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The big picture

The Problem

Find the mean
of a stream of
bounded random
variables

Current Method

Dagum, Karp,
Luby, Ross (2000)
About 2.5 to 5
times as slow as
CLT

New approach

Asymptotic to
CLT without prior
knowledge of the
variance



The problem
Given a stream of X1, X2, . . . random variables, find their
mean to within ε relative error with failure probability at
most δ.



Prior work

The Central Limit Theorem
de Moivre, Laplace, Gauss, Lyapunov, Lindeberg, Lévy

Sample average
I For finite variance, X̄ converges to normality
I Does not say how quickly the convergence occurs
I If convergence is quick (or Xi ∼ N(µ, σ2),) then need roughly

2
σ2

µ2
ln(2/δ)



How quickly does CLT converge?

The Accuracy of the Gaussian Approximation to the Sum of
Independent Variates
Andrew C. Berry,
Trans. Amer. Math. Soc., 49 (1): 122–136, 1941

On the Liapunoff limit of error in the theory of probability
Carl-Gustav Esseen,
Arkiv för matematik, astronomi och fysik. A28: 1–19, 1942

Bounded how far away CLT approximation was from sample
average for bounded third central moment



Using Berry-Esseen
Guaranteed conservative fixed width confidence intervals via Monte
Carlo sampling
F.J. Hickernell, L. Jiang, Y. Liu, A.B. Owen
Monte Carlo and Quasi Monte Carlo Methods, 105–108, 2012
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Using Berry-Esseen II
Sub-Gaussian mean estimators L. Devroye, M. Larasle, G. Lugosi,
R.I. Oliveira
Annals of Statistics, 44:2695–2725, 2016

known bounds
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unbounded
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CatoniM -estimator

Challenging the empirical mean and empirical variance: A deviation
study
O. Catoni
Ann. Inst. H. Poincaré Probab. Statist., 48(4):1148–1185, 2012

Using M -estimator requires a rootfinding procedure
I Assume known upper bound on kurtosis...
I ...or known upper bound on σ2, lower bound on µ2

I Not an (ε, δ)-ras



Extensions to other moments

Input sets for Numerical Integration
R. Kunsch, E. Novak, D. Rudolf
Talk at MCM Montréal 3 July, 2017

Requires known upper bound Mp,q on

E[(Xi − µ)p]1/p

E[(Xi − µ)q]1/q



Light tailed sample averages
An optimal (ε, δ)-approximation scheme for the mean of
random variables with bounded relative variance
M. Huber
arXiv:1706.01478, 2017

known bounds
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What happens when bounds on moments unknown?

Say B ∼ Bern(p)

E[(B − p)4]
E[(B − p)2]2

=
p(1− p)4 + (1− p)(p)3

p2(1− p)2

= Θ

(
1

p2

)
→∞ as p→ 0

However, B is bounded!



DKLR
An optimal algorithm for Monte Carlo estimation
P. Dagum, R. Karp, M. Luby, and S. Ross
SIAM J. Comput., Vol 29, No 5, pp. 1484–1496, 2000

known bounds

unknown bounds
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Today
This talk

known bounds

unknown bounds

unbounded

X σ2/µ2 kurtosis

M

error

relative absolute

CLT

match greater
εM
µ

<< σ2

µ2



The new problem
Given a stream of nonnegative X1, X2, . . . random
variables, with known upper bound, but unknown mean,
variance, and kurtosis, find the mean to within ε relative
error with failure probability at most δ.



Loss function

Can view as minimizing the expected loss function "all or nothing"

a

1

a(1− ε) a(1 + ε)

L(â) = 1(|â− a| ≥ εa)



Finding the mean of [0,M ] random variables
Given ε, δ > 0

0 M
µ (1 + ε)µ(1 − ε)µ

want
P(|µ̂/µ− 1| > ε) ≤ δ

Call µ̂ an (ε, δ)-randomized approximation scheme



When the CLT applies

If sample average was normal, then need (to first order)

2
σ2

µ2
ε−2 ln(2/δ)

samples to get an (ε, δ)-ras



Main difficulty
The variance of the Xi is unknown

I In general, the sample variance unreliable
I Consider two models

0 Mµ

1

X

E[X] = µ

0 Mµ

1 − p

p

Y

E[Y ] =
1 + ε

1− ε
µ

p = 2ε
(1−µ/M)(1−1.01ε) ·

µ
M

I Total variation distance between X and Y is Θ(εµ/M)



Telling the difference between X and Y

I Any sample from X will have sample standard deviation of 0
I Any sample from Y will also have sample standard deviation of

0 unless you happen to see a 1
I Because

E[Y ](1− ε) > E[X](1 + ε),

have to know whether data comes from X or Y to have at
most ε relative error.

I Need Θ

(
M ln(1/δ)

εµ

)
samples to have at least 1− δ chance

of detecting whether data from X or Y



How many samples are needed?
An optimal algorithm for Monte Carlo estimation
P. Dagum, R. Karp, M. Luby, and S. Ross
SIAM J. Comput., Vol 29, No 5, pp. 1484–1496, 2000

a1 =
σ2

µ2
, a2 = ε

M

µ
, a3 = 2ε−2 ln(4/δ)

Theorem (Dagum, Karp, Luby & Ross 2000)
Any (ε, δ)-ras that applies to all [0, 1] random variables requires at
least (to first order)

(1/32) max{a1, a2}a3

samples.



DKLR
An optimal algorithm for Monte Carlo estimation
P. Dagum, R. Karp, M. Luby, and S. Ross
SIAM J. Comput., Vol 29, No 5, pp. 1484–1496, 2000

a1 =
σ2

µ2
, a2 = ε

M

µ
, a3 = 2ε−2 ln(4/δ)

Theorem (Dagum, Karp, Luby & Ross 2000)
There exists an (ε, δ)-ras that applies to all [0, 1] random variables
that uses (to first order)

[2.87 max{a1, a2}+ 5.74a2]a3

samples.



New algorithm

a1 =
σ2

µ2
, a2 = ε

M

µ
, a3 = 2ε−2 ln(4/δ)

Theorem (H. & Jones 2017)
There exists an (ε, δ)-ras that applies to all [0, 1] random variables
that uses (to first order)

[a1 + (3/2)a2 +
√
a1a2 + a22]a3.

samples
Note: asymptotic to CLT a1a3 running time when a2 → 0



An application



Importance sampling

Goal of IS is to find
I =

∫
Rn
g(x) dRn

For random variable Y with density fY , let

W =
g(Y )

fY (Y )

so E[W ] = I



How many samples?

I Well known that number of samples needed for IS is

Θ(a1a3),

problem is that a1 = σ2W /µ
2
W difficult to find

I Here a1 is square of coefficient of variation

I Easier to find max[W ] (optimization easier than integration)



A simple 1 dimensional example

Suppose we wish to know

I =

∫ ∞
−∞

exp(−|x|2.5) dx

Can draw from a Cauchy fY (y) = [π(1 + y2)]−1

W = π(1 + Y 2) exp(−|Y |2.5)

Here max[W ] = 3.297 . . . .



Running time

For IS example it holds that

a1 = 0.6606, a2 = 0.1859,

Mean number of samples used

(ε, δ) = (0.1, 10−6) (ε, δ) = (0.01, 10−6)

DKLR 10274 6.3 · 105

New method 3177 2.2 · 105

a1a3 1918 1.9 · 105



Sampling from the union of sets
Goal: Given k sets A1, . . . , Ak, where the the size of each Ai is
known, estimate size of #(Ai).

1. Draw random variable I, where probability that I = i is
proportional to size(Ai)

2. Draw Y ← Unif(AI)
3. Let W = 1/#{i : Y ∈ Ai}

Then W ∈ [0, 1] satisfies

E[W ] = size(∪Ai)/
∑
i

size(Ai)

size(∪Ai) = E[W ]
∑
i

size(Ai)



Toy example: Circles
Three circles of size 1.2, 1.9 and 2.3

I = 3

W = 1/2

P(I = 1) =
1.2

C
, P(I = 2) =

1.9

C
, P(I = 3) =

2.3

C
, C = 1.2+1.9+2.3

Draw Y uniformly from circle I, set W = 1/# of circles Y is in

W ∈ {1, 1/2, 1/3}



Toy example: Circles continued

In this case W ∈ {1, 1/2, 1/3}, don’t know anything more about

E[W ], SD[W ]

Could be anything consistent with [0, 1] random variable!



Three steps to the estimate



How DKLR works

Scale random variables so in [0, 1]. Then have three step process:
1. Get (ε1/2, δ/3) estimate µ̂1 for µ using Zero-One estimator
2. Use µ̂1 to get â that is an upper bound on max{a1, a2}
3. Use â together with a sample average to get final (ε, δ)

estimate µ̂



How the new method works

Still a three step process
I The goals of the three steps are almost the same
I The techniques that achieve each goal are quite different

1. Get (ε1/3, δ/3) estimate µ̂1 for µ using Gamma Bernoulli
Approximation Scheme

2. Use µ̂1 to get â that is an upper bound on a1 using a Poisson
based estimator

3. Use â together with a light-tailed sample average estimte to
get final (ε, δ) estimate µ̂



Step 1: Gamma Bernoulli Approximation Scheme
Lemma
Five elementary facts about distributions:
1. If X1, X2, . . . are [0,M ] r.v.’s and U1, U2, . . . are iid

Unif([0, 1]), then 1(MU1 > X1),1(MU2 > X2), . . . are iid
Bern(µ/M).

2. If B1, B2, . . . are iid Bern(µ/M), then
G = min{t : Bt = 1} ∼ Geo(µ/M).

3. For G ∼ Geo(µ/M) and [N |G] ∼ Gamma(G, 1), it holds that
N ∼ Gamma(1, µ/M).

4. If N1, . . . , Nk are iid Gamma(1, µ/M), then
N1 + · · ·+Nk ∼ Gamma(k, µ/M).

5. If R ∼ Gamma(k, µ/M), then
Rµ/[M(k + 2)] ∼ Gamma(k, k + 2).



Putting these ideas together

GBAS Input: k, Output µ̂ such that µ/µ̂ ∼ Gamma(k, k + 2)

1. n← 0, i← 0

2. Repeat
2.1 i← i+ 1, draw Xi from X, draw Ui from Unif([0, 1])2.2 n← n+ 1(Xi ≤MUi)

Until n = k

3. Draw R← Gamma(i, 1)

4. Return(M(k + 2)/R)



As k increases, Gamma(k, k + 2) concentrates near 1

User set k = 5, c = 1 P(|rel err| > 0.1) ≈ 92.6%

−1 10.1-0.1



As k increases, Gamma(k, k + 2) concentrates near 1

User set k = 20, c = 1 P(|rel err| > 0.1) ≈ 66.1%

−1 10.1-0.1



As k increases, Gamma(k, k + 2) concentrates near 1

User set k = 661, c = 1.006 P(|rel err| > 0.1) ≈ 1%

-1 10.1-0.1



Step 2: Poisson based estimator for σ2/µ2

Lemma
Three more elementary facts about distributions:
1. If X1, X2, . . . are [0,M ] random variables with variance σ2

and U1, U2, . . . are iid Unif([0, 1]), then

1(Ui > 1/2)1(M2Ui+1 > (Xi+1 −Xi)
2) ∼ Bern(σ2).

2. For N ∼ Pois(a) and B1, . . . , BN
iid∼ Bern(σ2), then

B1 + · · ·+BN ∼ Pois(aσ2).

3. Let c1 = 2 ln(1/δ). For A ∼ Pois(a · 2 ln(1/δ)),

P(A/c1 + 1/2 +
√
A/c1 + 1/4 ≤ a) ≤ δ.



Using these facts

PoissonEstimate

Input: ε, c2, µ̂
Output: c2 satisfying P(σ2/µ̂2 ≤ c2) ≥ 1− exp(−c2/2)

1. Draw N ← Pois(c2M/[εµ̂])

2. Draw W1, . . . ,WN ∼ Bern(σ2)

3. Let A = (W1 + · · ·+WN )/c2

4. Output (A+ 1/2 +
√
A+ 1/4)ε/[Mµ̂]



Step 3: Light-tailed sample average

I When step 2 a success, we have an upper bound on a1
I Catoni gave an M -estimator which gave confidence intervals
I Of course, we want an (ε, δ)-ras.
I Can convert Catoni to an (ε, δ)-ras when σ2 and µ2 are each

bounded individually
I Here develop a simpler (ε, δ)-ras when σ2/µ2 bounded



Downweighting samples from from the mean

I Idea is to start with initial estimate µ̂1 of µ
I Downweight samples that are far away from mean
I Given c2 > σ2/µ2 and ε, far away means

α =
εM

c2µ



How to get light tails
Start with a function Ψ that is close to y = x for small x, but
grows as natural log for large x

Ψ(x) = − ln(1− x+ x2/2)1(x ≤ 0) + ln(1 + x+ x2/2)1(x ≥ 0)

-2 2

2

-2

y = Ψ(x)

y = x



How to get light tails from Ψ

For Xi, then
Xi = µ̂1 + α−1(α(Xi − µ̂1))

So set
Wi = µ̂1 + α−1Ψ(α(Xi − µ̂1))

Then Wi always has light tails because of logarithmic growth of Ψ



Step 3: Light-tailed sample average
LTSA
Input: c2 > σ2/µ2, ε, c3, initial estimate µ̂1
Output: Final estimate µ̂

1. Let n← dc2 · c3e
2. Draw X1, . . . , Xn

3. Set α← εM

c2µ̂14. For i ∈ 1 to n,

Wi = µ̂1 + α−1Ψ(α(Xi − µ̂1))

5. Output (W1 + · · ·+Wn)/n



Final version

MainAlgorithm

Input: ε1, k, c2, ε, c3
1. µ̂1 ← GBAS(k)

2. c2 ← PoissonEstimate(ε1, c2ε
2)

3. µ̂← LTSA(c2(1 + ε1)
2, ε, c3)



Correctness & expected running time
Theorem
The expected running time of MainAlgorithm(ε1, k, c2, ε, c3) is
bounded above by

kM

µ
+ c2

εM

µ
+ 1 + (1 + ε1)

2c3

[
σ2

µ2
+
εM

2µ
+

√
σ2

µ2
· εM
µ

+
ε2

4µ2

]

Theorem
The output µ̂ of MainAlgorithm(ε1, k, c2, ε, c3) satisfies

P
(∣∣∣∣ µ̂µ − 1

∣∣∣∣ > ε

)
≤ 2 exp

(
− (k − 1)ε21

2

)
+exp

(
−c2ε

2

2

)
+2 exp

(
−c3ε

2

2

)



One choice of parameters

Theorem
Given

ε1 = ε1/3, k = d2 ln(6/δ)ε−21 e+1, c2 = 2 ln(3/δ), c3 = 2ε−2 ln(6/δ),

it holds that µ̂ is an (ε, δ)-ras.



Conclusion

New algorithm for estimating µ = E[X] when X ∈ [0, 1]

I User specified error tolerance and failure probability
I Asymptotic to CLT as ε→ 0

I Does not require prior knowledge of variance
I About 2.5 times as fast as previous approach


