) is an upper bound, but it is an upper bound that is known to be too weak.
In other words, the function is growing more slowly than the function inside the
little o.

Definition 115
Say that f(n) ∈ o(g(n)) if

(∀C > 0)(∃N)(∀n ≤ N)(f(n) ≤ Cg(n)).

Note the difference between Little-o and Big-O: in Little-o the rest of the state-
ment works for any constant bigger than 0, for Big-O there only needs to be some
constant. Hence O(g(n)) ⊆ o(g(n)).
Often it is easier to determine function order using limits.

Lemma 3
Suppose f(n) and g(n) are functions such that

lim
n→∞

f(n)

g(n)
= L.

1. If L <∞ then f(n) ∈ O(g(n)).

2. If L = 0 then f(n) ∈ o(g(n)).

3. If L > 0 then f(n) ∈ Ω(g(n)).

4. If L ∈ (0,∞) then f(n) ∈ Θ(g(n)).

Notation 5
When using order notation the equals sign = is often substituted for set
inclusion, ∈.
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Example 46
We write things like n3 = n2 +O(n3) and n2 + 10n = Ω(n2).

For the question of the day, both the deterministic and random search use Θ(n)
steps. The next chapter examines an algorithm where randomness does not just
improve the constant but changes the order of the number of steps needed.

Problems

29.1 An algorithm with a random output is a algorithm.

29.2 An algorithm with a random running time is a algorithm.

29.3 Show that n3 + n2 ∈ O(n3) by explicitly finding C and n that satisfies
the definition.

29.4 Show that n3 + n2 ∈ Ω(n3) by explicitly finding C and n that satisfies
the definition.

29.5 Given that n3 + n2 ∈ O(n3) and n3 + n2 ∈ Ω(n3), what else can be said
about the order of n3 + n2?

29.6 If you prove that n ln(n)+n ∈ O(n ln(n)) and n ln(n)+n ∈ Ω(n ln(n)),
what else can you say about n ln(n)?

29.7 Show that 5n ∈ o(n ln(n)) by explicity finding an N value such that for
all C > 0 and n ≥ N , 5n ≤ n ln(n).

29.8 Show that n ∈ o(n2).

29.9 Suppose there is an array with n elements which contains value a in exactly
one position.
A randomized algorithm for finding where this value is located does the
following: choose uniformly at random a position from 1 up to n. Search
that position. If found, quit. Otherwise, start over and independently
choose again until the value is found.
What is the expected number of steps needed to find the value?

29.10 Continuing the last problem, consider an array with n = 100.

a) What is the chance that the algorithm examines at most 50 positions
in the array?

b) What is the chance that the algorithm examines at least 150 positions
in the array?
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QuickSort and QuickSelect

Question of the Day

What is the fastest way to find the median of an array of values?

Summary

Assume that you have a set of n real values.

• The order statistics is an n-tuple of the values in sorted order.

• The samplemedian is the middle value of the order statistics (or the average
of the two middle values if there are an even number of values.)

• QuickSort is a randomized algorithm for sorting values that is widely used
in practice because it uses about 2n ln(n) comparisons to sort.

• QuickSelect is a randomized algorithm for finding a single order statistic
(or the sample median) that uses at most 4n comparisons.

30.1 Using QuickSelect to find the median

An important Las Vegas algorithm is QuickSelect, which is used to find the sample
median of a set of numerical data in an array. Roughly speaking, this is the middle
value of the array. Recall that ⌊a⌋ is the floor of a, which rounds a down to the
closest integer value, and ⌈a⌉ is the ceiling of a which rounds a up to the closest
integer value.
Given an array of values, the order statistics are a permutation of indices that

place the values in order. Parentheses around subscripts indicate order statistics.
That is, write x(k) for the kth order statistic. Then for an array of n items, x(1)
is the smallest value, and x(n) is the largest. Formally, this can be expressed as
follows.
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Definition 116
For an array x = (x(1), x(2), . . . , x(n)) of values, say that

x(1) ≤ x(2) ≤ · · · ≤ x(n)

are the order statistics of x if there exists a permutation σ such that
for all i ∈ {1, . . . , n},

x(i) = x(σ(i)).

For an odd sized array, the order statistic in the middle of the array values is the
sample median. For an even sized array, the arithmetic average of the two order
statistics closest to the middle is the sample median. This can be codified in the
following way.

Definition 117
For an array x with order statistics x(1), . . . , x(n), the sample median
is

m =
x(⌊(n+1)/2⌋) + x(⌈(n+1)/2⌉)

2
.

The sample median is also sometimes just called the median of the array.

One approach to finding the median is to first find the permutation σ that puts
the data in order, and then directly use the definition. Finding σ is known as sorting
the data, and in general takesΘ(n ln(n)) comparisons between objects. That ln(n)
factor is slowly growing, but for n = 106 it is almost 14. This makes it a significant
factor in the running time. Is there a way to avoid it?

For convenience in this section assume that all the values in the array are distinct.
If they are not, simply assign them a preference based on their original ordering.
So for example, if the original array was (1.1, 1.7, 1.7, 1.4), say that the value 1.7
in position 2 beats the value 1.7 in position 3 when it comes to sorting. (This is
also known as a stability criterion.)

30.2 QuickSort

One randomized algorithm for sorting is called QuickSort. This is a recursive
algorithm: it is allowed to call itself, possibly with different parameters. In the case
of QuickSort, it randomly selects a value of the array and sorts the array into two
pieces. The left piece consists of those values less than the selected value and the
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right piece consists of those values greater than or equal to the selected value.

QuickSort Input: Array x

1) Let n be the number of values in the array X
2) If n = 1, return x
3) Else
4) Choose I uniformly from 1 to n
5) Let ℓ and r be empty arrays
6) For i from 1 to n
7) If x(i) < x(I) then add x(i) to the end of ℓ
8) Else add x(i) to the end of r
9) ℓ′ ←QuickSort(ℓ)
10) r′ ←QuickSort(r)
11) Return the array (ℓ′, x(I), r′).

The running time of sorting algorithms can be measured by the number of
comparisions they make. In other words, for i and j, how many times do they
check if x(i) < x(j)? The number of comparisons turns out to be related to the
harmonic numbers.

Hn = 1 +
1

2
+

1

3
+ · · ·+ 1

n
.

Fact 43
Let T (n) be the number of comparisons used by QuickSort on an array
of n elements. Then

E[T ] = 2(n+ 1)Hn − 4n.

The proof will use two important ideas. To understand the first idea, suppose an
array has order statistics

3, 4, 8, 9, 11, 17.

Consider 4 and 11. If 8 is selected as a pivot, then 4 and 11 are each compared to
8, but they will never be compared to each other. This is because 4 is assigned to
the left hand side ℓ and 11 is assigned to the right hand side r, and they become
elements of different recursive calls.

If 17 is chosen as the pivot, then both 4 and 11 are sent to ℓ, and they still have
a chance of being compared to each other. Out of the elemnts 4, 8, 9, 11 if either 4
or 11 is chosen as a pivot, then 4 and 11 will be compared to each other, but if 8 or
9 is chosen they will not. Pivots keep getting chosen until one of 4, 8, 9, or 11 is
the pivot, so conditional on this happening, there is a 2/4 chance that they will be
compared.
For the ith order statistic x(i) and jth order statistic x(j), the chance that they

are compared is 2/|j− i+1| because out of the |j− i+1| elements in the interval
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bounded by x(i) and x(j), there are exactly two choices of pivot that lead to these
values being compared.

Now the stage is set for the proof of the running time of QuickSort.

Proof. LetBi,j be the indicator that values x(i) and x(j) are compared in QuickSort.
Then the total number of comparisons is

T =
∑

1≤i<j≤n

Bi,j ,

and by linearity of expectation

E[T ] =
∑

1≤i<j≤n

E[Bi,j ].

The mean of a random variable that is either 0 or 1 is just the probability that it
is 1, which is (as shown right before the proof)

2

j − i+ 1
.

That is,
E[T ] =

∑
1≤i<j≤n

2

j − i+ 1
.

There are n− 1 pairs where j − i = 1, n− 2 pairs where j − i = 2, and so on,
making,

E[T ] =
2(n− 1)

2
+

2(n− 2)

3
+

2(n− 3)

4
+ · · ·+ 2

n

= 2

[
n

2
− 1 +

1

2
+

n

3
− 1 +

1

3
+ · · ·+ n

n
− 1 +

1

n

]
= 2[n(Hn − 1)− n+Hn]

= 2(n+ 1)(Hn)− 4n.

The harmonic numbers Hn are close to ln(n).

Fact 44
The harmonic numbers satisfy

ln(n) + γ ≤ Hn ≤ ln(n) + 1,

where γ = 0.5772156649 . . . is called Euler’s constant.
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So the mean number of comparisons for QuickSort is about 2n ln(n).
Sorting can also be thought of as looking through permutations trying to find

the one that (when applied to the data) gives the order statistics. There are n! per-
mutations for n objects, and each comparison divides the number of permutations
in 2. Therefore, log2(n!) = lg(n!) comparisons are needed in general. Using Stir-
ling’s bounds to analyze lg(n!) gives that any algorithm that sorts by comparisons
must use an average of 1.44n ln(n) comparisons on randomly arranged data. So
QuickSort is pretty close to the best possible, at least on average.

30.3 QuickSelect

Back to the Question of the Day, is it possible to find the median in time faster
than Θ(n ln(n))? After all, a complete sorting of the data is not the goal, the goal
is merely to find the order statistic (or two order statistics for an even size array)
closest to the middle.
The answer is yes, it is possible to build an algorithm that finds the sample

median in O(n) time! It operates in a fashion somewhat similar to QuickSort.
Instead of sorting all the elements, first randomly pick a few elements, then only
sort those elements. To do this, the algorithm needs to be broader in scope. The
algorithm has two inputs: the array, and a value k. The output is then the kth
order statistic of the array.

QuickSelect Input: Array x, integer k

1) Let n be the number of elements in x
2) If n = k = 1 then return x(1)
3) Else
4) Draw I uniformly from 1 to n
5) For i from 1 to n
6) If x(i) < x(I) then add x(i) to the end of ℓ
7) Else add x(i) to the end of r
8) Let nℓ be the number of elements in ℓ
9) If k − 1 = nℓ, return x(I)
10) If k − 1 < nℓ, return(QuickSelect(ℓ, k))
11) If k − 1 > nℓ, return(QuickSelect(r, k − nℓ))

Let v be the output of the algorithm. Because of possible ties among the array
values, the number of indices with a value less than v might not be exactly k − 1,
but it is possible to say something similar.

Fact 45
QuickSelect(x, k) returns a value v such that x(k) = v.

Proof. Use strong induction on n. For the base case where n = 1, x(1) = x(1) so
the algorithm returns the correct value.
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Suppose the result holds for all values n′ ≤ n, now consider an array of size
n+ 1. If k = nℓ from the algorithm, then the output satisfies exactly k elements
of the array are at most the value nℓ. If k > nℓ, then there must be a sort of the
array where the first nℓ items are in ℓ. The new goal at this point is to find the kth
smallest item in this subarray which has size at most n.
Hence the recursive call in line 10 of the algorithm returns the correct value.

Similarly, if k > nℓ, then all the values in ℓ are strictly smaller than x(I), so the
new goal is to look for the k − nℓ smallest value in the rest of the array in r. Since
r also has size at most n, our induction hypothesis allows us to use the recursive
call in line 11 to finish the job.

So it works, but how long does it take to work?

Fact 46
Let T (n) denote the number of comparisons used byQuickSelect. Then

E[T (n)] ≤ 4n

Proof. Proceed by strong induction. When n = 1, the number of comparisons is 0,
so this case is satisfied.

Suppose now that the inequality holds up to n− 1, and consider an array with n
arguments. The goal is to find the kth smallest item. That means that k − 1 items
are smaller, and n− k items are larger.

kk − 1 values n− k values

Each call chooses I and then compares x(I) to the other elements. If I is
chosen such that exactly k − 1 values are less than x(I), then the total number of
comparisons is n because the algorithm terminates in one pass.
If k < nℓ (which happens with probability (n − k)/n), then some elements

are eliminated from the array. Note [nℓ|nℓ > k] ∼ Unif({k + 1, . . . , n}, and the
elements up to nℓ are kept. So on average

E[nℓ|nℓ > k] = (n+ k + 1)/2

elements of the array are left.
Similarly, if k > nℓ (which happens with probability (k − 1)/n), eliminate on

average
E[nℓ − 1|nℓ < k] = (k − 1 + 1)/2− 1

elements from the array. That leaves (on average) n+ 1− (k/2) elements.
Hence if E[T (i)] ≤ 4i for all i < n,

E[T (n)] ≤ n+ 4

[
n− k

n
· n+ k + 1

2
+

k − 1

n
· 2n− k + 2

2

]
.
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The right hand side is a quadratic equation in k, and so easy to maximize. The
largest the righthand side can be occurs at k = (n+ 1)/2, which gives,

E[T (n)] ≤ n+ 4

[
(3/2)n2 − 1

2n

]
≤ n(1 + 3) = 4n,

which completes the induction.

Hence the median of an array of n elements can be found in Θ(n) average time!

Floyd-Rivest

In QuickSelect only a single pivot was used, which led to our constant of 4. By
using more initial random values, it is possible to get an algorithm that to first
order only requires 1.5n comparisons on average to find the sample median. This
was introduced in 1975 by Floyd and Rivest and is now known as the Floyd-Rivest
algorithm.

Problems

30.1 Find the sample median of 8, 4, 4, 5, 3.

30.2 Find the sample median of 8, 4, 4, 5, 3, 10.

30.3 For x = (8, 4, 4, 5, 3), answer the following.

a) What would QuickSort(x) return?
b) What would QuickSelect(x, 2) return?
c) What would QuickSelect(x, 4) return?

30.4 For x = (13.5, 4.2,−1.7, 2.4), answer the following.

a) What would QuickSort(x) return?
b) What would QuickSelect(x, 2) return?
c) What would QuickSelect(x, 4) return?

30.5 Suppose E[T (n)] ≤ E[T (n−1)]+2 and E[T (0)] = 0. Prove by induction
that E[T (n)] ≤ 2n.

30.6 Suppose E[T (n)] ≤ E[T (n− 1)] + 1/n and E[T (0)] = 0.

a) Prove by induction that E[T (n)] ≤ Hn.
b) Prove that E[T (n)] ≤ ln(n).
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30.7 A recursive algorithm when presented with input of size n ≥ 2, makes
one call of size n− 1 and another of size n− 2. If the input is size 0 or 1,
then 1 operation is needed. Prove by strong induction that the running
time is at most αn where α = (1 +

√
5)/2.

30.8 A recursive algorithm when presented with input of size n ≥ 2, makes
one call of size n− 1 and two calls of size n− 2. If the input is size 0 or 1,
then 1 operation is needed. Prove by strong induction that the running
time is at most 2n.
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Randomized Verification

Question of the Day

Suppose A, B, and C are three n by n matrices with the claim that A · B = C .
Is it possible to verify the claim without again multiplying the matrices together
from scratch?

Summary

• It is generally faster to verify that a solution to a problem is correct than to
solve it from scratch.

• An example of this is matrix multiplication, which for an n by n matrix has
an O(n2) randomized verification algorithm. To solve from scratch takes
time O(n2.3728596...) (as of 2024).

• Freivald’s Algorithm returns true if the answer is correct, and if the answer
if false, then it returns false at least 50% of the time. Running the algorithm
independently multiple times can bring the failure probability as low as
desired.

31.1 Matrix multiplication

If you have learned some linear algebra, you have learned about the dot product of
two vectors in Rn.

249
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Definition 118
The dot product of two vectors x = (x1, . . . , xn) and y = (y1, . . . , yn)
where each yi ∈ R and each xj ∈ R is

x · y = x1y1 + · · ·xnyn =

n∑
i=1

xiyi.

Since the definition of the dot product involves nmultiplications and n additions,
the total number of arithmetic operations to calculate the dot product is O(n).
Calculating the dot product requires reading the vector x, and so it is also Ω(n).
Hence the running time is Θ(n).
An n by n real-valued matrix A is a table of numbers such that Aij refers to

the number in the ith row and the jth column. Multiply an n by n matrix times a
column vector as follows.

Definition 119
If A is a real-valued n by n matrix, and x is a column vector, then the
matrix-vector product is

Ax = y,

where y is also a column vector whose ith entry is the dot product of
the ith row of A and x.

To calculate a matrix-vector product, it is necessary to calculate n different dot
products. Therefore, finding a matrix-vector product requires O(n2) arithmetic
operations. It also requires reading A which contains n2 entries, so the time to
compute a matrix-vector product for general matrices is Θ(n2).
An n by n matrix B can be written as n column vectors.

B =

b1 b2 b3 · · · bn


Then each column of the matrix product AB has columns equal to the product

of A times the columns of B.

Definition 120
Let A and B be real-valued n by n matrices. Let bj denote the jth
column ofB. ThenC = AB is also an n by n real-valued matrix known
as the matrix product of A and B if the jth column of C is Abj for all
j ∈ {1, . . . , n}.
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Using the definition to calculate matrix multiplication of two n by n real-valued
matrices shows that matrix multiplication can be accomplished in O(n3) time.
Unlike the dot product and matrix-vector multiplication, the input size to matrix
multiplication is Ω(n2). So it is possible that better algorithms for matrix multipli-
cation than the definition will be found. In fact, there is an algorithm that runs in
O(n2.372...). So if the best possible matrix multiplication requires Θ(nω) time, the
best bounds (as of 2023) that are known are 2 ≤ ω ≤ 2.372 . . ..

31.2 Verification

Solving the matrix multiplication problem is still open, but how about the veri-
fication problem? In a verification problem, the algorithm is given the solution,
and the output is either true or false depending on whether or not the solution is
correct or incorrect. This is also known as a decision problem.

Definition 121
Let P be a proposition that takes input I ∈ I and returns either T or F.
Then the decision problem for P is to create an algorithmA such that

(∀I ∈ I)(A(I) = P(I)).

For example, the input set I might be the set of positive integers, and the
proposition something like “the number that is input is prime.“

Another way to say this is given a particular proposition, is there an algorithm
that determines for each input if the proposition is true or false? So far the question
of what is an algorithm has been set aside. Traditionally, this is done via the model
of digital computation called a Turing machine. However, this level of abstraction
will not be needed for what follows.

In the decision problem, the input is given and the goal is to determine if the
proposition is true or not. A more difficult problem is to solve the proposition by
finding the input for which the statement is true.

Definition 122
Let f : I → J be a computable function. Then the function problem
is to find an algorithm A such that

(∀I ∈ I)(f(I) = A(I)).

Given a particular run of a function problem algorithm, the verification problem
is to show that the output is correct. That is, given an input and a potential output,
the verification problem is to show that the output was correct for the given input.
Formally, this can be set up as follows.



252 CHAPTER 31. RANDOMIZED VERIFICATION

Definition 123
The verification problem associated with a function problem f : I →
J is the decision problem V over input set I × J where

(∀I ∈ I)(∀J ∈ J )(V(I, J) = (f(I) = J)).

It seems that verification should be easier than the solution problem. After all,
the algorithm is handed the solution and is just asked whether the solution works
or not. So this should be easier than finding the solution in the first place, right?
This intuition is correct, often there are faster algorithms for verification problems
than what are known for function problems.

Matrix multiplication

An example of this phenomenon is matrix multiplication.
Consider the problem of verifying that the multiplication of two n by nmatrices

A andB leads to a third matrixC . The input set for the verification problem is then
of the form ((A,B), C) where A, B, and C are n by n matrices. The proposition
of interest is then:

V((A,B), C) = (AB = C).

As of June 2024, actually solving for C given A and B (the function problem)
can be done using an O(n2.372...) algorithm [williams2024new] for matrix mul-
tiplication. But can the verification problem be done faster? The answer is yes!
This is shown using Freivald’s Algorithm.

31.3 Freivald’s Algorithm

Freivald [freivalds1977] developed a randomized algorithm to check if AB = C
for any three input matrices A, B, and C .

Freivald’s_Alg Input: A,B,C

0) Let n be such that A, B, and C are n by n matrices
1) Draw x uniformly from {0, 1}n
2) Let y ← A(Bx)− Cx
3) Return the value of proposition (y = 0)

Fact 47
If AB = C , then Freivald’s_Alg will always return true (T). However, if
AB ̸= C , there is at least a 50% chance that the algorithm will return
false (F).

Proof. Let D = AB − C . If AB = C then D is the matrix of all 0’s, and Dx is
the vector of all 0’s no matter what choice of x is made. So if AB = C , then the
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algorithm always returns T.
However, if AB ̸= C , then there must be an i and j such that entry Dij ̸= 0.

Let ri be the ith row of D, and consider

ri · x = Dijxj +
∑
k ̸=j

Dikxk.

Then the summation on the right hand side must add to some value. Since xj was
chosen uniformly from {0, 1}, Dijxj is either 0 or Dij ̸= 0 with equal probability.
Hence the chance that ri · x = 0 is at most 50%. So the algorithm has at least a
50% chance of detecting that nonzero entry!

31.4 RP, co-RP, and BPP

There are several classes of randomized algorithms for decision problems. An
algorithm belongs to a particular class based on its running time as a function of
the input size, on the probability that it gets the answer correct when the output is
true, and the probability that it gets the answer correct when the output is false.
Start with randomized polynomial time or RP for short.

Definition 124
Let I be an input space and ∀I ∈ I P(I) is either true or false. Say that
algorithm A is in the complexity class randomized polynomial time
(abbreviated RP) if the following holds.

• The running time of A(I) is polynomial in the input size with
probability 1.

• For all I ∈ I , if P(I) = T then P(A(I) = T) ≥ 1/2.

• For all I ∈ I , if P(I) = F then A(I) = F.

The last two conditions can be expressed more compactly using indicator func-
tions. Recall that 1(p) = 1 if p is true and is 0 otherwise. Then the last two
conditions to be RP are equivalent to

(∀I ∈ I)(P(A(I) = P(I)) ≥ 1/2 + (1/2)1(P(I)).
Pictorially, an algorithm in RP obeys the following rules:

Correct answer is FALSE Returns FALSE1

Correct answer is TRUE

Returns FALSE

Returns TRUE

≤ 0.5

≥ 0.5
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Okay, but this is not actually what Frievald’s algorithm does. When the answer is
true (soAB = C ), Frievald’s algorithm is guaranteed to generate an output of true,
whereas when AB ̸= C Freivald’s algorithm has a maximum error rate of 50%.
This is an example of what is called a complementary randomized polynomial time
or co-RP algorithm.

Definition 125
Let I be an input space and ∀I ∈ I P(I) is either true or false. Say that
algorithm A is in the complexity class complementary randomized
polynomial time (abbreviated co-RP) if the following holds.

• The running time of A(I) is polynomial in the input size with
probability 1.

• For all I ∈ I , if P(I) = F then P(A(I) = F) ≥ 1/2.

• For all I ∈ I , if P(I) = T then A(I) = T.

In both RP and co-RP, there is one output where the randomized algorithm
always returns the correct answer. But what if there is a chance of making an error
for both true and false outputs? When the running time is polynomial in the input
size, these are called bounded probability polynomial time randomized algorithms.

Definition 126
Let I be an input space and ∀I ∈ I P(I) is either true or false. Say that
algorithm A is in the complexity class bounded probability polyno-
mial time (abbreviated BPP) if the following holds.

• The running time of A(I) is polynomial in the input size with
probability 1.

• For all I ∈ I , if P(I) = F then P(A(I) = F) ≥ 2/3.

• For all I ∈ I , if P(I) = T then P(A(I) = T) ≥ 2/3.

So for an algorithm in BPP, there is at most a 1/3 chance of making an error
regardless of the correct answer. Why only 1/3 instead of 1/2 as in RP and co-RP?
Because if an algorithm were just to flip a fair coin and use heads for true and tails
for false, this algorithm would already have only a 1/2 chance of making an error!
Limiting the error probability to 1/3 ensures that the algorithm is actually putting
in some work to get the error below that coming from a random guess.

31.5 Amplification

The above complexity classes are defined in terms of a 1/2 or 1/3 chance of failure.
But what if the goal is to limit the chance of failure to 1/8? 1/100? Even smaller?
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The technique of amplification can be used to accomplish this task.

False positives and negatives

Say that the algorithm has a false positive if it returns TRUE when the correct
answer is FALSE. Similarly, say that it returns a false negative if the algorithm
returns FALSE when the correct answer is TRUE.
Then one way to describe an RP algorithm is that it is a polynomial expected

time algorithm where the false positive rate is 0 and the false negative rate is
bounded above by 1/2. What if the false positive rate is needed to be smaller?
One approach is to run the RP algorithm multiple times, making independent

choices at each run for the random value. Consider running Freivald’s Algorithm
four times on the same set of matrices. Suppose that output was

T, T, F, T.

If the correct answer was T, then the randomized algorithm would never have
given a false answer, so in this case, the correct answer must be F. On the other
hand, if the output was

T, T, T, T

then there are two possibilities. Either, the correct answer was T, or the correct
answer was F, and the algorithm was wrong four times in a row. The chance of
this occurring is at most (1/2)4. The picture looks like this:

Correct answer is TRUE Returns TRUE four times1

Correct answer is FALSE

Returns TRUE four times

Returns FALSE at least once

≤ (1/2)4

≥ 1− (1/2)4

Definition 127
Running a randomized algorithm independentlymultiple times to reduce
the error rate is called amplification.

Amplification_coRP Input: I, k

4) For i from 1 to k
5) Let Ai ← A(I)
6) Return ∧ki=1Ai
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Fact 48
Suppose A is an algorithm in co-RP for the decision problem (P, I).
Then B(I, k) = Amplification_coRP(k) satisfies

• If P(I) = T, then B(I, k) = T with probability 1.

• If P(I) = F, then P(B(I, k) = F) ≥ 1− (1/2)k.

Proof. Suppose P(I)) = T. Then A(I) returns T with probability 1, no matter
how many times the algorithm is run. The logical AND of all three of the outputs
will be 1 with probability 1.

Similarly, if P(I) = F, then the only way B(I, k) is not false is if every single
Ai = T. This happens with probability at most (1/2)k . The complement rule then
gives the result.

Example 47
Suppose the goal is to build a version of Frievald’s Algorithm that is
right at least 7/8 of the time. Then run it three times and take the logical
AND of the output. By the above result, the chance of giving a wrong
answer is at most (1/2)3 = 1/8, so the chance of a correct answer is at
least 1− 1/8 = 7/8.

A similar result holds for RP. Because these algorithms are always right when
the answer is false, when the correct answer is false the output of the RP algorithm
will always be false. But if the correct answer is true, there is at least a 50% chance
of the output being true. Therefore, a single true output is enough to guarantee
that the right answer is true.
That means that the amplification procedure is to run the algorithm indepen-

dently k times and take the logical OR of the result.

Amplification_RP Input: I, k

7) For i from 1 to k
8) Let Ai ← A(I)
9) Return ∨ki=1Ai

The error bound for amplification for RP is similar to that of co-RP.
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Fact 49
Suppose A is an algorithm in RP for the decision problem (P, I). Then
B(I, k) = Amplification_RP(k) satisfies

• If P(I) = F, then B(I, k) = F with probability 1.

• If P(I) = T, then P(B(I, k) = T) ≥ 1− (1/2)k.

Amplification is a bit different for BPP algorithms. Because there is a chance of
either a false positive or false negative, the logical AND cannot be used to determine
the final result. Instead, make k an odd integer, run the algorithm independently k
times, and return true or false depending on which appears most often

Amplification_BPP Input: I, k

10) For i from 1 to k
11) Let Ai ← A(I)
12) Return 1(

∑
i(1(Ai)) > k/2)

For instance, if k = 9 and for the results A1, A2, . . . , A9, exactly 7 are true and
2 are false, the amplification algorithm returns true. But if at most 4 are true and at
least 5 are false, then the amplification algorithm returns false as the final answer.

Finding the error in amplification for BPP involves finding the tail probabilities
of binomially distributed random variables.

Example 48
A BPP algorithm is run 3 times and the majority winner is taken. What
is the largest chance that it made an error?

Answer Say a trial is R if the answer is right and W if it is wrong.
Then themajority winner is wrong if the three trials areWWW ,WWR,
WRW , RWW , which has probability at most

(1/3)(1/3)(1/3) + 3[(1/3)2(2/3)] = 7/27 ≈ 0.2592 . . . .

Note the answer is the same as P(X ≥ 2) where X ∼ Bin(3, 1/3).

31.6 Zero-error probabilistic polynomial time

Las Vegas algorithms that are correct all the time, are in the problem class ZPP.
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Definition 128
An algorithm A is in zero-error probabilistic polynomial time or
ZPP if A(I) has output to the question of (∃I)(P(I)) such that

• The running time of the algorithm is a random variable whose
expected value is polynomial in the input size with probability 1.

• (∀I ∈ I)(P(P(I) = A(I)) = 1).

In terms of false positive and false negative rates, this can be summarized as
follows.

Algorithm Type False Positive Rate False Negative Rate

RP 0 1/2
co-RP 1/2 0
BPP 1/3 1/3
ZPP 0 0

Problems

31.1 True or false: A BPP algorithm might return the correct answer 1/2 of the
time.

31.2 True or false: An RP algorithm has to be right at least 2/3 of the time.

31.3 An RP algorithm is run twice and the output is the logical OR of the two
runs. What is the largest chance that it made an error?

31.4 A co-RP algorithm is run five times and the output is the logical AND of
the runs. What is the largest chance that it made an error?

31.5 A BPP algorithm is run 5 times and the majority winner is taken. What is
the largest chance that it made an error?

31.6 A BPP algorithm is run 7 times and the majority winner is taken. What is
the largest chance that it made an error?

31.7 Howmany times must an RP algorithm be run to guarantee that the chance
of failure is at most 1%?

31.8 Howmany times must an RP algorithm be run to guarantee that the chance
of failure is at most 10−6?



Chapter 32

Randomized algorithms for Linear
and Integer programming

Question of the Day

Consider the following set cover problem. Let U = {1, 2, 3, 4, 5, 6, 7} and

S1 = {1, 6}
S2 = {3, 4}
S3 = {5}
S4 = {1, 2, 3}
S5 = {2, 4, 6, 7}
S6 = {4, 5, 6}
S7 = {7}

Find the smallest collection of Si whose union is U .

Summary

This section discusses the following topics.

• The set cover problem.

• Integer programming.

• Linear programming.

• Randomized rounding.
259
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Two of the most powerful tools in Operations Research are linear programming
and integer programming.
These are used for optimization. Unlike decision problems, optimization prob-

lems try to make a function of the inputs either large or small. This function is
called the objective function. Write opt to stand in for either max or min.

Definition 129
An optimization problem of the form

opt
x∈Ω

f(x),

has objective function f : Ω→ R.

When the objective function f is a linear function of x, and the state space Ω
is a subset of Rn formed using linear constraints, then call the problem a linear
program.

Definition 130
A linear program has the form

opt c · x, subject to {x : Ax ≤ b},

for fixed c, b ∈ Rn.

Here c · x is the dot product between a fixed vector c and the solutions x.
If the values of the variables are also required to be integers (so Ω ⊆ Zn), then

the problem is an integer program,

Definition 131
An integer program has the form

opt c · x, subject to {x : Ax ≤ b} and x ∈ Zn,

for fixed c, b ∈ Rn.

In 1947, George Dantzig revolutionized Operations Research when he invented
the simplex method. This is an algorithm for solving linear programs that runs
very quickly in practice. Later versions of this method have been developed that
provably run in time polynomial in the input size.
Integer programming is far more difficult. In fact, the famous conjecture of

whether or not problems whose solutions can be verified in polynomial time can
also be solved in polynomial time (also known as the P = NP question) would
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be solved in the affirmative if there was a polynomial time method for integer
programming problems.

32.1 Set cover as an integer programming problem

The question of the day is an example of a set cover problem.

Definition 132
The set cover problem consists of a universe set U and a set of subsets
of U called S1, . . . , Sn such that ∪ni=1Si = U . The goal is to find the
smallest value of k such that a subset of {S1, . . . , Sn} of size k has union
U .

The set cover problem serves are a simple model of any situation where placing
resources, factories, or service buildings is needed to serve different areas of a
community or company. For example, in the question of the day, a company might
be building seven cell towers at specific sites to serve seven different regions of an
area.
The number of sets k needed to cover all n elements satisfies k ≤ n, but how

much smaller can k be? The problem is in NP because any answer (a subset of
{1, 2, . . . , n}) can be checked to be correct or incorrect in time polynomial in the
input size. It is also NP-complete. Karp showed in 1972 [karp1972] that if this
problem could be solved in time polynomial in the input, then any problem in
NP could be solved in polynomial time. That would make P = NP, and so the set
cover problem is an example of an NP-complete problem.
The problem can be written as an integer program in the following way.

• Create indicator variables xi that are 0 if Si is not in the subset and 1 if Si is
in the subset.

• To ensure that the union of the Si covers U , it must be true that for each
element u ∈ U , the sum of xi where u ∈ Si must be at least 1. So there is a
linear constraint for every element u ∈ U .

• The objective is to minimize the sum of the xi (that counts how many of the
Si are in the subset.)
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Example 49
In the question of the day, the integer program is

minx1 + x2 + x3 + x4 + x5 + x6

x1 + x4 ≥ 1 cover 1
x4 + x5 ≥ 1 cover 2
x2 + x4 ≥ 1 cover 3

x2 + x5 + x6 ≥ 1 cover 4
x3 + x6 ≥ 1 cover 5

x1 + x4 + x6 ≥ 1 cover 6
x5 + x7 ≥ 1 cover 7

(∀i)(0 ≤ xi ≤ 1)

(∀i)(xi ∈ Z)

Note that x1 + x4 ≥ 1 can be written as −x1 − x4 ≤ −1 so this still falls into
the integer programming definition that uses Ax ≤ b.

32.2 Linear relaxation

A general principle is that removing constraints from an optimization problem can
only increase the set of valid solutions.

Definition 133
For a problem optx∈Ω f(x), let Ω′ be such that f : Ω′ → R is defined.
Then if Ω ⊂ Ω′, call

opt
x∈Ω′

f(x)

a relaxation of the problem.

Note that because there are more choices for x, the solution of the relaxation
will always be better than that of the original problem.

Definition 134
For an integer programwith constraint x ∈ Zn, removing this constraint
gives the linear relaxation of the integer program.

The purpose of constructing a linear relaxation is to move from an integer
program which is difficult to solve to an LP that is fast to solve. The problem is
that the solution to the LP is not usually a solution to the IP, as it might contain
fractional values.
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32.3 Randomized rounding

To move from a solution x ∈ [0, 1]n to a solution y ∈ {0, 1}n, use the randomized
rounding approach. In this approach, each number p ∈ [0, 1] is used as the param-
eter of a Bernoulli random variable. So with probability p the number is rounded
up to 1, and probability 1− p it is rounded down to 0.

Definition 135
For x ∈ [0, 1]n, let yi ∼ Bern(xi) be iid. Call y = (y1, . . . , yn) a
randomly rounded version of x.

Because yi is a {0, 1} random variable, E[yi] = xi. By linearity for any linear
objective function with c ∈ Rn,

E[c · y] = c · x.
So on average, the objective value is the same as that solution to the LP relaxation.

But is the solution feasible for the IP?
Consider the constraint:

x2 + x5 + x6 ≥ 1.

For y2 + y5 + y6 to equal 0, it must hold that y2 = y5 = y6 = 0. Because the yi
were chosen independently, this occurs with probability

(1− x2)(1− x5)(1− x6).

It is straightforward to use a technique such as Lagrange multipliers to show that
this product is maximized when the xi are equal, so

P(y2 + y5 + y6 = 0) ≤ (1− 1/3)(1− 1/3)(1− 1/3) = (1− 1/3)3 ≤ exp(−1).
Suppose this rounding is repeated t times independently. Letwi be the maximum

of the yi values over the t iterations. Then

P(w2 + w5 + w6 = 0) = P(y2 + y5 + y6 = 0)t ≤ exp(−t).
There are n constraints that could be unsatisfied, and so the union bound tells us

that the probability that any of the constraints is unsatisfied is at most n exp(−t).
LetX1, X2, . . . be the objective function for each trial of the randomized round-

ing. Then E[Xi] ≤ t · OPTLP ≤ t · OPT, where OPTLP is the optimal objective
function for the LP relaxation, and OPT is the optimal objective function for the
original IP.

Let T be the total number of steps until a feasible IP solution is found. Since each
run is independent, T is a geometric random variable with at least a 1−n exp(−t)
chance of success. So E[T ] ≤ 1/[1− n exp(−t)]. Also

E[XT ] ≤
T∑
i=1

E[Xi] ≤ E[T ]E[Xi] ≤
t

1− n exp(−t) · OPT
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by Wald’s identity.
In particular, if t = ln(n) + ln(ln(n)), then

E[XT ] ≤
ln(n) + ln(ln(n))

1− 1/ ln(n)
· OPT.

Other places randomized rounding can be used include:

• Facility location problems.

• Multicommodity flow problems.

Problems

32.1 Consider the following optimization problem.

max x21 + x22

subject to x1 + x2 ≤ 4

x1 ≥ 0

x2 ≥ 0

Is this a linear program?

32.2 Consider the following optimization problem.

max 3x1 − x2

subject to x1 + x2 ≤ 4

x1 ≥ 0

x2 ≥ 0

Is this a linear program?

32.3 Suppose U = {1, 2, 3, 4},

S1 = {1, 2}
S2 = {3, 4}
S3 = {1, 2, 3, 4}.

a) Does {S1, S2} cover U? (That is, does the union of S1 and S2 equal
U?)

b) Is there a smaller set cover?
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32.4 Suppose U = {1, 2, 3, 4, 5},

S1 = {1, 2}
S2 = {3, 4}
S3 = {2, 3, 4, 5}.

Find a set cover of size two.

32.5 Suppose U = {1, 2, 3, 4, 5},

S1 = {1, 2}
S2 = {3, 4}
S3 = {2, 3, 4, 5}.

a) Write the problem of finding the smallest set cover as an integer
program.

b) What is the linear relaxation of this IP?

32.6 Continuing the last problem, find the optimal solution of the LP relaxation,
and discuss how that also solves the original IP problem.

32.7 Consider the IP

max x1 + x2

(1/2)x1 + x2 ≤ 1

3x1 + x2 ≤ 2

(x1, x2) ∈ {0, 1}3.

The linear relaxation would be

max x1 + x2

(1/2)x1 + x2 ≤ 1

3x1 + x2 ≤ 2

(x1, x2) ∈ [0, 1]3.

The optimal solution to this is

(x1, x2) = (2/5, 4/5).

a) If randomized rounding was then used to generate a solution from
the original IP, what would the expected objective value be?

b) What is the chance that the (1/2)x1 + x2 ≤ 1 constraint is satisfied?
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32.8 Consider the IP

min x1 + 2x2

x1 + 2x2 ≥ 1

3x1 + x2 ≥ 2

(x1, x2) ∈ {0, 1}3.

The linear relaxation would be

max x1 + 2x2

x1 + 2x2 ≥ 1

3x1 + x2 ≥ 2

(x1, x2) ∈ [0, 1]3.

The optimal solution to this is

(x1, x2) = (3/5, 1/5).

a) If randomized rounding was then used to generate a solution from
the original IP, what would the expected objective value be?

b) What is the chance that the (1/2)x1 + x2 ≤ 1 constraint is satisfied?



Part VII

Time series

267





Chapter 33

Forecasting

Question of the Day

Consider the value of the Dow Jones Industrial Average for the 27th of March
through the 5th of April, 2017. Call the 27th of March day 0.

Day DJIA Index

0 20550.98
1 20701.50
2 20659.32
3 20728.49
4 20663.22
5 20650.21
6 20689.24
7 20648.15

Predict the value for day 8.

Summary

• A time series is a collection of random variables indexed by time.

• Forecasting is the process making an estimate of the value of a time series
based on observations at previous times.

269
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33.1 Predicting the future

A set of data values indexed by time is typically called a time series. One of the
goals of studying time series is to give a best guess prediction for the next data
point in the series based on the data up to the current time.
There are two main methods for using data to predict the next data point:

Extrapolation and Causal Methods.

• Extrapolation includes methods such as moving averages and smoothing.

• Causal Methods typically build a statistical model of the data, such as using
linear regression.

Here, yt is used to denote the actual value of the time series at time t. Use ŷt to
denote an estimate of the time series.

33.2 The baseline model

The simplest model of a time series is the baseline mode, which assumes that there
is a baseline value for the data that is perturbed by a random error independently
at each step.

Model 1
The baseline model is

yi = b+ ϵi.

The simplest estimate for this model is an estimate of b using all the previous
data.

Estimate 1 (Average estimate)
For yi using the baseline model, for k ∈ {1, 2, . . .}

ŷt+k =
1

t

t∑
i=1

yi.

This model says that no matter how far into the future the prediction goes,
always just use the average of the values given up until the current time t.

Example 50
In the question of the day,

ŷ8 = ŷ9 = · · · = 20661.38 . . . ,

which is 20660 to four sig figs.
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33.3 Moving averages

The problem with the average of all the data is that the base of the baseline model
b tends to drift over time. For instance, stock values or a player’s batting average
might improve with the economy or training, leading to a new value of b.
A moving average operates by not averaging all the data, but only the last few

entries. Use the parameter n to indicate how many of the last entries are part of
our prediction.

Estimate 2 (Moving average)
For parameter n, themoving average estimate for k ∈ {1, 2, . . .} is

ŷt+k =
1

n

n−1∑
i=0

yt−i.

Example 51
In the question of the day, if the moving average is of the last three
periods (n = 3), then the prediction for Day 3 given the information in
Day 0, 1, and 2 is:

20550.98 + 20701.50 + 20659.32

3
,

and the prediction for Day 5 given the information up to Day 4 is

20701.50 + 20728.49 + 20663.22

3
,

and so on. That gives us a table:

Day Index Prediction Error

0 20550.98
1 20701.50
2 20659.32
3 20728.49 20637.27 91.22
4 20663.22 20696.44 −33.22
5 20650.21 20683.68 −33.47
6 20689.24 20680.64 8.60
7 20648.15 20667.56 −19.41

.

The last column of our table is the forecast error, the difference between the true
value and the predicted value.
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Definition 136
The forecast error for ŷt predicting yt is

ei = yt − ŷt.

33.4 Standard and mean absolute deviations

Different values of n in the moving average will have different errors in the
prediction. The hope is to make the spread in the error of prediction as small as
possible.
A common way to measure the spread in a random variable X is to use the

standard deviation ofX , written SD(X). This is usually easy to compute, especially
when X is the sum of independent random variables. The method addition in
quadrature will be used to find the standard deviation.

Fact 50
If x1, X2, . . . , Xn are independent random variables, then

SD(X1 + · · ·+Xn) =
√

SD(X1)2 + · · ·+ SD(Xn)2.

While addition in quadrature is easy, it is sometimes the case that the expected
value of a random variable X can exist, but the standard deviation can be infinite!

Therefore, there is another deviation called the mean absolute deviation is often
used in assessing predictions.

Definition 137
The mean absolute deviation of a random variable X is

MAD(X) = E[|X − E(X)|].

The advantage of the mean absolute deviation over the absolute deviation is
that having finite expectation is enough to give finite mean absolute deviation.

Fact 51
When E(X) exists and is finite, thenMAD(X) exists and is finite.

For many common distributions, the MAD ends up being a multiple of the SD.
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Example 52
For X ∼ Exp(λ), findMAD(X).

Answer The density of X is: fX(s) = λe−λs1(s ≥ 0). So the mean
of the random variable is

E(X) =

∫ ∞

−∞
sfX(s) ds = 1/λ.

By the Law of the Unconscious Statistician:

MAD(X) = E(|X − E(X)|)

=

∫ ∞

−∞
|s− 1/λ|fX(s) ds

=

∫ ∞

−∞
|s− 1/λ|λe−λs1(s ≥ 0) ds

=

∫ ∞

0
|s− 1/λ|λe−λs ds

=

∫ 1/λ

0
−(s− 1/λ)λe−λs ds

+

∫ ∞

1/λ
(s− 1/λ)λe−λs ds

=
2

e
· 1
λ

.

Some notes about the deviations.

1. MAD(X),SD(X),E(X) all have the same units.

2. Alternate notation: MD(X) = MAD(X)

3. MAD(cX) = |c|MAD(X)

4. If you do need to calculateMAD(X1 + · · ·Xn) for a particular distribution,
this can usually be estimated accurately using Monte Carlo.

Some more calculations yield the following.

Dist E(X) SD(X) MAD(X)

Exp(λ) 1/λ 1/λ (2/e)(1/λ)

Unif([a, b]) (a+ b)/2 (b− a)/
√
12 (b− a)/4

N(µ, σ) µ σ σ · 2/√τ
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33.5 Estimating mean absolute deviation

If E[Ei] = 0, then the mean absolute deviation of the forecast error is just E[|Ei|].
An estimate of MAD can be found by taking a sample average of the absolute
errors of the predictions.

M̂AD =
1

t

t∑
i=1

|ei|.

Example 53
In the question of the day when n = 3:

M̂AD =
|91.22|+ | − 33.21|+ | − 33.46|+ |8.6|+ | − 19.41|

5
≈ 37.18.

A simple rule of thumb for choosing n for a large data set is to pick the value of
n that minimizes M̂AD.

• For stock data: n = 4 has M̂AD of 22.41.

• n = 2 has M̂AD of 35.702.

• For n ∈ {2, 3, 4}, one would probably go with n = 4 for that reason.

Problems

33.1 Consider data

time sales

0 4.3
1 3.7
2 7.2
3 4.5
4 6.1.

Estimate the baseline average.

33.2 Add a new column to this table of the forecast error using the baseline
average.

33.3 Continuing the last problem, find the n = 2 and n = 3 moving averages
for this data.

33.4 Continuing the last problem, using the MAD error criterion, would you
go with the n = 2 or n = 3 moving average?

33.5 For U ∼ Unif([0, 1], findMAD(u).

33.6 For Z ∼ N(0, 1), findMAD(Z).
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33.7 For X an integrable random variable, prove that MAD(X) = MAD(X +
a) for any constant a.

33.8 ForX an integrable random variable, prove thatMAD(cX) = cMAD(X)
for any constant c.





Chapter 34

Simple Exponential Smoothing

Question of the Day

How can small fluctuations in time series data be smoothed out?

Summary

• Simple exponential smoothing is a model where the effects of prior
history on the next forecast are dampened exponentially fast as you move
farther back in time.

• The model is
ŷt+k = αyt + (1− α)ŷt.

The moving average estimate is intended to deal with the problem of a drifting
value of b in our baseline model. This approach is sharp: either a past element of
yt−i is included in the average, or it is discarded.
A smoother estimate includes all of the yt−i in the prediction ŷt but does it so

that the further in the past we look, the less impact the data has on the prediction.
One such model is simple exponential smoothing, or SES. This model works by

using a convex linear combination of the most recent data value together with the
previous prediction. By adjusting the parameter of the combination, one can form
a prediction that relies heavily on the previous data, or more strongly on current
data.

Model 2 (Simple exponential smoothing (SES))
The SES estimate has one parameter α ∈ (0, 1). Given an estimate ŷt,
the forecast for k ∈ {1, 2, . . .} is

ŷt+k = αyt + (1− α)ŷt.
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Example 54
Suppose our previous prediction of the next data point was 54. When
the actual data point is seen, it turns out to be 58. So if α = 0.2, then
the prediction for the next point would be

ŷt+1 = (0.2)(58) + (0.8)(54).

Some remarks:

• This style of prediction always uses all of the data, simply because ŷt−1

depends on all the data from time 1 up to t− 1, and then also includes the
data value yt.

• The model does not specify how to start the process. Two common ways
of starting are to not make a prediction immediately, but then set ŷ0 = y0.
Alternately, use ŷ1 = 0.

34.1 Error view of SES

As earlier, let et denote the forecast error:

et = yt − ŷt.

The SES estimate will be (in terms of error)

ŷt+k = αyt + (1− αŷt)

= ŷt + α(yt − ŷt)

= ŷt + αet.

That is, the new prediction is the old prediction plus a fraction of the error from
the old prediction.

If the old prediction had a high error, then it was too low, so the new prediction
is higher. If the error was negative, that meant the old prediction was too high,
and so adding a fraction of the error makes it lower.



34.2. HOW TO CHOOSE α 279

Example 55
With α = 0.75 for stock data from before:

Day Index Prediction Error

0 20550.98
1 20701.50 20550.98 150.52
2 20659.32 20663.87 -4.55
3 20728.49 20660.46 68.03
4 20663.22 20711.48 -48.26
5 20650.21 20675.29 -25.08
6 20689.24 20656.48 32.76
7 20648.15 20681.05 -32.90

Here ˆMAD = 51.72.

34.2 How to choose α
For moving averages, choose the parameter n to minimize the estimate of the mean
absolute deviation. Follow the same principle here, choosing α that minimizes the
estimate of the mean absolute deviation.

In this case, α is a continuous random variable with possibly several local minima.
Rather than tackle this complicated optimization problem, a simple approach is
to only try α values that are integer multiples of 0.05 and keep the best. In the
question of the day, this is α = 0.75.
In practice α = 0.1, 0.3, or 0.5 are commonly used. A value of α > 0.5 indi-

cates that some other trend such as seasonality is present because past values are
discounted so severely.

34.3 The effect of SES on data

So why is this called exponential smoothing?
Consider the first few estimates:

ŷ1+k = αy1 + (1− α)ŷ0

= αy1

ŷ2+k = αy2 + (1− α)ŷ1

= αy2 + α(1− α)y1

ŷ3+k = αy3 + (1− α)ŷ2

= αy3 + α(1− α)y2 + α(1− α)2y3

The data point i time steps before t+ 1 is given a weight of α(1− α)i. So all of
the previous data values are being used. To compare to the weights seen earlier,
let r = 1− α. Then the weights are as follows.
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yt yt−1 · · · yt−n+1 yt−n · · · y1

Average 1/t 1/t · · · 1/t 1/t · · · 1/t
Moving average 1/n 1/n · · · 1/n 0 · · · 0
SES α αr · · · αrn αrn+1 · · · αrt.

Note that weights in the first two rows add up to 1. The weights for SES add up
to slightly less than 1, but they add up to something very close to 1 as t gets large.
When α = 2/(n+ 1), then r = 1− α = 1− 2/(n+ 1), and rn+1 ≈ exp(−2).

So the SES estimate will be similar to the moving average estimate with n periods.

34.4 Holt’s method

Now suppose that our time series is not roughly constant, but that the baseline
itself has a linear trend.

Model 3
The linear trend model model is

yt = b+mt+ ϵt.

Holt [holt1957] developed an extension of SES for the linear trend model which
is known as Holt’s method.
The idea is to create an estimate b̂t for b, ℓ̂t for yt (that is the level of the series,

and then predict using
ŷt+k = ℓ̂t + m̂tk.

To be precise, the method is as follows.

Estimate 3 (Holt’s Method)
This method has two parameters, α for the level, and β∗ for the trend.

First, update the level estimate based on the current data point and
our previous prediction.

ℓ̂t = αyt + (1− α)(ℓ̂t−1 + m̂t−1).

Next, update our trend estimate using the difference between level
estimates smoothed with the previous estimate.

m̂t = β∗(ℓ̂t − ℓ̂t−1) + (1− β∗)m̂t−1.

Then our prediction is

ŷt+k = ℓ̂t + km̂t.

Often the initial values m̂0 and ℓ̂t are drawn from previous data.
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Example 56
Use Holt’s method to predict Blu-ray sales (in thousands of units) with
α = 0.3, β = 0.1, ℓ̂0 = 25.3 and m̂0 = 7.4

Month Sales ℓ̂t m̂t Prediction et

25.3 7.4
1 32 32.49 7.379 32.7 -0.7000
2 40 39.9083 7.38293 39.869 0.1310
3 38 44.503861 7.1041931 47.29123 -9.291
4 56 52.92563787 7.235951477 51.6080541 4.391
5 67 62.21311254 7.441103797 60.16158935 6.838

Dealing with data that grows exponentially

Some data (including economic data) grows exponentially rather than linearly.
Note that Holt’s method can still be used: it is just that the logarithm is used first
to turn it into linear data.
For instance, with the model,

xt = abtνt,

taking the logarithm gives

ln(xt) = ln(a) + t ln(b) + ln(νt).

Set yt = ln(xt), and proceed as before.

Problems

34.1 Suppose a prediction for y1 was ŷ1 = 10. If α = 0.4 with simple exponen-
tial smoothing, what would the prediction ŷ2 be if y1 turned out to have
value 12.

34.2 Suppose a prediction for y1 was ŷ1 = 100. If α = 0.1 and y1 was ob-
served to be 50, what would the prediction ŷ2 be using simple exponential
smoothing?

34.3 The California milk per cow from organic herds is summa-
rized in the following table (drawn from https://www.
californiadairymagazine.com/read/adtrack/2017/
0717/2016cdfamilkreport.pdf accessed 2024-04-15.) It also
includes predictions made using simple exponential smoothing with
α = 0.6 using ŷ1 = y0.

https://www.californiadairymagazine.com/read/adtrack/2017/0717/2016cdfamilkreport.pdf
https://www.californiadairymagazine.com/read/adtrack/2017/0717/2016cdfamilkreport.pdf
https://www.californiadairymagazine.com/read/adtrack/2017/0717/2016cdfamilkreport.pdf
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Year Annual Milk per cow (pounds) pred

2012 14904 NA
2013 15204 14904.00
2014 15480 15084.00
2015 16284 15321.60
2016 15816 15899.04

Find an estimate of the mean absolute deviation of the error.

34.4 The following table gives deliveries of Boeing 747 planes from 1995
through 2000. (Drawn from https://en.wikipedia.org/wiki/
Boeing_747 accessed 2024-04-15.)

Year Deliveries Pred

1995 25 NA
1996 26 25
1997 39
1998 53
1999 47
2000 25

a) Fill out the rest of the table using SES with α = 0.75.
b) Estimate the MAD for your predictions.

34.5 Continuing the California cows data from earlier, here are the predictions
for α = 0.6 and α = 0.4. Which would be chosen as the better value of α
using MAD to make the decision.

Year Annual Milk per cow (pounds) α = 0.4 α = 0.6

2012 14904 NA NA
2013 15204 14904.00 14902.00
2014 15480 15084.00 15024.00
2015 16284 15321.60 15206.40
2016 15816 15899.04 15637.44

34.6 Continuing the Boeing data from above, fill out the above table using SES
for α = 0.6 and α = 0.25. Which would you choose (using MAD as the
criteria for the decision.)

34.7 Domestic U.S. data for passengers scheduled to fly month by month in
2000 is as follows. (Drawn from transtats.bts.gov/TRAFFIC on
2024-04-15.)

https://en.wikipedia.org/wiki/Boeing_747
https://en.wikipedia.org/wiki/Boeing_747
transtats.bts.gov/TRAFFIC
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Period Scheduled

January 2000 41540
February 2000 43714

March 2000 52977
April 2000 50344
May 2000 52309
June 2000 54673
July 2000 55568

August 2000 54474
September 2000 46363

October 2000 50920
November 2000 49632
December 2000 47051

Using ℓ̂0 = 40000 and m̂0 = 3000 together with Holt’s method with
β = 0.1 and α = 0.5, predict the number of passengers for March 2001.

34.8 Repeat the last problem with α = 0.4 and β = 0.05.
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Decision making for stochastic
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Chapter 35

Marginal Analysis

Question of the Day

Suppose that a shop can buy a toy for $4.00 from a wholesaler. The toy sells in the
shop for $6.25. Toys that do not sell can only be sold back to the wholesaler for
$2.75. The shop has developed a simple probabilistic model of sales. Let S be the
number of sales.

i P(S = i)

1000 0.6
2000 0.3
3000 0.1

How many toys should the supplier buy?

Summary

Marginal analysis looks at the expected effect caused by changing a decision by
one unit. This allows for quick optimization of complex problems. This can be
applied to simple inventory purchase/sell-back models.

35.1 Convex functions

Optimization problems are the easiest when dealing with a convex objective func-
tion.
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Example 57
Consider the graph of the absolute function: f(x) = |x|, which looks
like this:

Suppose that I pick any two points on this graph, and consider the line
segment that connects those two points. Then it always lies on or above
the graph of the original function. Here are three examples:

To describe this mathematically, use the idea of a convex combination between
values.

Definition 138
Given a < b, the convex combination between a and b is a point
λa+ (1− λ)b where λ ∈ [0, 1].

Note that when λ = 0 the convex combination is just b, when λ = 1, the convex
combination is just a, and for λ = 1/2 it is the point exactly halfway between a
and b.

A function f is convex if f applied to a convex combination between a and b is
smaller than the convex combination of f(a) and f(b).

Definition 139
A function f is convex if

(∀a < b)(∀λ ∈ [0, 1])(λf(a) + (1− λ)f(b)) ≥ f(λa+ (1− λ)b)).

The nice thing about convex functions is that they are easy to optimize. First,
distinguish between a local and global minimum. A minimum is global if it is the
minimum over the whole domain of the function.
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Definition 140
For a real valued function f with domain A ⊆ R, say that (x∗, f(x∗))
is a global minimum if(

min
A

f(x), argmin
A

f(x)

)
= (x∗, f(x∗)).

To be a local minimum, it only has to be a minimum within a narrow range of
the input value.

Definition 141
For a real valued function f with domain A ⊆ R, say that (x∗, f(x∗))
is a local minimum if there is an ϵ > 0 such that(

min
(x∗−ϵ,x∗+ϵ)∩A

f(x), argmin
(x∗−ϵ,x∗+ϵ)∩A

f(x)

)
= (x∗, f(x∗)).

Fact 52
For a convex function f , if (x∗, f(x∗)) is a local minimum, then it is
also a global minimum.

Sometimes this type of function is called convex up, because the function is going
up as it moves away from its minimal value.
If the function f happens to have two continuous derivatives (write f ∈ C2)

then there is a simpler way to show that it is convex.

Fact 53
Let f be a function for which f ′′ is continuous. If f ′′ ≥ 0, then f is a
convex function.

35.2 Buy-back inventory model

Now consider the simple model of inventory given in the question of the day. A
retailer can buy items for a fixed cost per item from a wholesaler. Some, or all, or
none of the items are sold by the retailer, but if they are, then because the retailer
is selling for a higher price than they bought, the retailer will make a small amount
of money on each item sold.
If any items are not sold, then the retailer can sell back the remaining items to

the wholesaler at a cost lower than what they paid.
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First some notation.

q = amount ordered by the retailer (vendor)
d = actual demand, that is, amount sold

c(d, q) = cost to the vendor when ordering q and selling d.

The cost is the negative of utility.
In an ideal world, the vendor orders an amount equal to the demand. In this

case, the cost c(d, d) = 0. When q < d, then the vendor incurs a cost because the
vendor could have ordered more and sold more. When q > d, then the vendor
incurs a cost because the vendor should have ordered less.

Definition 142
When q < d, the lost income is called understocking cost. When
q > d, the utility lost through buy-back is called overstocking cost.

In the question of the day:

• Each overstocked toy costs the vendor $4.00− $2.75 = $1.25.

• Each understocked toy costs the vendor $6.25− $4.00 = $2.25.

A graph of the cost function c(q, d) for various values of d looks something like
this.

q

cost

d d′

2.25(d− q)

1.25(q − d)

2.25(d′ − q)

1.25(q − d′)

The problem, of course, is that the true demand D is a random variable, so it is
not possible to know exactly how much to order. But it is possible to minimize the
expected cost.

min
q

E[c(D, q)].

Here is a nice fact about the expected value of a convex function that helps us
out here.
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Fact 54
If f(x, y) is a convex function in y for every value of x, then

E[f(X, y)]

is a convex function in y assuming the mean exists.

Proof. To show that it convex, let y1 < y2 and λ ∈ [0, 1]. Then

E[λf(X, y1) + (1− λ)f(X, y2)] =

∫
x
λf(x, y1) + (1− λ)f(x, y2) dX

≥
∫
x
f(x, λy1 + (1− λ)y2) dX

= E[f(X,λy1 + (1− λ)y2)].

That is exactly what it means for E[f(X, y)] to be convex in y!

35.3 Marginal analysis

Now it is possible to define marginal analysis, which optimizes a function (with
integer inputs) by looking at the change in the objective function when the input
is increased by one.

In our case, the goal is to minimize E[c(D, q)], so consider what happens when
q is increased by 1. Linearity of expectation gets us started.

E[c(D, q + 1)]− E[C(D, q)] = E[c(D, q + 1)− c(D, q)].

When q is increased by 1, there will be one extra unit of overstocking cost co if
D ≤ q. On the other hand, if q < D, then increasing q by 1 removes one unit of
understocking cost cu. Hence

E[c(D, q + 1)]− E[C(D, q)] = coP(D ≤ q)− cuP(D > q)

= coP(D ≤ q)− cu(1− P(D ≤ q))

= −cu + (co + cu)P(D ≤ q).

A bit of algebra reveals that this is negative if and only if P(D ≤ q) < cu/(co +
cu), and nonnegative otherwise.
This buyback scheme historically applied to newsvendors, who after a strike

were given the right to sell back unsold issues to the publisher at the end of the
day. So the result goes by the name of the newsvendor theorem.
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Theorem 14 (Newsvendor theorem)
Let cu be the cost of one unit of understock, co the cost of one unit
of overstock, D the random demand, and q∗ the optimal amount of
inventory to order. Then

q∗ = inf

{
q : P(D ≤ q) ≥ cu

cu + co

}
= argmin

q
E[c(D, q)].

Recall that inf here stands for infimum, and means the smallest value such that
the inequality on the right hand side is satisfied.
This theorem sometimes appears as Littlewood’s Rule. Littlewood developed it

in the context of deciding how many seats in an airplane to devote for first class
versus coach passengers.

Example 58
For the question of the day,

cu
co + cu

=
2.25

2.25 + 1.25
= 0.6428 . . . .

Looking at the demand distribution,

P(D ≤ q) =


0.6 q ∈ {1000, . . . , 1999}
0.9 q ∈ {2000, . . . , 2999}
1 q ∈ {3000, . . .}

Therefore purchase 2000 of the item, since this is the smallest amount
that makes P(D ≥ q) ≥ 0.6428 . . ..

Problems

35.1 The cost per unit when demand is higher than inventory is the
cost.

35.2 The cost per unit when inventory is higher than demand is the
cost.

35.3 True or false: the function f(x) = x2 is convex.

35.4 True or false: the function f(x) = x is convex.

35.5 Suppose that a Christmas tree seller can obtain trees for $13.50 and that
they sell in the local market for an average of $110.00. Any trees left
over after Christmas require payment of $5.15 for disposal. If demand is
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modeled as a negative binomial distribution with parameters 1000 and
0.42, what is the optimal number of trees for the lot to buy?

35.6 Amarketer is trying to decide howmany flyers to give away at a conference.
Each flyer costs 30 cents to produce, and each person at the conference
who receives a flyer buys things that lead to 40 cents of profit. Excess flyers
are destroyed at no cost. The number of attendees at the conference is
modeled as uniform over {900, 1000, 1100, . . . , 1800}. How many flyers
should the marketer produce to maximize expected utility?





Chapter 36

Markov Decision Processes

Question of the Day

A printer is either perfectly aligned, almost aligned, somewhat aligned, or badly
aligned. At the beginning of each month, it is possible to spend $1500 to realign
the printer back to perfect alignment. In perfect alignment the printer can be
expected to earn $4000 during a month, almost aligned $3000, somewhat aligned
$2000, and badly aligned $1000. The probability of moving from one alignment to
another is shown in the figure below. What policy should the owner of the printer
use?
If no alignment is carried out, the transition probabilities are:

P A S B

0.2 0.2 0.4

0.8

0.8
0.6 1

If alignment is carried out, the move always goes back to the perfectly aligned
state with probability 1.

Summary

A discrete time process is a Markov chain if the distribution of Xt given
X0, . . . , Xt−1 only depends on Xt−1.
A Markov decision process allows someone to make a decision based on

the history of the process so that the distribution of the next state depends on
295
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the current state and the decision made. Based on the decision and the state, an
expected reward is accrued.
A method for making decisions at each step is a policy. The value of a policy

for an MDP often uses long-term average reward or discounted reward.

36.1 Discrete time Markov chains

Markov chains are memoryless processes. In the case where the time is discrete (so
t ∈ {1, 2, . . .}), this leads to the following definition.

Definition 143
A discrete time stochastic processX0, X1, X2, . . . is aMarkov chain if

(∀t)([Xt|Xt−1, Xt−2, . . . , X0] ∼ [Xt|Xt−1]).

Intuitively, a Markov chain at time t only depends on the previous value, and
knowing the rest of the history of the process does not further change the distribu-
tion.
Because the distribution of the state at time t only depends on the value of the

chain at time t− 1, the model can be written as a discrete time Markov chain using
transition probabilities.

Definition 144
For a Markov chain over a finite state space Ω, the transition proba-
bilities are

p(j|i) = P(Xt = j|Xt−1 = i).

36.2 Adding decisions

Now add a further wrinkle: at each time step, suppose that a decision can be made
that also affects the distribution at the next time step. This gives us a Markov
decision process.
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Definition 145
AMarkov decision process (MDP) consists of a

1. State space Ω which is finite.

2. Decision sets. for each i ∈ Ω, a set of decisions D(i).

3. Transition probabilities p(j|i, d) so that

P(∀i, j)(P(Xt+1 = j|Xt = i, d) = p(j|i, d).

4. Expected rewards. If the process is currently in state i and decision
d is made, call the expected reward ri,d.

For instance, in the question of the day:

Ω = {P,A, S,B}
(∀i ∈ Ω)(Di = {R,¬R}),

where R means realign the printer and ¬R means do not realign the printer. The
transition probabilities can then be broken up into two cases based on the decision
to align or not align. First, if the printer is not realigned at the beginning of each
step:

T̸=R =


0.8 0.2 0 0
0 0.8 0.2 0
0 0 0.6 0.4
0 0 0 1

 ,

If the printer is realigned at the beginning of each month, then it immediately
moves back to state P . From there, there is a 0.8 chance of staying in P and a 0.2
chance of moving to A. Hence the transition matrix becomes:

TR =


0.8 0.2 0 0
0.8 0.2 0 0
0.8 0.2 0 0
0.8 0.2 0 0

 .

So p(j|i, R) = TR(i, j) and p(j|i,¬R) = T¬R(i, j).
If the printer is not realigned, then the reward for starting in state P,A, S,B is

4000, 3000, 2000, 1000 respectively. If the printer is realigned, then $1500 is spent.
Still, the user gets the reward for being perfectly aligned, which is $4000. Hence

R ¬R
P 2500 4000
A 2500 3000
S 2500 2000
B 2500 1000
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36.3 Policies

A policy is a choice of what decision to make given the evolution of the MDP from
time 1 up to the current time.

Definition 146
A policy for an MDP is a distribution over decisions for each state i
that is a function of the entire history of the process.

In the context of MDP, a stationary policy is one that only looks at the current
state of the chain when deciding what to do next and not the entire history.

Definition 147
A policy is stationary if it only depends on the current state.

(This should not be confused with the stationary distribution of the Markov
chain, which is a distribution such that if the current state is a draw from that
distribution, and a step in the Markov chain is taken, then the next state also comes
from that distribution.)

Evaluating policies

So how to decide which policy is best? There are two main approaches.

1. Maximize the long-term average reward over time.

2. Maximize the discounted reward.

The average expected reward is the long term average over the rewards gained
by following a certain policy.

Definition 148
Given a policy δ, the long-term average reward is

E
(
lim
t→∞

rX1,d1 + rX2,d2 + · · ·+ rXt,dt

t

)
.

The discounted reward recognizes that a reward now is worth more than a
reward that is to be given in the future. This could be the result of inflation, or just
the uncertainty of ever receiving the future reward. Given a parameter β ∈ (0, 1),
the discounted value of a reward r to be given k time steps in the future is only
βkr. Therefore, rewards given far in the future are less valuable than rewards
given today (k = 0).
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Definition 149
Given a policy δ, the discounted reward is

Vδ = E

( ∞∑
t=1

βt−1rXt,dt

)
.

Here the discounted reward will be used as our goal.

Definition 150
For∆ the set of all policies, say that δ∗ is an optimal policy if

(∀δ ∈ ∆)(Vδ∗ ≥ Vδ).

No matter which method is used to measure the infinite time horizon reward,
this is difficult because decisions have to be made at an infinite number of time
steps! Fortunately, the problem can be simplified considerably with an important
theorem found by Blackwell in 1962 [blackwell1962].

Theorem 15 (Blackwell’s optimal stationary policy theorem)
If the values of the rewards are bounded, then there exists an optimal
policy that is stationary.

This is huge! It means that it is not necessary to examine the entire history of
the process, but only need to consider the current state when making our decision.

Problems

36.1 A strategy that tells the distribution of choices for each state in a Markov
Decision Process is called a(n) _______.

36.2 A policy that only depends on the current state is called ______.

36.3 Suppose β = 1/2 and the reward is rXt,dt = 5 for every value of Xt and
dt. What is the discounted reward of the policy.

36.4 Suppose for every state and every policy, the reward is uniform over
{5, 10}. For β = 0.3, what is the discounted reward for the policy.

36.5 Suppose with a particular policy that rXt,dt converges to uniform over
{1, 2, 3, 4} as t goes to infinity. What will the long term average reward
be?

36.6 Suppose with a particular policy that rXt,dt converges to uniform over
{1, 2, . . . , 10} as t goes to infinity. What will the long term average reward
be?





Chapter 37

Finding the optimal stationary policy

Question of the Day

A printer is either perfectly aligned, almost aligned, somewhat aligned, or badly
aligned. At the beginning of each month, it is possible to spend $1500 to realign
the printer back to perfect alignment. In perfect alignment the printer can be
expected to earn $4000 during a month, almost aligned $3000, somewhat aligned
$2000, and badly aligned $1000. The probability of moving from one alignment to
another is shown in the figure below. What policy should the owner of the printer
use?
If no alignment is carried out, the transition probabilities are:

P A S B

0.2 0.2 0.4

0.8

0.8
0.6 1

If alignment is carried out, the move always goes back to the perfectly aligned
state with probability 1.
What is the stationary policy with the greatest average reward?

301
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Summary

For a Markov Decision Process, we can optimize the average reward through linear
programming. We can optimize the discounted utility through value iteration.

37.1 Stationary policies and Markov Decision Processes

Suppose {X1, X2, . . .} is an MDP that follows a stationary policy. That means that
when the current state is i, we choose our decision independently of the history. So
we can say that qi(d) is the probability that we make decision d given the current
state is i.

Recall that D(i) is the set of decisions that we can make when the current state
is i. LetDt be the decision that we actually make at time t. Then with our notation:

qi(d) = P(Dt = d|Xt = i).

Now consider P(Xt+1 = j|X1, X2, . . . , Xt = i). To find this, we break it into
pieces based on what decision we made. So

P(Xt+1 = j|X1, X2, . . . , Xt = i)

=
∑

d∈D(i)

P(Xt+1 = j,Dt = d|X1, . . . , Xt = i)

=
∑

d∈D(i)

P(Dt = d|X1, X2, . . . , Xt = i)P(Xt+1 = j|X1, . . . , Xt = i,Dt = d)

=
∑

d∈D(i)

qi(d)p(j|i, d).

Note that this right hand side does not depend onX1, . . . , Xt−1, the history of the
chain before Xt does not matter! That means that the process is a Markov chain.

Fact 55
A Markov Decision Process that follows a stationary policy is a Markov
chain.

In order to understand the long-run behavior, let πi be the long-run amount
of time that we spend in state i, and πid be the long-run amount of time that we
spend in state i when we make decision d. Then because when we are in state i
the chance of making decision d is qi(d), we have

πid = πiqi(d).

For example, if we spend 5% of our time in state 4, and 20% of the time when
in state 4 we make decision 1, then (0.05)(0.20) = 0.01 of the time we will be in
state 4 and make decision 1 (on average).
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From Markov chain theory, we know that the long-run amount of time that
we spend in a state must be in balance. That means at each step, πi amount of
probability leaves state i, and that probability must be replenished by probability
flowing in. That is,

πi =
∑
j

P(Xt = j)P(Xt+1 = i|Xt = j)

=
∑
j

πiP(Xt+1 = i|Xt = j)

Note that we must make some decision at each step, so

πi =
∑

d∈D(i)

πid,

and

P(Xt+1 = i|Xt = j) =
∑

d∈D(j)

qi(d)p(j|i, d).

Putting this together gives∑
d∈D(i)

πid =
∑
i

πi
∑

d∈D(i)

qi(d)p(j|i, d)

=
∑
i

∑
d∈D(i)

πiqi(d)p(j|i, d)

=
∑
i

∑
d∈D(i)

πidp(j|i, d)

The final version of the equation only uses πid variables, which is important.

Definition 151
For a Markov Decision Process, the balance equations state that for
every i ∈ Ω, ∑

d∈D(i)

πid =
∑
i

∑
d∈D(i)

πidp(j|i, d).

37.2 Average reward

So how can we use this to optimize our average award? Recall that we are in state
i and make decision d, we gather reward rid. So our long-run average expected
reward can be found using the long-run portion of time spent in each state making
each decision:

lim
t→∞

rX1,D1 + · · ·+ rXt,Dt

t
=
∑
i

πidrid.
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(The formal proof of this is beyond the scope of this course, but utilizes a version
of the Ergodic Theorem.)
Because the πid are the long-run percentage of time spent in state i making

decisions d, when we sum over all states and decisions, they must add to 1.∑
i

∑
d∈D(i)

πid = 1.

And of course, they must all be positive: πid ≥ 0.
Combining all of these constraints (the balance equations, the nonnegativity,

the sum to 1) with the objective function, we have created a linear program which
we can then optimize to find an optimal stationary policy.

Answering the question of the day

Let’s look at how this all plays out in the question of the day. Let the states P , A,
S, and B be represented by 1, 2, 3, and 4. Let the decision no align be decision 1,
and align be decision 2. Then the rewards rid form a matrix:

r =


R = 1 ¬R = 2

P = 1 2500 4000
A = 2 2500 3000
S = 3 2500 2000
B = 4 2500 1000


The objective function that we are trying to maximize is

2500π11 + 4000π12 + · · ·+ 2500π41 + 1000π42.

This maximization is subject to five linear constraints, plus they must all be non-
negative. First, the variables must add to 1.

π11 + · · ·+ π42 = 1

Next, we have a balance equation for each of the states.

π11 + π12 = 0.8π11 + 0.8π12 + 0.8π21 + 0.8π31 + 0.8π41

π21 + π22 = 0.2π11 + 0.2π12 + 0.8π21 + 0.2π21 + 0.2π31 + 0.2π41

π31 + π32 = 0.2π22 + 0.6π32

π41 + π42 = 0.4π32 + π42

and all the variables must be nonnegative.
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Letting x = (π11, . . . , π41), the LP can be written as

max
(
2500 4000 2500 3000 2500 2000 2500 1000

)
x

subject to
1 1 1 1 1 1 1 1
0.2 0.2 −0.8 0 −0.8 0 −0.8 0
−0.2 −0.2 0.2 0.8 −0.2 0 −0.2 0
0 0 0 −0.2 1 0.4 0 0
0 0 0 0 0 −0.4 1 0

x =


1
0
0
0
0


x ≥ 0.

Solving the LP

R contains a package lpSolve that interfaces with the open source LP Solver to
solve linear and integer programs. To set up our problem, we first load the library,
installing the package if necessary.

# install.packages("lpSolve")
library(lpSolve)

Next we put the vector for the objective function, the matrix and vector for the
inequalities, and the type of inequality or equality into variables.

f.obj <- c(2500, 4000, 2500, 3000,
2500, 2000, 2500, 1000)

#f.obj <- c(500, 4000, 500, 3000,
# 500, 2000, 500, 1000)
f.con <- matrix(c(
1, 1, 1, 1, 1, 1, 1, 1,
0.2, 0.2, -0.8, 0, -0.8, 0, -0.8, 0,
-0.2, -0.2, 0.2, 0.8, -0.2, 0, -0.2, 0,
0, 0, 0, -0.2, 0.4, 1, 0, 0,
0, 0, 0, 0, 0, -0.4, 0, 1),
byrow = TRUE, nrow = 5)

f.dir <- rep("=", 5)
f.rhs <- c(1, 0, 0, 0, 0)

Now we are ready to solve the LP.

soln <- lp("max", f.obj, f.con, f.dir, f.rhs)
soln$solution

## 0.00000000 0.66666667 0.08333333 0.16666667
## 0.08333333 0.00000000 0.00000000 0.00000000
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soln

## Success: the objective function is 3583.333

So how do we figure out our policy from this? Recall that πid = πiqi(d) and
πi =

∑
d∈D(i) πid. Using this with

x∗ = (0, 2/3, 1/12, 1/6, 1/12, 0, 0, 0),

for instance, we get that π2 = 1/12 + 1/6 = 3/12 = 1/4. Overall, we get that

(π1, π2, π3, π4) = (2/3, 1/4, 1/12, 0, 0).

Now we can solve for the qi(d). For instance,

π21 = π2q2(1)⇒ 1/12 = (1/4)q2(1),

so q2(1) = 1/3.
Now we know q1(1)π1 = π11 = 5/6, so q1(1) = 1. Similarly, we can calculate

i d qi(d)

1 1 0
1 2 1
2 1 1/3
2 2 2/3
3 1 1
3 2 0.

q1(1) = 1, q1(2) = 0, q2(1) = 0, q2(2) = 1.

Therefore, the optimal policy is

State P Never realign
State A Realign with probability 1/3
State S Always realign
State B Always realign.

Note that the last state will never be reached with this policy unless the printer
starts in that state, so we choose to realign at that point.

Problems

37.1 Suppose that there are three states {1, 2, 3}. For states 1 and 2 there are two
decisions {a, b}, and in the third state there are three decisions {a, b, c}.
Say

π1,a = 0.2, π1,b = 0.2, π2,a = 0.1, π2,b = 0.25, π3,a = 0.05, π3,b = 0.1.

What is π3,c?
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37.2 Suppose there are two states {1, 2} and two decisions for each state {a, b}
with

π1,a = 0.3, π1,b = 0.1, π2,a = 0.05.

What is π2,b?





Part IX

Introduction to Quasi-Monte

Carlo
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Chapter 38

Reducing variance from simulation

Question of the Day

Suppose that I wish to estimate E[U2
i ] where Ui are iid Unif([0, 1]) random vari-

ables. Is there a better way than just using

U2
1 + · · ·+ U2

1

n
?

Summary

• Quasi-Monte Carlo (QMC) algorithms use random variables that are iden-
tically distributed but not necessarily independent to build faster algorithms
for estimation.

• For U uniform over [0, 1], 1− U is an antithetic random variable. Since
U and 1−U are negatively correlated, this can reduce variance of estimates
in some simulations.

• A randomly shifted grid can generate uniforms by taking a grid of equally
separated values, and then shifting it a random amount. The result is a set
of values that are all uniformly distributed, but more evenly spaced than
would be expected by chance.

Since the earliest computers, generating random variables has been considered
one of the longest operations. Today it requires much more time to generate a
random variate than to calculate something like a cosine or natural logarithm,
while additions and multiplications are even faster.

311
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So it is not unusual to try to get the most out of the random variables that we
do use. Recall that if we use

â =
m(U1) + · · ·+m(Un)

n

to estimate a = E[m(U)], then the standard deviation in the result will be
SD(m(U))/

√
n. So we can improve the estimate by making the standard deviation

smaller.

38.1 Antithetic random variables

One of the simplest (and yet very effective) approaches is whenever a random
variable Ui ∼ Unif([0, 1]) is used, to also use 1− Ui. This takes advantage of the
following simple fact.

Lemma 4
If U ∼ Unif([0, 1]), then 1− U ∼ Unif([0, 1]) as well.

Definition 152
If U ∼ Unif([0, 1]), then the pair (U, 1− U) form antithetic random
variables.

For the question of the day,
U2
1 + · · ·+ U2

1

n

and
(1− U1)

2 + · · ·+ (1− U1)
2

n

are both unbiased estimators of E[U2
1 ]. Therefore, their average is also an unbiased

estimator of E[U2
1 ].

Another way to view this is to let

Wi =
U2
i + (1− Ui)

2

2
.

Then E[Wi] = E[U2
i ].

Note that if U is larger, 1 − U is smaller. So averaging the antithetic pair
[U2+(1−U)2]/2 gives a result that is closer to the true average than either alone.
We can analyze this precisely by considering the variance of the original estimate
versus the variance of the antithetic estimate.

Let Y = U2
i . Then the variance of Y is

E[Y 2]− E[Y ]2 = E[U4
i ]− E[U2

i ])
2

= (1/5)− (1/3)2

= 0.08888 . . .
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On the other hand, the variance ofW is

E[W 2]− E[W ]2 = E[((U2 + (1− U)2)/2)2]− E[W ]2

= E[((2U2 − 2U + 1)/2)2]− E[W ]2

= (1/4)[2E[U2]− 2E[U ] + 1]− (1/3)2

= (1/4)[2/3]− (1/3)2

= (1/6)− (1/3)2

= 0.05555 . . .

Recall a formula from probability theory.

Fact 56
For random variables X and Y with finite variance,

V((X + Y )/2) =
V(X) + V(Y )

2
+ Cov(X,Y ).

So if X and Y have negative covariance (as U2 and (1 − U)2 do) then the
variance of the average will be smaller. Otherwise, if the covariance is positive
then the result will be worse than before!

38.2 Quasi Monte Carlo

We can take this idea one step further by using quasi Monte Carlo methods.

Definition 153
A quasi Monte Carlo (QMC) uses random variables that are identically
distributed but not independent to build faster algorithms for estimation.

Define the fractional part function as follows.

Definition 154
The fractional part function is defined as

fpf(x) = x− ⌊x⌋.

So for example, fpf(1.32) = 0.32, fpf(4) = 0, fpf(
√
2) = 0.4142 . . ..

A nice fact about uniforms over [0, 1] is that if you add any constant and take
the fractional part, you are left once more with a uniform over [0, 1].

Fact 57
If U ∼ Unif([0, 1]) and c ∈ R, then fpf(U + c) ∼ Unif([0, 1]).
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Note that this means that for any n, and a single uniform U ∼ Unif([0, 1]),

U, fpf(U + 1/n), fpf(U + 2/n), . . . , fpf(U + (n− 1)/n),

are all uniform over [0, 1]!
We have taken a single random draw and managed to create n different uniforms

from them. This gives us an estimate of E[U1]:

âQMC =
n−1∑
i=0

fpf(U + i/n)2

n

For example, if U = .72 . . . and n = 4, then our estimate would be

âQMC =
0.72 . . .2 + 0.97 . . .2 + 0.22 . . .2 + 0.47 . . .2

4
.

How well does this perform? It is much more difficult to analyze the error
in this method than the previous approaches. Remember that for the pure Monte
Carlo average, the error is

Θ(1/
√
n),

where the constant factor is SD(m(U)).
For the QMC approach, the error is

O

(
ln(n)√

n

)
which can be much smaller for large n.

Example 59
The basic MC approach for E[U2] gives a standard deviation of
0.08888 . . . divided by the square root of n. By simulating the QMC
approach 1000 times, we find that the standard deviation for QMC is
about as follows.

n standard deviation QMC standard deviation MC

10 0.0394 . . . 0.0281 . . .
100 0.00414 . . . 0.00888 . . .
1000 0.000414 . . . 0.00281 . . .

Note the standard deviation for MC goes down as
√
n while that of QMC goes

down by n. So for even moderate values of n, the QMC will be better. It will also
be faster, because while it does Θ(n) additions and subtractions, it only needs 1
uniform random draw, while MC uses n uniform draws.

Problems



38.2. QUASI MONTE CARLO 315

38.1 If U ∼ Unif([0, 1]), then Y = − ln(U) ∼ Exp(1). LetW = − ln(1− U).

a) What is the distribution ofW ?
b) Find E[Y ] and V(Y ).
c) Find E[(W + Y )/2].
d) Find V((W + Y )/2).

38.2 Suppose for U ∼ Unif([0, 1]), Y =
√
U , and W =

√
1− U .

a) What is the distribution ofW ?
b) Find E[Y ] and V(Y ).
c) Find E[(W + Y )/2].
d) Find V((W + Y )/2).

38.3 Suppose p ∈ (0, 1). LetU ∼ Unif([0, 1]),X = 1(U ≤ p), Y = 1(1−U ≤
p). What is

SD((X + Y )/2)?

38.4 Continuing the last problem.
a. What value(s) of p makes the standard deviation as small as possible,
and how small can it be?
b. What value(s) of p makes the standard deviation as large as possible,
and how large can it be?





Part X
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Chapter 39

Worked problems

1.1 Which of the following are logical statements?

a) The capital of Iowa.
b) 4 > 6.
c) (1(4 > 6) = 1).
d) The temperature at which water boils.

Solution

Parts b and c are statements that are either true or false (actually both
false), making them logical statements.

1.3 Evaluate the following.

a) 1(3 = 4).
b) 1(3 < 4).
c) 1(4 < 3).

Solution

a) 0 .

b) 1 .

c) 0 .

1.5 Given the density fX of a random variable X , state whether X is discrete
or continuous.

a) fX(2) = 0.3, fX(4) = 0.7.
b) fX(x) = 1(x ∈ [0, 1]).
c) fX(0) = 1/3, fX(1) = 1/3, fX(2) = 1/3.
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d) fX(x) = exp(−x)1(x ≥ 0).

Solution

a) Here P(X = 2) = 0.3 and P(X = 4) = 0.7, so this is discrete .

b) This is a continuous function, so the random variable is continuous .

c) Here X is uniform over the set {0, 1, 2}, so is discrete .

d) Here X is exponential with rate 1, and so is continuous .

1.7 Suppose X ∼ Exp(0.1).

a) Find P(X > 10).
b) Find P(X ≤ 10).

Solution

a) This is

P(X > 10) =

∫ ∞

10
0.1 exp(−0.1x)1(x ≥ 0) dx = exp(−1)

= 0.3678 .

b) This is

P(X ≤ 10) =

∫ 1

0
00.1 exp(−0.1x)1(x ≥ 0) dx = 1− exp(−1)

= 0.6321 .

2.1 Suppose A occurs with probability 0.3, B occurs with probability 0.7, and
both occur with probability 0.2.

a) Find P(A|B).
b) Find P(B|A).

Solution

a) This will be

P(A|B) =
P(AB)

P(B)
=

0.2

0.7
=

2

7
= 0.2857 . . . .

b) This will be

P(B|A) =
P(AB)

P(A)
=

0.2

0.3
=

2

3
= 0.6666 . . . .
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2.3 Suppose D ∼ Unif({1, . . . , 100}).

a) Find P(D = 1|D ≤ 60).
b) Find P(D ≤ 60|D = 1).

Solution

a) By the property of conditional uniforms, [D|D ≤ 60] ∼
Unif({1, . . . , 60}), so 1/60 = 0.01666 . . . .

b) By the property of conditional uniforms, [D|D = 1] ∼ Unif({1}),
so 1/1 = 1 .

2.5 Let X ∼ Exp(0.2).

a) What is the distribution of [X − 3|X > 3]?
b) What is P(X > 5|X > 3)?

Solution

a) By the memoryless property, this is Exp(0.2) .

b) By the survival function of exponentials, this if exp(−0.2 ·(5−3)) =
0.6703

2.7 Let (B1, B2, B3) be the first three draws from a stream of iid random
variables where P(Bi = 1) = 0.3, P(Bi = 0) = 0.7 (writeBi ∼ Bern(0.3)
as this is a Bernoulli distribution.)

a) What is P(B1 = 1, B2 = 1)?
b) Find P(B1 +B2 +B3 = 1).

Solution

a) Since the Bi are iid, and the first i stands for independent,

P(B1 = 1, B2 = 1) = P(B1 = 1)P(B2 = 1) = (0.3)(0.3) = 0.09000 .

b) There are three ways this can happen, (1, 0, 0), (0, 1, 0), (0, 0, 1).
Each way happens with probability (0.3)(0.7)2 so the overall chance
is 3(0.3)(0.7)2 = 0.4410 .

3.1 Suppose customer 5 enters service at time 7.1 and finishes service at time
9.6. What is customer 5’s service time?
Solution

This will be 9.6− 7.1 = 2.500 .
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3.3 Suppose three customers, a, b, and c arrive to a queue in that order.

a) Under a FIFO queue discipline, in what order are the customers
served?

b) Under a LIFO queue discipline, in what order are the customers
served?

Solution

a) In FIFO, the customers are served in the order they arrive, so
(a, b, c) .

b) LIFO, the last customer to arrive is served first, so (c, b, a) .

3.5 If the first three interarrival times are A1 = 0.4, A2 = 1.34, and A3 =
0.013, what are the first three arrival times?
Solution

The first three times will be

T1 = A1 = 0.4000

T2 = A1 +A2 = 1.740

T3 = A1 +A2 +A3 = 1.753

3.7 For interarrival times that are uniform over [0, 2] hours, what is the arrival
rate?
Solution

The average of X ∼ Unif([0, 2]) is just (0 + 2)/2 = 1. Remembering the
units, that makes the expected time between arrivals 1 hours, and so the
arrival rate is 1/[1 hour], or 1/hour .

4.1 Suppose E[X] = 4.2 and E[Y ] = 5.6. What is E[2X − 4Y ]?
Solution

Using linearity of expectations,

E[2X − 4Y ] = 2E[X]− 4E[Y ] = 2(4.2)− 4(5.6) = -14 .

4.3 Find the infimum of the following sets.

a) S1 = {1, 2, 3}.
b) S2 = {1, 2, 3, . . .}.
c) S3 = {x : x > 0, x < 5} =]0, 5[.
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Solution

a) Since this set is finite, it is just the minimum value 1 .

b) Here 1 is a lower bound and is the largest lower bound, so 1 .
c) Here 0 is a lower bound (since for all x in S, x > 0) and any s > 0

bigger than 0 is not a lower bound since s/2 is smaller and in S1. So
0 .

4.5 Say that interarrival times for a G/G/2 queue have density 20x3(1 −
x)1(x ∈ [0, 1]) when measured in minutes. Lower bound the expected
number of customers to arrive in the first ten minutes.
Solution

The average interarrival time is

E[Ai] =

∫ ∞

−∞
x20x3(1− x)1(x ∈ [0, 1]) dx

= 2/3,

hence λ = 3/2, and the lower bound is

(3/2)(10)− 1 = 14 .

4.7 Suppose interarrival times for a G/G/2 queue are 1 minute with proba-
bility 0.3, 2 minutes with probability 0.6, and 3 minutes with probability
0.1.

a) Lower bound the expected number of customers to arrive in the first
hour.

b) Lower bound the expected number of customers to arrive in the first
two hours.

Solution

The expected interarrival time is

(1)(0.3) + (2)(0.6) + (3)(0.1) = 1.8,

so the arrival rate is 1.8/min.

a) One hour is 60 minutes, so this is (60/1.8)(1)− 1 ≈ 32.33 .
b) Note that two hours is 120 minutes, so this is

(120/1.8)− 1 ≈ 65.66 .
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5.1 If P is a Poisson process of rate 2.5 per second over [0,∞), what is the
chance that there are at most 3 points of P in the first 2 seconds?
Solution

Multiplying the rate (2.5 per second) times the length of the interval (2
seconds) gives 5. Hence the number of points of P in the first two seconds
is Poisson distributed with parameter 5. Let

N = #(P ∩ [0, 2])

denote the number of arrivals in the first two seconds. Then

P(N ≤ 3) = P(N = 0) + P(N = 1) + P(N = 2) + P(N = 3)

= exp(−5)
[
50

0!
+

51

1!
+

52

2!
+

53

3!

]
≈ 0.2650 .

5.3 Consider anM/G/2 queue with arrival rate 3 per minute.

a) What is the average number of arrivals in the first minute?
b) What is the chance that there are at least 3 arrivals in the first minute?
c) What is the chance of no arrivals in the first 1.5 minutes?

Solution

a) Since the arrival rate is 3 per minute, this average is just 3 .
b) Here the knowledge that the number of arrivals will be Poisson

distributed with parameter (3/min)(1 min) = 3 is needed. ForN[0,1]

denoting the number of arrivals in the first minute,

P(N[0,1] ≥ 3) = 1− P(N[0,1] ≤ 2)

= 1− P(N[0,1] = 0)− P(N[0,1] = 1)− P(N[0,1] = 2)

= 1− exp(−3)[1 + 3 + 32/2!]

= 0.5768 . . . .

c) This is the chance that the first arrival occurs after time 1.5. Since
the first arrival has an exponential distribution of rate 3, this is

exp(−3 · 1.5) = 0.01110 . . . .

5.5 If the interarrival times between customers are modeled as iid Exp(8.4/s),
how many seconds (on average) are there between customer arrivals?
Solution

The average of an exponentially distributed random variable is one over
the rate parameter, so 1/[8.4/s] ≈ 0.1190 s .
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5.7 For anM/G/2 queue of arrival rate λ, what is the distribution of the time
of the third customer arrival?
Solution

The firstM tells us that the arrival distribution is λ. Hence the time of the
third arrival is the sum of three independent exponential random variables,
making it Erlang(3, λ).

6.1 A queuing network’s overall rate is limited by what type of server?
Solution

Bottleneck.

6.3 An entry ramp to the freeway uses a stoplight that lets traffic on at a rate
of 2 cars every 3 seconds. If there are 24 cars waiting to get on the freeway,
on average how long are you going to have to wait?
Solution

Cars are entering the freeway at rate 2 per 3 seconds, or (2/3) per second.
Hence the time to enter the freeway will be 24/(2/3 per s) = 36 s .

6.5 In the previous problem, what are the bottleneck servers?
Solution

In part (a), the servers were in parallel, so both Server 1 and Server 2 are
bottlenecks.
In part (b), the servers were in series, so only Server 2 is the bottleneck.

6.7 What is the capacity of the network in the previous problem? [In other
words, what is the overall service rate of this network.]
Solution

Server 1 and 2 are in parallel, so their service rates add to give a 10+7 per
minute. Next is Server 3 in series, so the overall rate is theminimum of their
service rates, so min{17, 15} = 15. So the overall rate is 15 per minute.

7.1 The long term time customers spend waiting in a G/G/5 queue is 15
minutes, and the average long term queue length is 18.4.

a) What is the arrival rate to this queue?
b) What is the expected time between arrivals in this queue?

Solution

a) Here L = 18.4, andW = 15 minutes, so the arrival rate is

18.4

15 min = 1.226/min .
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b) The expected time between arrivals is just the multiplicative inverse
of the arrival rate, or

15 min
18.4

= 0.8152 min .

7.3 A cafeteria has several queues (for food gathering and payment). If the
average number of customers in the cafeteria is 20.3 during the lunch hour
(call this time [0, 1] hours), and each customer spends an average of ten
minutes in the cafeteria, what is λ1?
Solution

Little’s law for finite times says that λtWt = Lt. Given the average number
of customers is L1 = 20.3 and W1 = 1/6 hour, then

λ1 =
20.3

1/6 hour = 121.8 per hour .

7.5 Let n(s) denote the number of customers in a queuing system. Suppose
that the system starts with 2 customers. Customer 1 finishes service at
time 0.8, Customer 3 arrives at time 1.4, Customer 4 arrives at time 1.8,
Customer 2 finishes service at time 3.3, and Customer 3 immediately enters
service but does not finish before time 5.
Draw a graph of n(s) for s ∈ [0, 5].
Solution

This looks as follows.

7.7 Jobs arrive at a computer server at 11.4 per second. If the average number
of jobs waiting at any moment is 14.2, what is the average amount of time
a job waits before being served?
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Solution

Here L = 14.2 and λ = 11.4 per second, so

W =
L

λ
=

14.2

11.4/s
= 1.245 sec .

8.1 The capacity utilization is usually denoted by what symbol?
Solution

ρ

8.3 For a G/G/4 queue with capacity utilization 65%, what is the long run
idle time?
Solution

This will be 1− 0.65 = 0.35 = 35% .

8.5 Suppose aG/G/4 queue has arrival rate 4 per min, and the average service
time for a single server is 0.8 minutes. What is the capacity utilization for
the queue?
Solution

There are 4 servers, and each server has rate 1/0.8 minutes. So

ρ =
λ

µ · s =
4/min

4/0.8 min = 0.8000

8.7 For a G/G/s queue with arrival rate 4.2 per second and the expected
time for a single server to serve a customer of 1.9 seconds, what is the
maximum number of servers we can have and still have less than 50% long
run idle time?
Solution

Here the service rate for a single server is 1/1.9 per second. Hence the
idle time is

1− ρ = 1− 4.2

s/1.9
≤ 0.5,

so
0.5 ≤ (4.2)(1.9)/s⇒ s ≤ (4.2)(1.9)/(0.5) = 15.96.

Hence there can be at most 15 servers and still have long run idle time
below 50%.

9.1 For an M/M/1 queue with arrival rate 3 per minute and service rate 5
per minute, what is the steady state length of the queue?
Solution
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Here the capacity utilization is

ρ =
3 min
5 min = 0.6.

This makes the steady-state length of the queue

ρ

1− ρ
=

0.6

1− 0.6
= 1.500 .

9.3 For an M/M/1 queue with arrival rate 3 per minute and service rate 5
per minute, what is the steady state probability there are two or fewer jobs
in the system?
Solution

The long term probability of i jobs in the system is (1−ρ)ρi. Here ρ = 3/5.
Therefore, the probability of getting 0, 1, or 2 jobs in the steady state is

0.4[1 + 0.6 + 0.62] = 0.7840 .

9.5 The help desk from the last problem upgrades to two servers (each has the
25 per hour service rate). Now what is the probability that there are four
or more customers in the queue?
Solution

With two servers, the capacity utilization is now

ρ =
20

2 · 25 = 0.4.

The steady state distribution for theM/M/2 queue is π(0) = (1−ρ)/(1+
ρ) and π(i) = 2ρi(1− ρ)/(1 + ρ) for i ≥ 1. So

π(0) =
1− 0.4

1 + 0.4
=

6

14
,

and

π(1) = 2(0.4)
6

14

π(2) = 2(0.4)2
6

14

π(3) = 2(0.4)3
6

14
.

Hence the total chance of having four or more customers in the queue is

1− 6

14
[1 + 0.8 + 0.32 + 0.128] = 0.03657 . . . .
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9.7 Draw a graphical model of the continuous time Markov chain that models
theM/M/3 queue with arrival rate λ and single server service rate µ.
Solution

When there is one job in the queue, one server is working and the service
rate is µ. When there are two jobs, two servers are working in parallel,
and the service rate is 2µ. When there are three jobs, three servers are
working in parallel, and the service rate is 3µ. So the CTMC looks like
this.

0 1 2 3 · · ·

λ λ λ λ

3µ3µ2µµ

10.1 Suppose that data are stored in X1, X2, . . . , Xn.

a) The function M = max(X1, . . . , Xn) is an example of a
.

b) For (X1, X2, X3) = (4.2, 5.1,−1.6), findM .

Solution

a) This is a function of data, so is a statistic .
b) For this data, the maximum value is 5.1 .

10.3 Try out the following commands in R, and record the final result.
a <- c(4.2, 5.1, -1.6)
mean(a)

Solution

The result is

[1] 2.566667

10.5 Write an R command to put the following data

(2.3, 1.7, 2.3, 0.6)

into a vector named data.
Solution

The command to use is
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data <- c(2.3, 1.7, 2.3, 0.6)

10.7 Consider data {2.3, 1.7, 2.3, 0.6}.

a) Find the sample average by hand.
b) Find the sample average using R.
c) Find the sample standard deviation using R.

Solution

a) This is
2.3, 1.7, 2.3, 0.6

4
= 1.725 .

b) It can be found in R using

x <- c(2.3, 1.7, 2.3, 0.6)
mean(x)

## [1] 1.725

c) This can be found with

sd(x)

## [1] 0.801561

So the answer is 0.8015 .

11.1 In an event representation graph, what do nodes represent?
Solution

The nodes of an ERG represent events .

11.3 In the G/G/1 queue above:

a) What event(s) can the Enter event schedule?
b) What event(s) can the Start event schedule?

Solution

a) Enter can schedule Enter, Start .

b) Start can schedule Leave .
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11.5 Events change the of the system in a Discrete Event Sim-
ulation.
Solution

Events change the state of the system.

11.7 Suppose in the DES for the G/G/1 queue above, ta ∼ Unif([0, 4]) and
ts ∼ Unif([1, 2]) are both in terms of minutes

a) What is the arrival rate?
b) What is the service rate?
c) What is the capacity utilization?

Solution

a) The average of a uniform over an interval is the arithmetic average
of the endpoints. So (4 + 0)/2 = 2 minutes. Hence the arrival rate
is 0.5000 per min .

b) Here the average service time is (1+2)/2 = 3/2minutes. Therefore,
the service rate is 0.6666 . . . per min .

c) The capacity utilization is the arrival rate divided by the service rate,
so (1/2)/(1/1.5) = 0.7500 .

12.1 When an event executes, it can change the state, cancel existing events, or
new events.

Solution

Executing events has the possibility of scheduling new events.

12.3 If event A executes at time 1.4 and rolls that event B is to be scheduled 2.3
time later, when is event B scheduled for?
Solution

The time event B will be scheduled for will be 1.4 + 2.3 = 3.700 .

12.5 Before the next event is executed, the clock needs to be |.
Solution

The clock needs to be advanced .

12.7 Deadlock occurs when if either A or B goes first, the other event will not
have the it needs to execute properly.
Solution

Deadlock occurs when resources are not being properly released.
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13.1 True or false: strings must always be enclosed in single quotes.
Solution

False, strings can be enclosed in either single or double quotes.

13.3 In R Markdown, mathematics can be included using the
typesetting system.
Solution

R Markdown uses LATEX to typeset mathematics.

13.5 True or false: the YAML header of an R Markdown file is at the beginning
of the file.
Solution

This is true .

13.7 True or false: functions can be assigned to variables in R.
Solution

This is true .

14.1 A data type that is a table that holds extra information is called what in
the tidyverse?
Solution

This is called a tibble .

14.3 The command slice(1, A) returns the row of the
tibble A.
Solution

This would return the first row.

14.5 The function to sort the rows of a tibble with respect to a variable is called
.

Solution

This is the arrange command.

14.7 What function adds a new row to a tibble?
Solution

This is the add_row function.

15.1 Consider the following code.
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ta <- function() return(rexp(1, rate = 4.3))

If function ta is the distribution of interarrival times, the distribution the
service time is a general distribution, and there are 3 servers, what is the
notation for this queue?
Solution

Because the interarrivals are exponential, this would be a M/G/3 queue.

15.3 True or false: resetting the seed to the same value at start of two simulations
will result in the same random choices.
Solution

This is true .

15.5 Running the following code would get output close to what value?

mean(runif(100000))

Solution

This will output a result close to the mean of a uniform over 0 to 1, so will
be about 0.5000 .

15.7 Suppose the queue length statistics are stored in a tibble df with columns
named queue_length and time_spent. Write code to create a bar
plot of this data where the bars are filled with blue color and the outline
of the bars is black using the classic theme.
Solution

This can be done with

statistics |>
ggplot() +

geom_bar(aes(x = queue_length, y = time_spent),
stat = "identity", color = "black",
fill = "blue") +

theme_classic()

16.1 A graph where the nodes are partitioned into two sets, and edges must
have their head and tail in different sets, is called .
Solution

This kind of graph is called bipartite .
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16.3 The following questions are about unweighted Petri Nets.

a) Transitions fire when there at least token(s) in all input
places.

b) True or false: every state is reachable in a Petri Net.
c) True or false: A Petri Net is allowed to fire any enabled transition.
d) True or false: A Petri Net can be represented by a labeled bipartite

graph.

Solution

a) This is 1 for basic Petri Nets.

b) This is F .

c) This is T .

d) This is T .

16.5 An inhibitor arc a transition from firing when the source
place is occupied.
Solution

Such an arc prevents the transition from firing.

16.7 If the transition fires after a random amount of time, the Petri Net is called
.

Solution

This is a stochastic Petri Net.

17.1 True or false: higher utility is good.
Solution

True. Utility measures the desirability of a result, making a higher utility
result better.

17.3 True or false.

a) Decision variables are variables that you control.
b) State variables can be either variables that you control or variables

that you do not control.

Solution

a) True. This is the definition of decision variables.

b) False. State variables are always outside of your control.
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17.5 Suppose the utility of outcome s1 is 4, while the utility of outcome s2 is
4.2. Which outcome is preferred?
Solution

The second outcome has higher utility, so it is preferred.

17.7 Consider the following payoff matrix:

a1 a2 a3 a4

Θ1 4 2 0 6
Θ2 2 6 0 5
Θ3 1 3 7 3

a) What decision should you make using the Maximin approach?
b) What decision should you make using the Maximax approach?
c) What decision should you make using the Laplace Principle of Insuf-

ficient Reason approach?

Solution

a) The vector of minima of the columns is (1, 2, 0, 3), so a4 should be
made here.

b) The vector maxima of the columns is (4, 6, 7, 6), so a3 should be
made here.

c) The sums of the columns are (7, 11, 7, 14), so using Laplace’s ap-
proach a4 should be made.

17.9 Consider the following payoff matrix:

a1 a2 a3 a4

Θ1 4 2 0 6
Θ2 2 6 0 5
Θ3 1 3 7 3

a) What decision should you make using the Hurwicz principle? [For
every α ∈ [0, 1], state what decision is made.]

b) What decision should be made using the Savage minimum regret
principle?

Solution
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a) Hurwicz depends on the value of α. The Hurwicz measure is

h = α
(
4 6 7 6

)
+ (1− α)

(
1 2 0 3

)
=
(
3α+ 1 4α+ 2 7α 3α+ 3

)
.

Graphing over α ∈ [0, 1] gives the idea of which is best:

0 1

6

3

For all α ∈ [0, 1] 3α+ 1 < 4α+ 2. Also 4α+ 2 ≤ 3α+ 3 since the
inequality holds at α = 0 and α = 1. That leaves 7α and 3α + 3.
Note

7α− (3α+ 3) = 4α− 3

which is nonnegative when α ≥ 3/4 and nonpositive when α ≤ 3/4.
Hence the decision that should be made is:

a4 when α ∈ [0, 0.7500], and a3 when α ∈ [0.7500, 1].

b) To work out the Savage decision, remember that for a given state of
nature i and decision j, for payoff A(i, j), the regret is then

rij =

[
max
j′

A(i, j′)

]
−A(i, j).

In other words, it is the best decision payoff for that particular state
of nature minus the payoff actually achieved.
This gives the following matrix:

a1 a2 a3 a4

Θ1 2 4 6 0
Θ2 4 0 6 1
Θ3 6 4 0 4

The maximum of each column is(
6 4 6 4

)
so the decisions that minimize this maximum regret are a2 and a4 .



337

17.11 Consider the following payoff matrix:

a1 a2 a3 a4

Θ1 4 2 0 6
Θ2 2 6 0 5
Θ3 1 3 7 3

Research indicates that Θ1 and Θ2 each have a 20% chance of occurring,
while Θ3 has a 60% chance. What decision maximizes expected utility?
Solution

The expected utility of the payoff matrix is

(0.2)(row 1)+ (0.2)(row 2)+ (0.6)(row 3) =
(
1.8 3.4 4.2 4.0

)
.

So once again, a3 emerges as the winner!

18.1 True or false: Regret is the negative of utility.
Solution

False. Regret is the difference between the payoff and the best possible
payoff given a strategy.

18.3 For each of the following, say whether or not this vector is part of the
probability simplex.

a) (0.3, 0.5, 0.2)

b) (0.3, 1.2,−0.5)
c) (0.1, 0.1, 0.2)

d) (1− ϵ, ϵ/2, ϵ/2) for ϵ ∈ [0, 0.1).

Solution

a) True

b) False

c) False

d) True

18.5 Suppose that an actor’s preferences for lotteries are complete, transitive,
continuous, and independent with utility function U .

a) Suppose for lotteries L and M , U(L) ≤ U(M). What can be said
about the preferences between L and M?
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b) Suppose for lotteries L and M , U(L) < U(M). What can be said
about the preferences between L and M?

Solution

a) This would make L ⪯M .

b) This would make L ≺M .

18.7 If lotteries are transitive, and for lotteriesA, B, and C , A ⪯ B andB ⪯ C
what can be said about the preference between A and C?
Solution

By transitivity, A ⪯ C .

19.1 If u(x) =
√
x and the payoff is X ∼ Unif([0, 1]), what is the average

utility?
Solution

2/3 ≈ 0.6666 .

19.3 Suppose N = 0.4L + 0.6M , and X ∼ Bern(0.4) is used to determine
which of the two lotteries is played in the mixture. IfX = 1, which lottery
is played instead of N?
Solution

The lottery L is played with probability 0.4, the same probability that
X = 1.

19.5 True or false: for u a utility function, 3u+6 gives the same preferences as
u.
Solution

True . Note that u(A) < u(B) if and only if 3u(A) + 6 < 3u(A) + 6, so
preferences are preserved by the affine function with positive coefficient
on the u.

19.7 Suppose f is an affine function with f((1, 1)) = (4, 2), f((1, 2)) = (5, 3).

a) Using the usual rules for scaling and adding vectors in R2, what does
0.4(1, 1) + 0.6(1, 2) equal?

b) Find f((1, 1.6)).

Solution

a) Here
(0.4)(1, 1) + (0.6)(1, 2) = (1.000, 1.600) .
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b) Let x1 = (1, 1) and x2 = (1, 2), p1 = 0.4 and p2 = 0.6. Then
p1x1 + p2x2 = (1, 1.6). So

f((1, 1.6)) = f(p1x1 + p2x2)

= p1f(x1) + p2f(x2)

= 0.4(4, 2) + 0.6(5, 3)

= (4.600, 2.600) .

20.1 Avatar Pharmaceuticals is thinking about whether or not to pursue a new
product. Not pursuing the product costs nothing. If they do pursue the
product and it is successful, there is a 30% chance that it will make 1.2
million dollars, but if it is a failure it will cost the company 0.3 million
dollars. If money is treated as utility, what should Avatar do to maximize
their utility?
Solution

Let D1 denote the decision to pursue or not pursue, and R1 be the ran-
dom choice of whether it is successful or failure given pursuit. Then the
expected utility of pursuit is

(0.3)(1.2) + (0.7)(−0.3) = 0.15,

which is greater than the expected utility of non-pursuit, which is 0. Hence
the decision should be to pursue the product.
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20.3 A business is testing out a new wind turbine design. It would take
$10 000 000 to develop the design fully. If demand for green energy is
good (20%) the business stands to make 30 million dollars, but if it is
medium (50%) they will only make 12 million, and if it is bad (30%), they
will only make 2 million.

a) Draw the decision tree for this problem.

b) What decision should the business make?

Solution

a) As with most of these situations, there are several equivalent ways
to describe the decision tree. One possibility is:

Design
Product

Don’t Design
Product

0

Good 20% 20

Med 50%
2

Bad 30%
-8

where the values are measured in millions of dollars.

b) Reducing the tree means taking the random outcome branch and
replacing it with its expected value:

(0.2)(20) + (0.5)(2) + (0.3)(−8) = 2.6

which gives
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Design
Product

2.6

Don’t Design
Product

0

At this point the decision to Design the product results in more
expected utility than not designing the product, so the optimal design
is to Design the product .

20.5 After working with a consultant, Bender Incorporated has built the follow-
ing decision tree. What decisions at D1 and D2 would maximize expected
utility? (Write *up* or *down* for each of the two decisions.)

D1

D2

4.7

30%

50% 4.1

20% -2.7

5.0

2.3

Solution

Start with D2: since each outcome is fixed, the decision should be *up*
since 5.0 > 2.3.
Then the expected outcome at the only random node is

(0.3)(5) + (0.5)(4.1) + (0.2)(−2.7) = 3.01.

This is worse than 4.7, so the decision for D1 is down. To summarize:
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Node Decision

D1 down
D2 up

20.7 Suppose that a venture capital (VC) firm has an opportunity to either buy
into an IPO for an SSD maker or wait and see how the product performs.
If they wait, the SSD maker might sell out its shares, and the VC firm will
not be able to invest. The result will be making nothing, and this happens
with probability 50%.

If shares remain, then there is a further 35% chance that the shares will
be reduced in price, leading to a 23 million dollar windfall. But with 65%,
the VC firm will make nothing.

On the other hand, if the VC makes its decision right away, then it must
immediately make the next decision whether to buy or not to buy. If it
decides to not buy, then again it makes nothing. If it decides to buy, there
is an expected 60% chance that it still makes the 23million dollar windfall,
but now with 40% the VC firm loses 5 million dollars.

Draw a decision tree with D1 being the first decision to buy or not buy
and D2 being the second decision to buy in or not buy in.

Solution
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D1

R1

D2don’t wait

wait

R3
buy

reduced
60% 23

not reduced
40% -5

don’t buy
0

R2

scooped
65%

0

35%

reduced
60% 23

not reduced
40%

0

21.1 A survey question reads

Over 80% of U.K. members surveyed favored greater government expansion.
What percentage of U.K. voters do you believe also favored expansion?

This question is an example of what type of problem in psychological
decision making?
Solution

This is an example of anchoring . In general, you should avoid having
numbers in your survey questions unless absolutely necessary.
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21.3 A company has seen market data that has a good outcome four quarters in
a row. They assume that a bad quarter must be coming. This is an example
of what fallacy?
Solution

Assuming that an alternate outcome is due is the Gambler’s fallacy .

21.5 Consider lottery N where everyone participating wins 100 dollars, and
lottery M where 81% win 100 dollars, 2% win nothing, and the remaining
17% win 250 dollars. Among those surveyed, there is a clear preference for
lottery N over lotteryM .
In lottery R, 81% win nothing, but 19% win 100 dollars. In lottery S, 83%
win nothing, but 17% win 250 dollars. Among those surveyed, there is a
clear preference for lottery S with lottery R.
Prove that these choices are not compatible with any utility function.
Solution

If expected utility maximization was being used, then there exists utilities
U(0), U(100), and U(250). The expected utility is then used to determine
preferences.
The expected utility for each lottery are

EN [U ] = U(100)

EM [U ] = 0.81U(100) + 0.02U(0) + 0.17U(250)

ER[U ] = 0.81U(0) + 0.19U(100)

ES [U ] = 0.83U(0) + 0.17U(250)

Then

ES [U ]− ER[U ] = 0.02U(0) + 0.17U(250)− 0.19U(100),

and

EN [U ]− EM [U ] = 0.19U(100)− 0.02U(0)− 0.17U(250).

Note that one is the negative of the other. If expected utility was being
used to determine preferences, then both would be positive, which cannot
happen. Therefore, the users in the survey are not using expected utility
maximization.

21.7 Consider a lottery A with outcomes of 25 dollars and 5 dollars with prob-
abilities 60% and 40$ respectively. Similarly, lottery B is always worth 10
dollars. If an actor prefers to play B to A, show that this is incompatible



345

with any affine utility function, that is, one of the form U(m) = am+ b
for any positive constant a andm the monetary amount.
Solution

Let U be an affine utility function. Then

EA[U ] = 0.6(25a+ b) + 0.4(5a+ b) = 17a+ b

and
EB[U ] = 10a+ b

Since a > 0, 17a+ b > 10a+ b, so the user would prefer lottery A if they
were using this utility function.
In fact, they prefer B to A, so they cannot be using utility maximization
with an affine utility function to make their choice.

22.1 Suppose that E[X] = 4.3 and E[Y |X] = 2X . What is E[Y ]?
Solution

By the Fundamental Theorem of Probability, this is

E[Y ] = E[E[Y |X]] = E[2X] = 2E[X] = 8.600 .

22.3 Suppose T ∼ Exp(λ), where λ ∼ Unif([1, 5]).

a) What is E[T |λ]?
b) What is E[T ]?

Solution

a) This is 1/λ .

b) Using the Law of the Unconscious Statistician, this is∫ 5

1

1

4

1

s
ds = (1/4)(ln(5)− ln(1)) = 0.4023 . . . .

22.5 An investor believes there is a 30% chance of tariffs being enacted on
aluminum soon. If the tariffs are put in place, then purchasing stock in an
aluminum mining company will result in a $2 000 000 profit. if the tariffs
are not put in place, then the investor will lose $500 000.

a) Draw the decision tree for this problem.
b) Should the investor invest?
c) What is the EVPI for I = 1(tariffs are enacted)?



346 CHAPTER 39. WORKED PROBLEMS

Solution

a) The decision tree looks like this:

Invest

Don’t Invest 0

Tariffs 30%
$2 000 000

No Tariffs 70%
-$500 000

b) To determine that, we have to deconstruct the tree. The random node
subtree can be replaced with its expected utility:

(2 · 106)(0.3) + (−0.5 · 106)(0.7) = 250 000,

Since 250 000 > 0, the expected utility hypothesis decision is to
invest .

c) Now the random value comes first in the decision tree:

Tariffs 30%

No Tariffs 70%

Invest $2 000 000
Don’t Invest 0

Invest -$500 000
Don’t Invest 0

For the top path we always invest, and for the bottom one we do not.
Hence the decision tree reduces to
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$2 000 000

$0

Tariffs 30%

No Tariffs 70%

Therefore, the value of this tree is

(2 · 106)(0.3) = 0.6 · 106.

Hence the EVPI is

(0.6− 0.25) · 106 = $350 000 .

22.7 In mathematical finance a call option with strike price K returns S −K if
a stock ends a time period with value S that is greater than or equal to K ,
or nothing otherwise. That is, the payoff of the call as a function ofK is

P = max(S −K, 0)

a) For a stock modeled as S ∼ Unif([75, 150]) and a strike price of
K = 110, what is E[P ]?

b) If the call costs $50 to purchase, should the call be bought? (Use
expected utility maximization with utility equal to monetary value.)

Solution

a) Here

E[P ] =

∫ 150

75

1

75
max(s−110, 0) ds =

∫ 150

110

1

75
(s−110) ds = 10.66 . . . .

b) Given a cost of $50 dollars, the expected return is negative and so
the decision should be not to buy.

23.1 A new disease is spreading! Vaccinations are guaranteed to prevent 90% of
infections but have a 1% chance of causing nausea. Among those infected,
3% will require hospitalization.

a) Write this using a positive frame for the vaccination.
b) Write this using a negative frame for the vaccination.

Solution
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a) The vacination program will keep 97.3% of the population out of
the hospital, but cause 1% of the population nausea. Not vaccinating
will lead to 3% needing hospitalization.

b) The vacination program will still end up with 0.3% of the population
going to the hospital, and 1% of the population will experience
nausea. Not vaccinating only results in 3% hospitalization.

23.3 In 2007, a contest for best pie gave $100 to each of the three top finishers.
In 2008, they gave $500 to first place, $300 to second place, and $150 to
third place. Would you rather have won third place in 2007 or 2008?
Solution

There is no right answer to this question! From a purely utilitarian point
of view, the 2008 third place winner received $150, more than the third
place winner of 2007. However, given that the higher finishers earned
more money, the third place winner of 2008 might regret not doing better,
and so might actually be more unhappy with their reward than the third
place finisher of 2007.

23.5 Suppose that (unknown to the player) there are two envelopes one with
$10 and one with $5. The player is allowed to open one envelope, then
has the choice to stay or switch to the other.
The player decides to use the following strategy: randomly generate a
Cauchy random variable and take the absolute value. This gives a random
variable X with density

fX(x) =
4

τ(1 + x2)
1(x ≥ 0).

The player then plans to open one envelope uniformly at random and see
the value x of money inside. The player then generates X . If X ≤ x, the
player keeps the envelope, otherwise they switch. What is the chance that
they end up with the $10 envelope?
Solution

IfX ≤ 5 they always keep whatever envelope they choose, and ifX > 10
they always switch. Therefore they have a 1/2 chance of winning the
game. IfX ∈ (5, 10] they switch if they have the smaller envelope, so they
always win. Hence the overall probability is

P(win) = (1/2)P(X ≤ 5) + P(X ∈ (5, 10]) + (1/2)P(X > 10)

= (1/2) + (1/2)P(X ∈ (5, 10])

= (1/2)

[
1 +

∫ 10

5

4

τ(1 + x2)
dx

]
= 0.5 + arctan(255/1288)/τ = 0.5311 . . . .
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23.7 Suppose that X ∼ Unif({1, 2, 3, 4}), and two envelopes are presented,
one with X dollars, and one with 2X dollars. You are allowed to select
one envelope, look inside, and then switch if you’d like.

You decide to randomly choose a continuous uniformW over [0, 10]. If the
amount in the envelope is smaller thanW , switch, otherwise keep your
envelope. What is the chance that you end with the larger dollar amount?

Solution

There is a 1/2 chance that the money is in the smaller envelope, in which
case there are four values, each with probability 1/4. For instance, if you
see 3 dollars, then you switch if 3 ≤W , which happens with probability
(10− 3)/(10− 0) = 0.7.

Overall the probability of switching is

(0.25)(9/10) + (0.25)(8/10) + (0.25)(7/10) + (0.25)(6/10) = 0.75.

If you picked the largest envelope with values {2, 4, 6, 8}, the chance of
switching would be

(0.25)(8/10)+(0.25)(6/10)+(0.25)(4/10)+(0.25)(2/10) = 5/10 = 0.50.

Hence the chance of winning the bigger envelope with this strategy is:

(0.5)(0.75) + (0.5)(1− 0.5) = 0.6250 .

24.1 Suppose a user has p = (0.2, 0.2, 0.3, 0.3) for a four answer multiple
choice test question. Of the four choices, which maximizes the chance that
the answer is correct?

Solution

Both answer 3 and answer 4 have the highest probability of being cor-
rect.

24.3 Suppose a user has p = (0.2, 0.2, 0.25, 0.35) for a four answer multiple
choice test question. The test taker is allowed to write a probability vector
(m1,m2,m3,m4) as the answer. If the reward for answering correctly is
U(mX) = mX , where X is the correct answer, then what is the choice of
probability vector m that maximizes the expected utility?

Solution

The expectation maximizing choice is to put all the probability on
answer 4 , the answer with the highest probability given by the user.
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24.5 Suppose a user has p = (0.2, 0.2, 0.25, 0.35) for a four answer multiple
choice test question. The test taker is allowed to write a probability vector
(m1,m2,m3,m4) as the answer. If the reward for answering correctly
is U(mX) = ln(mX), where X is the correct answer, then what is the
choice of probability vectorm that maximizes the expected utility?
Solution

Under these circumstances, the way to maximize utility is just to use the
probability beliefs, so

(0.2, 0.2, 0.25, 0.35)

24.7 Suppose the economy either does well, medium, or poorly next quarter.
An expert believes the chance of each outcome is 40%, 30%, and 30%
respectively. Let X be the true answer. Find the value of m ∈ [0, 1]3 that
maximizes E[Ui(m)], where

a) the utility function is

U1(m) = m(X),

b) or the utility function is

U2(m) = ln(m(X)).

Solution

a) Here U(m) = m(X), so pick the response with the highest proba-
bility, put a 1 there. So the answer is

(1, 0, 0) .

b) Since U(m) = ln(m(X)), we use the real probabilities,

(0.4000, 0.3000, 0.3000) .

24.9 The set of points (x, y) such that x2 + y2 = 1 forms a closed, bounded set.
Find the maximum value of x+ y subject to x2 + y2 = 1 using Lagrange
multipliers.
Solution

Because it is closed and bounded with no boundary, the optimal value
exists and is attained at a critical point where

∇(x+ y) = λ∇(x2 + y2)
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for a constant λ. Taking partial derivatives gives

(1, 1) = λ(2x, 2y).

If x or y is 0 then there is no solution for λ. So assume x ̸= 0 and y ̸= 0.
Then

1

2x
=

1

2y
= λ,

which means x = y.
The only two points satisfying both x = y and x2 + y2 = 1 are x = y =
1/
√
2 and x = y = −1/

√
2. Since

1√
2
+

1√
2
=
√
2,

and
− 1√

2
− 1√

2
= −
√
2,

the maximum value is
√
2 = 1.414 . . . .

25.1 What is log2(1/8)?
Solution

Since 2−3 = 1/23 = 1/8, this is −3 .
Another way to find it is ln(1/8)/ ln(2) = −3.

25.3 True or false: The Shannon entropy is always nonnegative.
Solution

True . The Shannon entropy is the sum of positive things (fX(s)) times
positive things (negative the natural logarithm of probabilities).

25.5 What is the Shannon entropy of X ∼ Unif({0, 1})?
Solution

Using the formula for Shannon entropy:

H(X) = −E[log2(fX(X))]

= (1/2)(− log2(1/2)) + (1/2)(− log2(1/2))

= (1/2)(−(−1)) + (1/2)(−(−1))
= 1 .

25.7 Consider the code from {a, b, c} to {0, 01, 10} defined as

f(a) = 0, f(b) = 01, f(c) = 10.
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Is f uniquely encodable?
Solution

No, since 01001 could have come from either acb or bab.

25.9 Suppose X1, . . . , Xn are iid Bern(0.7). For a given code/compression
scheme, what is the minimum number of bits on average needed to encode
a length n sequence?
Solution

Each bit has entropy −[0.7 ln(0.7) + 0.3 ln(0.3)] = 0.8812909. So by the
Shannon source coding Theorem, any code uses a minimum of 0.8812n
bits on average.

26.1 True or false: Decision theory can be used to analyze two-person games.
Solution

False. Decision theory involves one person against a state of nature. We
assume that nature is random (unknown), but that it is not actively striving
against us!

26.3 True or false: In the Prisoner’s Dilemma, cooperation can be undermined
by self-interest.
Solution

This is true .

26.5 Suppose that 3 players are making decisions that affect the payoff. The
payoff function has how many inputs?
Solution

Because each player gets a decision, this has 3 inputs.

26.7 Consider the following payoffmatrix, where each of two players is deciding
between strategies a1 and a2.

Player 1
a1 a2

Player 2 a1 (0,−1) (4,−2)
a2 (−3, 4) (3, 2)

a) If Player 1 is self-interested, what decision will they make?
b) If Player 2 is self-interested, what decision will they make?

Solution
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a) No matter what Player 2 does, Player 1 does better by switching to
a1 .

b) No matter what Player 1 does, Player 2 does better by switching to
a2 .

27.1 Fill in the blank: If the outcomes of a game all satisfy for entry

(a1, a2, . . . , an)

that
a1 + a2 + · · ·+ an = 0,

call it a(n) game.
Solution

This is a zero sum game.

27.3 Consider a zero-sum game with payoff matrix:

Player II
a b

Player I a −6 2
b 4 −3

Answer the following questions about the strategic form of this two person
zero sum game.

a) What is X?
b) What is Y ?
c) What is the payoff function A?

Solution

a) This is the set of strategies for Player I, so a, b .

b) This is the set of strategies for Player II, so a, b .
c) This is the function that gives the payoffs, so

A(a, a) = −6
A(a, b) = 2

A(b, a) = 4

A(b, b) = −3.

27.5 Consider the zero-sum game with entries
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Player II
1 2

Player I 1 −5 5
2 5 −5

If Player I plays strategy 1 with probability 40% and strategy 2 with
probability 60%, then what strategy should Player II use to maximize
expected utility for Player II?

Solution

Note that the value in the matrix is the utility that Player II gives to Player
I, so they are trying to make this as small as possible.

If Player II uses strategy 1, then the expected utility for Player I is

(0.6)(−5) + (0.4)(5) = −1.

If Player II uses strategy 2, then the expected utility for Player I is

(0.6)(5) + (0.4)(−5) = 1.

So to minimize the utility for Player I (and maximize the utility for Player
II), Player II should play strategy 1 .

27.7 Consider the game with entries

Player II
1 2

Player I 1 −5 5
2 5 −5

What is the value of this game?

Solution

By inspection, the strategy (1/2, 1/2) for both Player I and II gives an
expected payoff of 0, regardless of what the other player chooses. Hence
the value of this game is 0 .

28.1 If a Player has a 50% chance of playing a, and a 50% chance of playing b,
this is what type of strategy?

Solution

This is a mixed strategy.

28.3 Consider the following payoff matrix.
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Player 2
a b c

Player 1 a (−3,−4) (−1, 2) (2,−3)
b (−1, 2) (3,−2) (0, 0)

Show that this is not a zero sum game.
Solution

If Player 1 and Player 2 both choose a, then the outcome is (−3,−4). Since
these entries add to −7 rather than 0, this is not a zero sum game.

28.5 Consider the following payoff matrix.

Player 2
a b c

Player 1 a (−3,−4) (−1, 2) (2,−3)
b (−1, 2) (3,−2) (0, 0)

Show that no pure strategies for the players form a Nash equilibrium.
Solution

Look at each of the six pure strategies:

• From (a, a), Player 1 wants to move to b.
• From (a, b), Player 2 wants to move to b.
• From (a, c), Player 2 wants to move to b.
• From (b, a), Player 2 wants to move to b.
• From (b, b), Player 2 wants to move to a.
• From (b, a), Player 1 wants to move to a.

Therefore, none of the six pure strategies is also a Nash equilibrium.

28.7 Consider the following payoff matrix.

Player 2
a b

Player 1 a (−2,−3) (2, 2)
b (1, 1) (0, 0)

Find three Nash equilibria.
Solution
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Suppose that Player 1 chooses b and Player 2 chooses a. Then neither
player can switch their strategy without decreasing their expected payoff.
Therefore, the pure strategy (b, a) is a Nash equilibrium.

Similarly, the pure strategy (a, b) is also a Nash equilibrium.

Finally, consider if there is a mixed strategy.

Suppose Player 1 chooses a with probability p, and b otherwise. The
expected return for Player 2 is then:

E[Payoff for Player 2|Player 2 plays a] = −3p+ (1− p) = 1− 4p

E[Payoff for Player 2|Player 2 plays b] = 2p+ 0(1− p) = 2p.

By setting 1 − 4p = 2p or p = 1/6, it can be shown that Player 2 will
always have a expected return above 1/3, regardless of their strategy!

Player 2 can do something similar. If they play a with probability q and b
with probability 1− q, then the return for Player 1 is

E[Payoff for Player 1|Player 1 plays a] = −2q + 2(1− q) = 2− 4q

E[Payoff for Player 1|Player 1 plays b] = q + 0(1− q) = q.

Then 2− 4q = q gives q = 2/5 as the crossover point. Therefore, there is
a Nash equilibrium at

(1/3, 2/3), (2/5, 3/5) .

or
(0.3333, 0.6666), (0.4000, 0.6000)

truncated at four sig figs.

29.1 An algorithm with a random output is a algorithm.

Solution

This is a Monte Carlo algorithm.

29.3 Show that n3 + n2 ∈ O(n3) by explicitly finding C and n that satisfies
the definition.

Solution

Let C = 2, N = 1. Let n ≥ N = 1. Then

n3 + n2 ≤ n3 + n3 = 2n3.
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29.5 Given that n3 + n2 ∈ O(n3) and n3 + n2 ∈ Ω(n3), what else can be said
about the order of n3 + n2?
Solution

Having a function both in big-O and big-Omegea gives that it is in big-
Theta. That is,

n3 + n2 ∈ Θ(n3) .

29.7 Show that 5n ∈ o(n ln(n)) by explicity finding an N value such that for
all C > 0 and n ≥ N , 5n ≤ n ln(n).
Solution

Let C > 0. Then to get 5n ≤ Cn ln(n), it is necessary to choose N so
that C ln(N) ≥ 5, or N ≥ exp(5/C). So let N = ceiling(exp(5/C)). Let
n ≥ N . Since ln(n) is an increasing function,

Cn ln(n) ≥ Cn ln(N) ≥ 5n,

and the proof is complete.

29.9 Suppose there is an array with n elements which contains value a in exactly
one position.
A randomized algorithm for finding where this value is located does the
following: choose uniformly at random a position from 1 up to n. Search
that position. If found, quit. Otherwise, start over and independently
choose again until the value is found.
What is the expected number of steps needed to find the value?
Solution

There is a 1/n chance of finding the value at each step of the algorithm.
Therefore the number of steps is geometrically distributed with parameter
1/n. The expected value of a geometric random variable is one over the
parameter, so the expected number of steps is n .

30.1 Find the sample median of 8, 4, 4, 5, 3.
Solution

The order statistics of this data are

3, 4, 4, 5, 8

and so the sample median is 4 .

30.3 For x = (8, 4, 4, 5, 3), answer the following.

a) What would QuickSort(x) return?
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b) What would QuickSelect(x, 2) return?

c) What would QuickSelect(x, 4) return?

Solution

a) This would sort the items into (3, 4, 4, 5, 8) .

b) This would find the second smallest item, so 4 .

c) This would fin the fourth smallest item, so 5 .

30.5 Suppose E[T (n)] ≤ E[T (n−1)]+2 and E[T (0)] = 0. Prove by induction
that E[T (n)] ≤ 2n.

Solution

The base case is E[T (0] = 0 ≤ 2(0) = 2, so is satisfied.

Assume E[T (n)] ≤ 2n. Then

E[T (n+ 1)] ≤ E(T [n]) + 2

≤ 2n+ 2

≤ 2(n+ 1),

completing the induction.

30.7 A recursive algorithm when presented with input of size n ≥ 2, makes
one call of size n− 1 and another of size n− 2. If the input is size 0 or 1,
then 1 operation is needed. Prove by strong induction that the running
time is at most αn where α = (1 +

√
5)/2.

Solution

Let R(n) be the running time on an input of size n.

The statement holds for n = 0 and n = 1.

Assume it holds for n ≥ 2. Then

R(n) = R(n− 1) +R(n− 2)

≤ αn−1 + αn−2

≤ αn−1 + (1/α)αn−1

≤ (1 + 1/α)αn−1.
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Note that

1 + 1/α = 1 +
2

1 +
√
5

= 1 +
2− 2

√
5

(1 +
√
5)(1−

√
5)

= 1 +
2− 2

√
5

−4
=

1

2
(1 +

√
5)

= α.

Combining gives
R(n) ≤ α · αn−1 = αn,

and the induction is complete.

31.1 True or false: A BPP algorithm might return the correct answer 1/2 of the
time.
Solution

False. A BPP algorithm has to be right at least 2/3 of the time.

31.3 An RP algorithm is run twice and the output is the logical OR of the two
runs. What is the largest chance that it made an error?
Solution

The largest chance of making an error in one run is 1/2, so the largest
chance of making an error in two runs is (1/2)2 = 0.2500 .

31.5 A BPP algorithm is run 5 times and the majority winner is taken. What is
the largest chance that it made an error?
Solution

The chance a single run is wrong is at most 1/3. There would need to be
at least three runs with the wrong outcome to make the majority incorrect.
Using the probabilities of a binomial random variable, this is(

5

3

)(
1

3

)3(2

3

)2

+

(
5

4

)(
1

3

)4(2

3

)1

+

(
5

5

)(
1

3

)5(2

3

)0

.

This comes out to be 17/81 = 0.2098 . . . .

31.7 Howmany times must an RP algorithm be run to guarantee that the chance
of failure is at most 1%?
Solution
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The chance of failure after running k times is at most (1/2)k. Hence to
have (1/2)k ≤ 0.01 requires k ≥ lg(100) = 6.643 . . .. Hence k = 7
times suffices.

32.1 Consider the following optimization problem.

max x21 + x22

subject to x1 + x2 ≤ 4

x1 ≥ 0

x2 ≥ 0

Is this a linear program?
Solution

No , since the objective function has an x21 term, which is not a linear
function. The x22 term also disqualifies it from being a linear program.

32.3 Suppose U = {1, 2, 3, 4},

S1 = {1, 2}
S2 = {3, 4}
S3 = {1, 2, 3, 4}.

a) Does {S1, S2} cover U? (That is, does the union of S1 and S2 equal
U?)

b) Is there a smaller set cover?

Solution

a) Yes it does, because {1, 2} ∪ {3, 4} = {1, 2, 3, 4}..
b) Yes , S3 = {1, 2, 3, 4} is by itself a set cover.

32.5 Suppose U = {1, 2, 3, 4, 5},

S1 = {1, 2}
S2 = {3, 4}
S3 = {2, 3, 4, 5}.

a) Write the problem of finding the smallest set cover as an integer
program.

b) What is the linear relaxation of this IP?
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Solution

a) This can be done using x1, x2, x3, where xi indicates if Si is part of
the set cover.

min x1 + x2 + x3

x1 ≥ 1

x1 + x3 ≥ 1

x2 + x3 ≥ 1

x2 + x3 ≥ 1

x3 ≥ 1.(x1, x2, x3) ∈ {0, 1}3.

b) The linear relaxation just changes {0, 1} to [0, 1].

min x1 + x2 + x3

x1 ≥ 1

x1 + x3 ≥ 1

x2 + x3 ≥ 1

x2 + x3 ≥ 1

x3 ≥ 1.(x1, x2, x3) ∈ [0, 1]3.

32.7 Consider the IP

max x1 + x2

(1/2)x1 + x2 ≤ 1

3x1 + x2 ≤ 2

(x1, x2) ∈ {0, 1}3.

The linear relaxation would be

max x1 + x2

(1/2)x1 + x2 ≤ 1

3x1 + x2 ≤ 2

(x1, x2) ∈ [0, 1]3.

The optimal solution to this is

(x1, x2) = (2/5, 4/5).

a) If randomized rounding was then used to generate a solution from
the original IP, what would the expected objective value be?
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b) What is the chance that the (1/2)x1 + x2 ≤ 1 constraint is satisfied?

Solution

a) This would be (by linearity of expectations) (2/5)+ (4/5) = 1.200 .

b) For this constraint satisfied as long as both x1 and x2 are not both 1.
This happens with probability

1− 2

5
· 4
5
=

17

25
= 0.6800 .

33.1 Consider data

time sales

0 4.3
1 3.7
2 7.2
3 4.5
4 6.1.

Estimate the baseline average.

Solution

This would be

4.3 + 3.7 + 7.2 + 4.5 + 6.1

5
= 5.160 .

33.3 Continuing the last problem, find the n = 2 and n = 3 moving averages
for this data.

Solution

To four sig figs, this would be

time sales n = 2MA n = 3MA

0 4.3
1 3.7 4
2 7.2 5.450 5.066
3 4.5 5.850 5.133
4 6.1 5.300 5.933.

33.5 For U ∼ Unif([0, 1], findMAD(u).

Solution
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The mean of U is 0.5, so this is

E[|U − 1/2|] =
∫ ∞

−∞
|u− 1/2|1(u ∈ [0, 1]) du

=

∫ 1/2

0
1/2− u du+

∫ 1

1/2
u− 1/2 du

= −u2/2|1/20 + u2/2|11/2
= −(1/8) + 1/2− 1/8

= 1/4 = 0.2500

33.7 For X an integrable random variable, prove that MAD(X) = MAD(X +
a) for any constant a.
Solution

For X integrable and a a constant,

MAD(X + a) = E[|X + a− E[X + a]|]
= E[|X + a− E[X]− a|]
= E[|X − E[X]|]
= MAD(X).

34.1 Suppose a prediction for y1 was ŷ1 = 10. If α = 0.4 with simple exponen-
tial smoothing, what would the prediction ŷ2 be if y1 turned out to have
value 12.
Solution

The error here was 12− 10 = 2, so the prediction would be

ŷ2 = 10 + (0.4)(2) = 10.80 .

Another way to find it is to use (0.6)(10) + (0.4)(12) = 10.80.

34.3 The California milk per cow from organic herds is summa-
rized in the following table (drawn from https://www.
californiadairymagazine.com/read/adtrack/2017/
0717/2016cdfamilkreport.pdf accessed 2024-04-15.) It also
includes predictions made using simple exponential smoothing with
α = 0.6 using ŷ1 = y0.

Year Annual Milk per cow (pounds) pred

2012 14904 NA
2013 15204 14904.00
2014 15480 15084.00
2015 16284 15321.60
2016 15816 15899.04

https://www.californiadairymagazine.com/read/adtrack/2017/0717/2016cdfamilkreport.pdf
https://www.californiadairymagazine.com/read/adtrack/2017/0717/2016cdfamilkreport.pdf
https://www.californiadairymagazine.com/read/adtrack/2017/0717/2016cdfamilkreport.pdf
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Find an estimate of the mean absolute deviation of the error.

Solution For the year 2013, the absolute error between the true value
and the prediction is |15204− 14904| = 300. Similary, the errors for the
other three years are |15480− 15084|, |16284− 15321.60|, and |15816−
15899.04|. The sample average of these four values is

435.4 .

34.5 Continuing the California cows data from earlier, here are the predictions
for α = 0.6 and α = 0.4. Which would be chosen as the better value of α
using MAD to make the decision.

Year Annual Milk per cow (pounds) α = 0.4 α = 0.6

2012 14904 NA NA
2013 15204 14904.00 14902.00
2014 15480 15084.00 15024.00
2015 16284 15321.60 15206.40
2016 15816 15899.04 15637.44

Solution

The MAD estimate for the two α values are:

α MAD estimate

0.6 435.36
0.4 503.04

So based on these estimates, go with α = 0.6 .

34.7 Domestic U.S. data for passengers scheduled to fly month by month in
2000 is as follows. (Drawn from transtats.bts.gov/TRAFFIC on
2024-04-15.)

transtats.bts.gov/TRAFFIC
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Period Scheduled

January 2000 41540
February 2000 43714

March 2000 52977
April 2000 50344
May 2000 52309
June 2000 54673
July 2000 55568

August 2000 54474
September 2000 46363

October 2000 50920
November 2000 49632
December 2000 47051

Using ℓ̂0 = 40000 and m̂0 = 3000 together with Holt’s method with
β = 0.1 and α = 0.5, predict the number of passengers for March 2001.
Solution

Filling in the table using Holt’s method gives

Period Scheduled ℓ̂ m̂

January 2000 41540 42270.00 2927.000
February 2000 43714 44455.50 2852.850

March 2000 52977 50142.68 3136.283
April 2000 50344 51811.48 2989.535
May 2000 52309 53555.01 2864.934
June 2000 54673 55546.47 2777.587
July 2000 55568 56946.03 2639.784

August 2000 54474 57029.91 2384.193
September 2000 46363 52888.55 1731.638

October 2000 50920 52770.09 1546.629
November 2000 49632 51974.36 1312.393
December 2000 47051 50168.88 1000.605

This makes the final prediction three months into the future:

50168.88 + (3)(1000.605) = 53170.69,

or 53170 to four sig figs.

35.1 The cost per unit when demand is higher than inventory is the
cost.
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Solution

This is called the understocking cost.

35.3 True or false: the function f(x) = x2 is convex.
Solution

True. Since f(x) is twice differentiable, and [f(x)]′′ = 2 ≥ 0 for all x,
this is a convex function.

35.5 Suppose that a Christmas tree seller can obtain trees for $13.50 and that
they sell in the local market for an average of $110.00. Any trees left
over after Christmas require payment of $5.15 for disposal. If demand is
modeled as a negative binomial distribution with parameters 1000 and
0.42, what is the optimal number of trees for the lot to buy?
Solution

The profit made from each tree is 110 − 13.50 = 96.50, while the cost
associated with an extra tree is 13.50 + 5.15 = 18.65. Hence co = 18.65
and cu = 96.50. Therefore, wewant to order an amount q such thatP(D ≤
q) = 96.50/(96.50 + 18.65) = 0.8380 . . .. Using qnbinom((96.50
/ (96.50 + 18.65), 1000, 0.42) gives 1437 , so that is how
many trees should be ordered.

36.1 A strategy that tells the distribution of choices for each state in a Markov
Decision Process is called a(n) _______.
Solution

This is a policy.

36.3 Suppose β = 1/2 and the reward is rXt,dt = 5 for every value of Xt and
dt. What is the discounted reward of the policy.
Solution

Since every reward is 5, this is

∞∑
i=1

(0.5)i−15 = 5/(1− 1/2) = 10 .

36.5 Suppose with a particular policy that rXt,dt converges to uniform over
{1, 2, 3, 4} as t goes to infinity. What will the long term average reward
be?
Solution

The average reward converges to (4 + 1)/2 = 2.500 , so that is what the
long-term average reward will be as well.
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37.1 Suppose that there are three states {1, 2, 3}. For states 1 and 2 there are two
decisions {a, b}, and in the third state there are three decisions {a, b, c}.
Say

π1,a = 0.2, π1,b = 0.2, π2,a = 0.1, π2,b = 0.25, π3,a = 0.05, π3,b = 0.1.

What is π3,c?
Solution

Since the πi,d have to add up to 1, and the remaining πi,d add to 0.9,
π3,c = 0.1000 .

38.1 If U ∼ Unif([0, 1]), then Y = − ln(U) ∼ Exp(1). LetW = − ln(1− U).

a) What is the distribution ofW ?
b) Find E[Y ] and V(Y ).
c) Find E[(W + Y )/2].
d) Find V((W + Y )/2).

Solution

a) SinceU and 1−U have the same distribution, so do Y andW . Hence
W ∼ Exp(1) .

b) Mean and variance for a standard exponential random variable are
both 1, so E[Y ] = V(Y ) = 1 .

c) Since W and Y have the same distribution, they both have the same
mean of 1, and

E[(W + Y )/2] = (1 + 1)/2 = 1 .

d) From the rules for variance,

V
(
W + Y

2

)
=

1

4
[V(W ) + V(Y ) + 2Cov(W,Y )].

Both W and Y have variance 1, so we only need their covariance.

Cov(W,Y ) = E[WY ]− E[W ]E[Y ]

= E[ln(U) ln(1− U)]− 1

=

∫ 1

0
ln(u) ln(1− u) du− 1

= −0.6944 . . .

Hence the overall variance is 0.1775 .
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38.3 Suppose p ∈ (0, 1). LetU ∼ Unif([0, 1]),X = 1(U ≤ p), Y = 1(1−U ≤
p). What is

SD((X + Y )/2)?

Solution

Suppose p ≤ 1/2. This if U ≤ p thenX = 1 and Y = 0. If p < U ≤ 1−p
then X = 0 and Y = 0. If 1 − p > U then X = 0 and Y = 1. So for
W = (X + Y )/2, P(W = 1/2) = 2p and P(W = 0) = 1− 2p. So

SD(W ) =
√

2p(1/2)2 − p2 =
√
p(1/2− p).

For p ≥ 1/2, P(W = 1) = 2p− 1 and P(W = 1/2) = 2− 2p. Hence

SD(W ) =
√
(1)2(2p− 1) + (1/2)2(2− 2p)− p2 =

√
(1− p)(p− 1/2)

Altogether, the standard deviation is√
p(1/2− p)1(p ≤ 1/2) +

√
(1− p)(p− 1/2)1(p > 1/2) .
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decision theory, 140
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discounted reward, 299
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for all, 33
fractional part function, 311

gamma, 42
global minimum, 289
graph, 48

Hurwicz principle, 145

idle time, 65
iid, 18
independent, 17
independent, identically distributed,

18
index, 65
indicator function, 5
indifferent, 153
infimum, 33
information entropy, 204
integer program, 260
integrable, 27
interarrival time, 25

jump process, 66

Laplace’s principle of insufficient rea-
son, 144

Las Vegas algorithm, 236
length, 207
letters, 207
linear program, 260
linear relaxation, 262
linear trend, 280
local minimum, 289
logical statement, 5
long run, 64
long term, 64
long-term average expected reward,

298
lottery, 152
lower bound, 33

Markov chain, 296
matrix product, 250

matrix-vector product, 250
maximax strategy, 143
maximin strategy, 143
mean, 27
mean absolute deviation, 272
mixed strategy, 221
Monte Carlo, 236
multiple choice, 196

network, 48
node, 48
normal form, 219, 227

objective function, 260
one-to-one function, 207
optimal policy, 299
optimal value, 164
order statistics, 242
overstocking cost, 290

parallel, 50
payoff, 140
payoff matrix, 140
pdf, 8
Poisson distribution, 40
Poisson point process of rate λ on

[0,∞), 40
policy, 298
prefers, 153
probability density function, 8
probability simplex, 152

quasi Monte Carlo, 311
queue discipline, 24
queue length, 25
queueing network, 49

R Markdown, 103
randomized algorithm, 236
randomized polynomial time, 253
randomized rounding, 263
reachabillity graph, 131
regret, 150
relaxation, 262
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renewal process, 46
renewal times, 46
root, 164
routing network, 48
RP, 253

sample average, 78
sample median, 242
sample standard deviation, 79
Savage regret decision, 150
seed, 120
series, 50
server, 25
service, 25
service time, 25
SES, 277
set cover, 261
Shannon entropy, 204
Simple exponential smoothing, 277
standard deviation, 79
state variables in decision theory, 140
stationary, 298
statistic, 78
steady state, 64
Stochastic Operations Research, 4
stochastic Petri Net, 133
stochastic process, 65
stopping time, 34
strategic form, 142, 219, 227
stream, 18
string, 107
survival function, 15

tie, 100
time spent in state i, 66
transition probabilities, 296

understocking cost, 290
undirected graph, 48
uniform, 15
uniquely encodable, 207
utility, 141
utility function, 152

verification problem, 252
vertice, 48
von Neumann-Morgenstern Axioms,

154

word, 207

zero sum games, 218
zero-error probabilistic polynomial

time, 258
ZPP, 258
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