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This is a course in Calculus of a single variable. The main topics of the course are:

1: Logic

2: Limits

3: Derivatives

4: Integrals

5: Series

6: Differential Equations

Wait a minute, logic? Yes! Basic mathematical definitions are all given as logical formulas, and so you
will learn to read and understand logical statement. Also, you will learn the basics of several standard proof
techniques. This course has the following overall structure. We will introduce problems, then formally define
terms, then state and prove theorems. Please feel free to stop me at any time with questions, and often I
will pause to ask questions of the class.

My lecture notes will be provided for the class, but they are my personal notes. That means that they
have not been independently proofread and often contain typos. I provide them for the class for those who
wish to concentrate on lecture or get ahead in the reading to make understanding easier. You can assist me
and the class by letting me know when you see any mistakes in the notes, and I will correct them as quickly
as possible. Class attendance is not required, but certainly recommended!

How can I get an A in this course?

1: Come to every class on time (try to come five minutes early if you are habitually late).

2: Turn off your phone/laptop/other external communication device when in lecture, they suck your
attention away even when you are not looking at them.

3: Read all the homework questions and try them by yourself first (I’d schedule an hour on Wednesday
afternoon or evening to do this), then talk to others or me if you have problems.

4: Do actually talk to me (or friends in the class) though if you can’t do a homework problem.

5: When I hand out the study guides, learn the definitions presented.

6: Do extra practice on problem types that you find difficult. [There’s a wealth of examples on the web,
please ask me if you need any assistance in finding problems and we can go Google hunting together.]
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1 What is Calculus?

Question of the Day What is Calculus?

Today

• What is single variable Calculus?

• What skills do you need to learn in this course?

Calculus Now, a calculus is just any system for calculating things. It has the same root in Latin as
calcium, mainly because stones where used as the original calculators. Other systems of calculus include:
calculus of probability, calculus of variations, multivariable calculus, propositional calculus.

In this course, we are interested in calculus of functions of a single variable. Our basic object is the
function, and we will learn how to calculate properties of this function in a variety of ways.

Intuition A single variable function takes an input and returns an output, usually after applying one or
more mathematical operations to the input. There are many different notation systems for functions.

There are multiple ways of thinking about functions, and our mathematical notation helps us with those
ways.

• Argument notation: f(x) = x2, f(3) = 9, f(−3) = 9

• Mapping notation: f : x 7→ exp(x). Note exp(x) = ex, so f(2) = e2.

So what formally is a function? In order to give a precise definition of a function, we first start with a
term that we will only define intuitively, called a set.

Set

• Intuitively, a set is a collection of objects, called elements of the set

• Sets written with curly braces

• Example: {blue, green, red} has elements blue, green, and red. {1, 2, 3} has elements 1, 2, and 3.

• ∈ = “element of”. So 1 ∈ {1, 2, 3}.

• Formally, a function takes elements of one set as input, and outputs an element of a second set.

Definition 1
A function f from a set A to a set B (written f : A→ B) is a collection of ordered pairs (x, y) such that
if v = (x1, y1) and w = (x1, y2), are two points in the set, then y1 = y2. The set of these ordered pairs is
called the graph of the function. The first coordinate of the ordered pair is called the input or argument
of the function, and the second coordinate is called the output or value of the function.

One metaphor for functions comes from archery: for each point in A, the archer stands on the point and
fires exactly one arrow into B.

A B

f
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Example:

• Say f : [0,∞)→ [0,∞) maps x to x2. Then the graph is:

f(x) = x2

Models

• v(t) equals velocity at time t

• r(t) is interest rate at time t

• h(a) is height of children age 10 given food level a

• g(d) is cholesterol level given drug dosage d

• h : C → [0,∞), C is members of this class, h(c) is height of person c

• f : {0, 1, . . .} → [0,∞) is miles jogged on day t

Notation

• Blackboard boldface was invented to give a way to write a letter in bold on a blackboard. The idea
was to add an extra line to the letter. So to write Z on a blackboard, you would write Z with an
extra line. Over time, people realized that this was better than the bold Z, and so these “blackboard
boldface” letters became the standard in mathematical writing. Here are a few of these that you need
to know.

Z︸︷︷︸
blackboard boldface

= integers

Z+ = positive integers

Z+ ∪︸︷︷︸
union

{0} = nonnegative integers

R = real #’s

f : Z+ ∪ {0} → R = f is a function from nonnegative

integers to the real #’s

• [a, b] = {x ∈ R : a ≤ x ≤ b}

What is Calculus?

• Calculus allows us to answer questions about functions.

• For f : R→ R

– Limits: What happens as the argument approaches a number?

lim
x→3

x2 − 6x+ 9

x− 3
=?
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– Derivatives: How fast is the function changing?

f(x) = x exp(−x2), find
df

dx
= f ′(x),

– Optimization: What is the largest that f(x) can be for x ∈ [a, b]? What input achieves this
maximum?

max
x∈[a,b]

f(x), arg max
x∈[a,b]

f(x).

– Integrals: If the function measures a rate of accumulation, how much accumulates over time?

f(x) = x exp(−x2), find

∫ b

a

f(x) dx.

• Suppose f : Z→ R given by f(i) = 1/2i.

– Series: What is the total of the function?

∞∑
i=1

f(i) =?

A word about mathematics

• Several types of mathematics

• Tools for calculating things

• Intuition for when mathematics applies

• Rigorous (also called formal) proof of things

– Euclid’s elements (in geometry)

– Logical definitions

– Logical proof

1.1 Significant figures

Many questions have numerical answers. An answer like
√

5 +
√

3/2 is not very intuitive when it comes to
understanding how big it is. For instance, which is bigger

√
2 +
√

3 or the constant π?
Numerical answers give better idea of what result is and so for convenience, I give all numerical, answers

to four significant digits (4 sig figs) unless it is an integer, in which case just return the integer.
This is easiest to see by example:

number 4 sig figs

τ = 2π 6.283
e 2.781

1.000042 1.000√
5 +
√

3/2 1.297√
5 +
√

3/200 0.01297

In most situations you do not have to worry about rounding, just truncate after the first four digits. The
only exception is when you are using numbers as upper or lower bound. For lower bounds, always round the
last digit down, for upper bounds, always round the last digit up:

1.297 ≤
√

5 +
√

3/2 ≤ 1.298.
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2 Limits and Sequences

Question of the Day What is limx→0 sin(x)/x?

Today

• Limits of functions

• Limits of sequences

• Infinity

• Order

2.1 Limits of functions

• General form: limx→a f(x) = L

• Intuition: When x gets close to a, f(x) gets close to L

• Experimental method: try x values close to a, see what function value is.

• Example (QotD): what is limx→0 sin(x)/x?

x sin(x)/x
0.1 0.998334
0.01 0.999983
−0.001 0.999999833333341

So limx→0 sin(x)/x = 1. This should not be all that surprising, given that x represents the arclength
in blue and sin(x) the length of the green line below.

(cos(x), sin(x))

x

• sin(x) and x are both examples of continuous functions. However, sin(x)/x is not a continuous function.

Definition 2
A function f is continuous at a if limx→a f(x) = f(a).

Examples

• limx→0 sin(x) = sin(0) = 0.

• limx→0 x = 0.

• limx→0
sin(x)
x 6= 0

0 . So the function sin(x)/x is not continuous at 0.
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Intuition

• A function is continuous if you can draw its graph without lifting the pencil from the paper.

• sin(x)/x has a hole in it at 0, so is not continuous.

Fact 1 (Limits are additive and can pull out constants)
Suppose that limx→a f(x) = L and limx→a g(x) = M . Then

• limx→a f(x) + g(x) = L+M .

• limx→a cf(x) = cL.

Example
lim
x→4

3x2 − 2
√
x = 3 lim

x→4
x2 − 2 lim

x→4

√
x = 3 · 42 − 2

√
4 = 44

Definition 3
A function f : A→ R that is continuous at all a ∈ A is called continuous.

Notes

• limx→a is an example of a mathematical operator.

• It takes as input a function, and outputs a real number.

• A mathematical operator L such that

L(c1f + c2g) = c1L(f) + c2L(g)

is called a linear operator.

• Other linear operators in Calculus include the derivative and the integral.

• To prove limit is a linear operator, will need a formal definition of limit, which we will see in a few
lectures.

Fact 2
(Limits are multiplicative and divisive) Suppose that limx→a f(x) = L and limx→a g(x) = M . Then

• limx→a f(x)g(x) = LM

• If M 6= 0, then limx→a f(x)/g(x) = L/M .

Definition 4
Suppose f : A→ B and g : B → C. Then for x ∈ A, [g ◦ f ](x) = g(f(x)) is a function from A to C. Call
g ◦ f the composition of g and f .

Fact 3
(Can compose limits) Suppose that limx→a f(x) = L and limx→L g(x) = M . Then limx→a g(f(x)) = M .

Fact 4
If f and g are continuous functions, then so are cf for any c ∈ R, f + g, fg f/g (everywhere g is
nonnegative) and f ◦ g.
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2.2 Limits going to infinity

• Often want to know what happens as x gets very large (say x is going to infinity)...

• ...or very small in the negative direction (say x is going to negative infinity).

• Find answer same way as with regular limits, plug in larger (or very negative) numbers to get answer

• Example: What is limx→∞ 1/x?

x 1/x
100 0.01
106 10−6 = 1/1 000 000

limx→∞ 1/x = 0.

• Example: What is limx→∞
√

2x/
√
x− 2?

x
√

2x/
√
x− 2

100 1.42857142857
106 1.41421497659

limx→∞
√

2x/
√
x− 2 =

√
2

• A way to deal with ∞/∞ type limits: multiply top and bottom by inverse of leading order. Note√
2x =

√
2
√
x
√
x− 2 ≈

√
x for large x. So multiply top and bottom by 1/

√
x

lim
x→∞

√
2x√
x− 2

= lim
x→∞

(1/
√
x)
√

2x

(1/
√
x)
√
x− 2

= lim
x→∞

√
2√

1− 2/
√
x

=

√
2√
1

=
√

2.

• Another example of this technique: Find limx→∞
x3+3
2x3−1 .

• The x3 part dominates the top, the 2x3 dominates the bottom.

• Multiply top and bottom by 1/x3 to get:

lim
x→∞

(1/x3)(x3 + 3)

(1/x3)(2x3 − 1)
= lim
x→∞

1 + 3/x3

2− 1/x3
= 1/2.

2.3 Limits of sequences

A sequence is just a function whose domain is {1, 2, 3, . . .} or {0, 1, 2, . . .}. Only deal with limits of functions
as the input goes to infinity.

• Example: limi→∞
i3+3
2i3−1 = 1/2.

2.4 Order notation

• One big use of limits is in finding the order of a function.

• Landau order notation tells whether one function is eventually bigger than another, eventually smaller,
or roughly the same size.

• Intuition
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– Say f(x) = O(g(x)) (read f(x) is big-O of g(x)) if g(x) is growing as fast or faster than f(x) as
x approaches 0 or infinity.

– Say f(x) = o(g(x)) (read f(x) is little-o of g(x) if f(x) is growing more slowly than g(x) as x
approaches 0 or infinity.

– Say f(x) = Ω(g(x)) (read f(x) is big-Omega of g(x) if f(x) is growing as least as fast as g(x) as
x approaches 0 or infinity.

• How can I tell?

Fact 5
Suppose that a is either 0 or infinity, and limx→a |f(x)|/|g(x)| = L exists. Then

• f(x) ∈ O(g(x)) as x→ a iff L ∈ [0,∞).

• f(x) ∈ o(g(x)) as x→ a iff L = 0.

• f(x) ∈ Ω(g(x)) as x→ a iff L ∈ (0,∞].

Examples

• 3n3 + n2 = Θ(n3) since limn→∞
3n3+n2

n3 = limn→∞ 3 + 1/n = 3.

• 3n3 = o(n4) since limn→∞
3n3

n4 = limn→∞
3
n = 0.

Fact 6
If f(x) ∈ O(g(x)), then g(x) ∈ Ω(f(x)).
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3 Logic

Question of the Day Prove the following statement:

(∀x > 2)(∃y)(x+ y > 4).

Today

• Logic notation

• How to prove things

True, False, other

• Some statements are true:

All real numbers squared are at least 0.

• Some statements are false:

All real numbers squared are at least 1.

• Some statements are neither true nor false.

This statement is false.

• The goal of logic is to have a systematic way of showing that true and false statements are true or
false.

Set notation

• A set is an unordered collection of objects

• Example: {pencil,pen, iPad}

• Example: {1, 2, 3} = {3, 2, 1}

• Example: {1, 2, 3, . . .}

• Example: [3, 10] = {x : 3 ≤ x ≤ 10}

• Use curly braces ({ and }) to enclose the set

• ∈: is an element of a set

– blue ∈ {green,blue,red}
– 2.1 ∈ [−1, 4]

• A ⊆ B means every element of A is also in B

– {blue,red} ⊆ {green,blue,red}
– [2.1, 3.5] ∈ [−1, 4]

14



Universal Quantifiers and set notation

• ∀: “for all” or “for all”

– (∀x > 3)(2x > 6) is true because no matter what value of x greater than 3 I choose, 2x will be
greater than 6.

– (∀x > 3)(2x > 10) is false because if x = 3.5, then 2x = 7 which is not greater than 10.

• ∃: “there exists”

– (∃x > 3)(2x > 6) is true. For instance, if x = 5 then 2x = 10. There only has to be at least one
value of x that makes it true for the statement to be true.

– (∃x > 3)(2x > 10) is true

– (∃x > 3)(2x < 1) is false

• Can combine them:

– (∀y)(∃x)(x+ y > 6) is true. No matter what value of y you pick, you can choose x (for instance
x = 7− y works) so that x+ y > 6.

– (∃y)(∀x)(x+ y > 6) is false

• : = “such that”

– (∀x : |x| > 3)(x2 > 9)

How to write proofs of logic statements

• Start by instantiating the universal quantifiers

• Suppose I want to prove that ∀x > 1, something is true.

• The first line of my proof will be: Let x > 1.

• That instantiates the value of x.

• Example:

Fact: (∀x > 4)(x2 + 1 > 12)

Proof: Let x > 4.
Then x2 > 16.
So x2 + 1 > 17 > 12, and we are done.

• The box symbol: indicates that the proof is complete.

• Other common ways to finish a proof are a filled in box, or QED for Quod Erat Demonstrandum (it
is shown in Latin).

• Example:

Fact: (∀|x| ≤ 3)(x+ 1 < 5)

Proof: Let |x| ≤ 3.
Then x ≤ 3 and x ≥ −3.
So x+ 1 ≤ 4 < 5, and we are done.
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Proving statement with there exists

• Instantiating for exists means that you get to pick the value needed. You can choose anything that
you want that works.

• Example:

Fact: (∃x > 2)(2x > 20)

Proof: Let x = 12 (I got to pick the value of x!)
Then 2x = 24 > 20, and we are done.

Mixing up for all and there exists

• Things get interesting once we have both ∀ and ∃

• Example: Prove that (∀y)(∃x)(x+ y > 6)

– The ∀y makes the first line of the proof: Let y ∈ R.

– The ∃x means we get to pick x. Since the ∃x comes after we choose y, we get to pick x based on
the value of y.

– The goal is to make x+ y > 6, so choose y > 6− x. For instance, y = 7− x works.

– The final proof looks like this:

Proof: Let x ∈ R.
Let y = 7− x.
Then x+ y = 7 > 6, and we are done.

Negation

• Another symbol: ¬ turns true into false, and false into true.

• It is called the negation symbol, or logical not.

• Example: (3 < 5) is true, but ¬(3 < 5) is false.

• To prove a statement p is false, instead show that ¬p is true.

• Negation affects universal quantifiers, by turning ∀ into ∃ and ∃ into ∀!

• For instance ¬(∀x > 3)(other stuff) becomes (∃x > 3)¬(other stuff).

• In other words: to prove that a statement doesn’t hold for every example, all you need is one example
(called a counterexample where the statement doesn’t hold.

• Some other examples:

Statement Negation

x = −2 x 6= −2
x ∈ [1, 2] x /∈ [1, 2]
δ > 0 δ ≤ 0
∀x > 2 ∃x > 2
∃ε > 0 ∀ε > 0

• Notice that when you negate a ∀ statement, you leave the rest of the expression alone: ¬(∀|x| > 3) =
(∃|x| > 3)

• But when there is no universal quantifier, the expression changes: ¬(|x| > 3) = (|x| ≤ 3).

• To negate an entire expression, move left to right, negating as you go:

¬(∃x > 3)(|x| > 4) = (∀x > 3)(|x| ≤ 4).

16



Example:

• Prove (∃y)(∀x)(x+ y > 6) is false.

• First negate, and instead show (∀y)(∃x)(x+ y ≤ 6).

Proof: Let y ∈ R.
Let x = 6− y.
[Note: since already set y, value of x can depend on y!]
Then x+ y = 6 ≤ 6, and we are done.

3.1 A rigorous definition

• Now that we have this notation, we can rigorously define certain concepts.

• For instance, A ⊆ B means that every element of A is also an element of B. That makes the formal
definition:

Definition 5
Say that A is a subset of B (write A ⊆ B) if

(∀a ∈ A)(a ∈ B).

17



4 Rigorous Limits

Question of the Day Prove that limx→3 2x = 6.

Today

• The logical definition of limit.

• Using the definition to prove true/false statements about limits.

• Increasing and decreasing functions.

Defining limits

• The limit as x approaches a of f(x) is L.

lim
x→a

f(x) = L.

• Intuition: When x is close to a, then f(x) is close to L.

• Use ε to measure how close f(x) is to L.

|f(x)− L| ≤ ε

• Use δ to measure how close x is to a.
|x− a| ≤ δ

Definition 6
For f : A→ B, the limit of f(x) as x approaches a is L (written limx→a f(x) = L) means

(∀ε > 0)(∃δ > 0)(∀x ∈ A : |x− a| ≤ δ)(|f(x)− L| ≤ ε).

• Here is the picture.

a

a+ δa− δ

L

L+ ε

L− ε

The red part of the function lies between the horizontal lines L− ε and L+ ε.

Proving facts about limits

• “For all” needs instantiating

• ∀ε > 0 becomes “Let ε > 0”

• ∃δ > 0 becoems “Let δ =” and you can choose what goes on the right hand side at a later time.

18



Example: Show that limx→3 2x = 6

Proof: Let ε > 0
Let δ = [leave blank for now]
Let x satisfy |x− 3| < δ
Then −δ < x− 3 < δ
[Goal: |2x− 6| < ε which means −ε < 2x− 6 < ε]
So −2δ < 2x− 6 < 2δ
[At this point, make 2δ = ε by making δ = ε/2]
Since δ = ε/2, −ε < 2x− 6 < ε, and we are done!

Final proof:

Proof: Let ε > 0
Let δ = ε/2
Let x satisfy |x− 3| < δ
Then −δ < x− 3 < δ
[Goal: |2x− 6| < ε which means −ε < 2x− 6 < ε]
So −2δ < 2x− 6 < 2δ
Therefore −ε < 2x− 6 < ε, and we are done!

Example: a harder example

• Show that limx→2 x
2 = 4.

• First four lines of proof don’t require thought:

Proof: Let ε > 0
Let δ = [save choice for later]
Let x satisfy |x− 2| < δ
Then −δ < x− 2 < δ

• And the last line is the goal that is determined for us:

Proof: Therefore −ε < x2 − 4 < ε, and we are done!

• So the question is how to get from −δ < x− 2 < δ over to −ε < x2 − 4 < ε. Sometimes easier to do in
two pieces, given x− 2 < δ and −δ < x− 2, show that x2 − 4 < ε and −ε < x2 − 4.

• Would like to square −δ < x− 2 < δ.

• Note: Can’t just square all three things!

(−δ)2 < (x− 2)2 < δ2 ⇔ δ2 < (x− 2)2 < δ2

is a false statement.

• Consider the picture:

f(x) = x2

−δ δ

δ2
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−δ < x− 2 < δ ⇒ 0 ≤ (x− 2)2 < δ2

⇒ 0 ≤ x2 − 4x+ 4 < δ2

⇒ 4x− 8 ≤ x2 − 4 < δ2 + 4x− 8

⇒ 4(x− 2) ≤ x2 − 4 < δ2 + 4(x− 2)

⇒ 4(−δ) < x2 − 4 < δ2 + 4δ

• Need −ε ≤ −4δ and δ2 + 4δ ≤ ε

• Making δ ≤ ε/4 gives −ε ≤ −4δ.

• Making δ ≤ 1 makes δ2 ≤ δ and δ2 + 4δ ≤ 5δ.

• Making δ ≤ ε/5 gives 5δ ≤ ε.

• To make all this work,
δ = min{1, ε/4, ε/5} = min{1, ε/5}

• Now that I know what δ to use, we can write the proof out moving forward.

Proof: Let ε > 0.
Let δ = min{1, ε/5}.
Let x satisfy |x− 2| < δ.
Then −δ < x− 2 < δ.
And 0 ≤ (x− 2)2 < δ2.
So 0 ≤ x2 − 4x+ 4 < δ2.
Adding 4(x− 2) to everything gives

4(x− 2) ≤ x2 − 4 < δ2 + 4(x− 2).
Using −δ < x− 2 < δ then gives 4(−δ) < x2 − 4 < δ2 + 4δ.
Since δ ≤ ε/5, −ε < −4δ.
Since δ ≤ 1, δ2 + 4δ ≤ 5δ.
Since δ ≤ ε/5, 5δ ≤ ε.
So δ2 + 4δ ≤ ε.
Which means −ε < x2 − 4 < ε, and we are done.

Comments

• Called the ε, δ definition of limits.

• Only need to do formal proof of limits if asked.

• Otherwise, just invoke the continuity of f(x) = x2 to get limx→2 x
2 = 22 = 4.

• Not all limits exist! (Need new definition if limit is infinity.)

lim
x→0

1/x =?, lim
x→∞

x =?
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5 Derivative

Question of the Day What is the derivative of f(x) = x2 at x = 1?

Today

• The notion of a differential.

• The intuitive notion of a derivative.

• The derivative as a linear approximation to a function.

• The Product Rule

Notation for the derivative Say y = f(x). Then the derivative of f is

f ′(x) = y′ = [f ]′ =
dy

dx
=
df

dx
.

Notions of the derivative

• There are several ways to think about the derivative.

• Geometric: slope of a curve

x

y

• Marginal change: how does small change in x change f(x)?

• Instananeous rate of change: derivative of position is velocity, derivative of velocity is acceleration

• Ratio of infinitesimal quantities

– dx represents the infinitesimally small change in x

– dy represents the infinitesimally small change in y

– Regular slope of a line is rise/run (change in y/change in x)

– Derivative is dy/dx

– Derivative gives best approximation to a function with a line:

f(x) = f(x0) + f ′(x0)(x− x0) + o(x− x0)︸ ︷︷ ︸
error

(Gives a derivative in higher dimensions.)
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dx

dy

x x+ dx

y

y + dy

Definition 7
A function f is a line if it has the form f(x) = mx+ b for constants m and b. Call m the slope of the line
and b the y-intercept.

Derivative of x2

• Claim that [x2]′ = 2x.

• So answer to QotD is 2(1) = 2.

• So best approximation to x2 using x0 = 1 is

f(1) + (x− 1)f ′(1) = 1 + (x− 1)2 = 2x− 1

• Visually:

x2

2x− 1

1

x2 − (2x− 1)

1

Difference flat at 0
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x2

x (wrong slope)

1

x2 − x

1

Difference not flat at 0

5.1 Properties of the derivative

Derivative of a line is just the slope

Fact 7
The derivative of a line is just the slope of the line

[mx+ b]′ = m.

Example: [3x− 2]′ = 3, [x+ 4]′ = 1, [5]′ = 0.

Lemma 1
The derivative is a linear operator. So for any two differentiable functions f and g and real constants a
and b,

[af + bg]′ = a[f ]′ + b[g]′.

Intuition

• The function af is just a scaling of the vertical coordinate by a. So the slope should scale by the same
amount.

• Suppose

f(x) = f(x0) + (x− x0)f ′(x0) + o(x− x0)

g(x) = g(x0) + (x− x0)g′(x0) + o(x− x0).

Then
f(x) + g(x) = f(x0) + g(x0) + (x− x0)(f ′(x0) + g′(x0)) + o(x− x0).

So
[f + g](x) = [f + g](x0) + (x− x0)[f ′ + g′](x0) + o(x− x0).

Hence
[f + g]′ = f ′ + g′.
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Lemma 2 (Product Rule)
If f and g are differentiable functions, then so is f · g, and

[fg]′ = fg′ + f ′g.

Fact 8
The derivative of x2 is 2x.

Proof. From our previous facts and lemmas:

[x2]′ = [x · x]′

= x[x]′ + [x]′x

= x(1) + (1)x

= 2x.

Fact 9
The derivative of x3 is 3x2.

Proof. From the product rule and the derivative of x2:

[x3]′ = [x · x2]′ = x[x2]′ + [x]′x2 = x(2x) + (1)x2 = 3x2.

Lemma 3 (General Product Rule)

Let f1, . . . , fk be differentiable functions. Then so is f1 · · · fk =
∏k
i=1 fi, and

[f1 · · · fk]′ = [f1]′
k∏
i6=1

fi + [f2]′
k∏
i 6=2

fi + · · ·+ [fk]′
∏
i 6=k

fi.

Fact 10
If n ∈ {1, 2, . . .}, then [xn]′ = nxn−1.

Proof is by induction.

• There are two parts to an induction proof.

• The base case: prove that the statement holds for the smallest value of n

• The induction step. Assume that the statement is true for n. Then if it holds for n + 1, then the
statement is true for all n.

Proof. Proof by induction. When n = 1, nxn−1 = 1 · x1−1 = 1, which is [x]′, so the base case holds.
Assume the statement is true for n. Then for n+ 1:

[xn+1]′ = [x · xn]′ = x[xn]′ + [x]′xn = x(nxn−1) + xn = (n+ 1)xn.

This completes the induction.
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6 Rigorous Derivatives

Question of the Day What is the rigorous definition of a derivative

Today

• The formal definition of a derivative.

• Using the formal definition to prove facts about the derivative.

• Six derivative rules to memorize.

What is the derivative?

Definition 8
A line that passes through points (x, f(x)) and (x1, f(x1)) is called a secant line

[Secant comes from the Latin verb Secare “to cut”]
As x1 gets closer to x, get closer to the tangent line at x.

x x1
f(x)

secant line

tangent line

Definition 9
Say that g(x1) is the tangent line to f at x if

f(x1)− g(x1) = o(x− x1).

In this case, o(x− x1) means that

lim
x−x1→0

f(x1)− g(x1)

x− x1
= 0.

Finding the tangent line

• So how do we find this tangent line?

• The tangent line is the best linear approximation to the function.

• Slope of tangent line

• For historical reasons, let x1 − x = h. Then as x1 → x, h→ 0. And x1 = h+ x.

Definition 10
The derivative of f at x is

f ′(x) =
df

dx
= lim
h→0

f(x+ h)− f(x)

h

when this limit exists.

Note: the derivative of a function at an x value is a number.
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Definition 11
If f ′ = g for all x ∈ (a, b), say that g is the derivative of f .

Note: the derivative of a function is another function.

Derivatives are linear operators

Definition 12
Call L a linear operator if for scalars a and b and vectors v and w:

L[av + bw] = aL[v] + bL[w].

• Let c1 and c2 be constants

• Let f and g be functions

• Limits are real operators means that if limx→a f(x) and limx→a g(x) exist and are finite, then

lim
x→a

[c1f + c2g](x) = c1 lim
x→a

f(x) + c2 lim
x→a

g(x)

• Deriviatives are linear operators means that if f ′ and g′ exist, then

[c1f + c2g]′ = c1f
′ + c2g

′.

• Now that we have rigorous definitions of limit and derivatives, can prove this!

Fact 11 (Limits scale)
Suppose that limx→a f(x) = L and c ∈ R. Then limx→a c · f(x) = cL.

Proof: Case I: Suppose c = 0.
Then cf(x) = 0 for all x, and the limit is 0 = 0 · L

since it is a constant function.
Case II: Suppose c > 0
Let ε > 0.
Then let ε′ = ε/c. Note ε′ > 0.
Then by the definition of limit there exists δ such that
|x− a| ≤ δ → |f(x)− L| < ε′

Let x be any number with |x− a| ≤ δ.
Then −ε/c < f(x)− L < ε/c
Multiplying by c gives −ε < cf(x)− cL < ε
Hence limx→a cf(x) = L
Case III: Suppose c < 0
Let ε > 0
Now ε′ = −ε/c > 0, and the proof proceeds as in Case I.

Structure of proof

• Started with ε > 0 to prove limx→a cf(x) = cL.

• Used fact that limx→a f(x) = L to get our δ value!

• Common way to prove these types of limit results.
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Fact 12
(Limits add) Supose that limx→a f(x) = L and limx→a g(x) = M . Then limx→a[f + g](x) = L+M .

Proof. Let ε > 0. Then there exists δf such that

|x− a| < δf → |f(x)− L| ≤ ε/2.

Also, there exists δg such that
|x− a| < δg → |g(x)−M | ≤ ε/2.

Let δ = min{δf , δg}. Let x be such that |x− a| < δ. Then |f(x)− L| < ε/2 and |g(x)−M | < ε/2.
Recall that for any a, b ∈ R, |a+ b| ≤ |a|+ |b| (called the triangle inequality for absolute value.) So

|[f + g](x)− (L+M)| = |f(x)− L+ (g(x)−M)|
≤ |f(x)− L|+ |g(x)−M |
≤ ε/2 + ε/2

= ε.

• Combining these two facts shows that limits are a linear operator!

• One you have it for limits, for derivatives it is easy

Proof that derivatives are linear operators. Let x be any real number. Then

af ′(x) + bg′(x) = a lim
h→0

f(x+ h)− f(x)

h
+ b lim

h→0

g(x+ h)− g(x)

h

= lim
h→0

(
a
f(x+ h)− f(x)

h
+ b

g(x+ h)− g(x)

h

)
= lim
h→0

[af + bg](x+ h)− [af + bg](x)

h
,

so the derivative of [af + bg] exists at x, and must equal af ′(x) + bg′(x).
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7 More ways of finding derivatives

Question of the Day What is the derivative of (x2 + 1)−2?

Today

• Six derivative rules to memorize.

• The chain rule

Functions you should know story behind

• Exponential function: exp(x) is something like ex.

0

• Natural logarithm (natural log): ln(x) is the inverse of the exponential function. [exp(ln(x)) =
ln(exp(x)) = x]

• Sine, Cosine, Tangent: (cos(x), sin(x)) coordinates of point on the unit circle angle x counter-clockwise
from right hand horizontal axis. Tangent is slope of line from origin to this point.

x

(cos(x), sin(x))

tan(x) = sin(x)
cos(x)
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• Arcsine, arccosine, arctangent: Inverse functions of trig functions are named arc[function] or written
function−1(x).

• Polynomials: linear combinations of xi for i ∈ {0, 1, 2, . . .}

x3 − 3x

−5 5

−40

40

x3 − 3x

• Formal definition of each of these functions very different from intuition!

7.1 Six derivatives to memorize

• Helpful to have these derivatives memorized.

• They come up the most often in using Calculus.

f(x) f ′(x)

xa axa−1

sin(x) cos(x)
cos(x) − sin(x)
exp(x) exp(x)

arctan(x) 1/(1 + x2)
ln(x) 1/x

Example

• What does [ln(x)]′ = 1/x mean?

• Well, ln(2) ≈ 0.69314718056 . . ....

• Change 2 to 2.01 is changing the x coordinate by 0.01...

• So
ln(2.01) ≈ ln(2) + 0.01[ln]′(2) = ln(2) + 0.01(1/2) = 0.698147 . . .

• Only an approximation, ln(2.01) = 0.698134 . . ., but accurate to first four decimal places!

• The picture: change x a little bit dx, and y changes a little bit dy, dy = dxf ′(x).

fx y

dx

dy
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7.2 The Chain Rule

• The way the chain rule works is suppose y is fed into another function g to get w.

• Question: how much does w change when x changes?

fx y

dx

dy

g w

dw

• So x changes y changes w.

• Now dw = dy · g′(y) = dy · g′(f(x)) and dy = dx · f ′(x). So

dw = dx · g′(f(x))f ′(x)⇒ dw

dx
= g′(f(x))f ′(x).

Lemma 4 (The Chain Rule)
There are several ways to state the chain rule. Using composition notation:

[g ◦ f ]′ = [g′ ◦ f ] · f ′

Using argument notation:
[g(f(x))]′ = g′(f(x))f ′(x).

Using differential notation
dw

dx
=
dw

dy
· dy
dx
.

Example

• Find the derivative of exp(3x).

• Formal approach: set f and g, then use formula

f(x) = 3x, g(y) = exp(y)⇒ f ′(x) = 3, g′(y) = exp(y)

• So
g′(f(x))f ′(x) = exp(3x) · (3) = 3 exp(3x).

QotD

• What is the derivative of (x2 + 1)−1?

• Set up f and g, then use the formula

f(x) = x2 + 1, g(y) = y−1 ⇒ f ′(x) = 2x, g′(y) = −1y−1−1 = −y−2

•
[g(f(x))]′ = g′(f(x))f ′(x) = −(x2 + 1)−2(2x) = − 2x

(x2 + 1)2
.

Note, derivative of exp(x), ln(x), and chain rule give the power rule.
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Lemma 5
For all a ∈ R and x 6= 0, the derivative of xa is axa−1.

Proof. Suppose x 6= 0. Since exp and ln are inverse functions, x = eln(x). Hence xa = (eln(x))a = ea ln(x) by
the rules of exponents. This is a compositon of functions!

f(x) = a ln(x), g(y) = ey ⇒ f ′(x) = a/x, g′(x) = ey.

So
[xa]′ = [ea ln(x)]′ = ea ln(y)(a/x) = xa(a/x) = axa−1.

Geometric picture of power rule for a = 2:

x2

x
dx

dx x · dx

x · dx

dx2

d(x2) = x · dx+ x · dx+ (dx)2 = 2x · dx

d(x2)
dx = 2x
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8 Setting up Integrals

Question of the Day Water is flowing into a pool at rate 20t gallons per minute. How much
water comes in the first hour?

Today

• Applications of integration

What is mathematics

• Mathematics is abstraction: taking two dissimilar problems, and seeing the commonality in each

• If my company owns 5 airplanes and I buy 3 more, how many airplanes do I have? 5 + 3 = 8

• If I own 5 cows and I buy 3 more, how many cows do I have? 5 + 3 = 8

• Cows are not airplanes, but that doesn’t matter to the problem

• Integrals (like numbers and addition) apply to a wide variety of problems that at first do not look alike

What are integrals?

• The integral of f(x) over [a, b]. Write∫
x∈[a,b]

f(x) dx =

∫ b

x=a

f(x) dx =

∫ b

a

f(x) dx.

• Geometric interpretation: The area above the x-axis minus the area below the x-axis

-1 1.5

0.5

1.5

1/4

1/4

25/64

Integral = −(1/4) + (1/4)− (25/64)

= −25/64 ≈ −0.3906

• Accumulation: when stuff (water, oil, distance) is accumulating at a rate f(t) over time t ∈ [a, b].

Accumulation

• A car is traveling 60 miles/hour for 1/2 hour. How far does it travel?

• Water is flowing at 60 gallons/minute for 1/2 minute. How much water accumulates?

• In general: accumultation = rate times time

• Works when the rate r(t) does not vary with time

• In qotd, rate is certainly varying with time
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• Idea: only work over a small time interval [t, t+ dt]

t t+ dt

• Over this small interval, rate is effectively constant

• Accumulation over interval from t to t+ dt is

r(t) · (t+ dt− t) = r(t) dt.

• Integrate comes from Latin to “make whole”

• To get the whole accumulation, integrate over time values
(integral sign is a stretched out S for summation)∫ b

t=a

r(t) dt.

Connection to geometry

• Note that r(t) dt also approximates the area under the curve from t to t + dt (or negative the area if
r(t) < 0.)

t t+ dt

• For infinitesimal dt, and r(t) ≥ 0, get area under the curve

Use connection to solve qotd

• From our discussion on accumulation, answer to qotd is∫ 60

t=0

20t dt.

• From geometry, area of shaded region:
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1200

60

• This is a triangle with height 1200, base 60, so total area

1200 · 60 · (1/2) = 36 000 gallons

Properties of integrals What properties should integrals obey?

• Respect inequalities. If f(x) ≤ g(x) for all x ∈ [a, b], then∫
x∈[a,b]

f(x) dx ≤
∫
x∈[a,b]

g(x) dx.

• Linear operators. If
∫
x∈[a,b] f(x) dx and

∫
x∈[a,b] g(x) dx exist, and c1 and c2 are two real numbers, then∫

x∈[a,b]
c1f(x) + c2g(x) dx = c1

∫
x∈[a,b]

f(x) dx+ c2

∫
x∈[a,b]

g(x) dx.

• Accumulation: if water is flowing at slower rate f than faster rate g, then total water from f rate is
less than total water from g rate.

• Geometry: If f ≤ g, then positive area under f is less than positive area under g, and negative area
under f greater than negative area under g, so positive area - negative area under f is less than positive
area - negative area under g.

8.1 Indicator and simple functions

• Useful for describing functions that are constant over intervals

Definition 13
The indicator function 1(·) takes an argument that is either true or false. If the argument is true it returns
a 1, otherwise it returns a 0.

Example

• Let f(x) = 1(x ≥ 5)

• Then f(6) = 1(6 ≥ 5) = 1 because 6 ≥ 5 is true

• But f(4) = 1(4 ≥ 5) = 0 because 4 ≥ 5 is false

• Graph of the function looks like this:

1

5

1(x ≥ 5)

• Filled circle at (5, 1), and empty circe at (5, 0) since 1(5 ≥ 5) = 1.
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Using indicators

• Suppose I want a function that is 5 or 0, not 1 or 0

5 · 1(x ∈ [a, b])

• Indicator functions are easy to integrate!

• First integral definition:

Definition 14
Suppose a ≤ a1 ≤ b1 ≤ b then ∫

x∈[a,b]
c1(x ∈ [a1, b1]) dx = c(b1 − a1)

c

a1a b1 b

Definition 15
For a ≤ b, suppose f(x) = c1f1(x) + c2f2(x) + · · · + cnfn(x), where fi(x) = 1(x ∈ [ai, bi)), and (∀i)(ci ∈
R and a ≤ ai ≤ bi ≤ b). Then f is a simple function.

Our second integral definition:

Definition 16
Let f(x) = f1(x) + · · ·+ fn(x) be a simple function. Then∫

x∈[a,b]
f(x) dx =

∫
x∈[a,b]

f1(x) dx+ · · ·+
∫
x∈[a,b]

fn(x) dx.

Example

• What is
∫
x∈[0,3] 21(x ∈ [0, 1])− 1(x ∈ [1, 3]) dx?∫

x∈[0,3]
2 · 1(x ∈ [0, 1]) dx+

∫
x∈[0,3]

(−1)1(x ∈ [1, 3]) dx =

2(1− 0) + (−1)(3− 1) = 0.
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9 Rigorous Integrals

Question of the Day What is the definition of
∫ b
a
f(x) dx for general functions f?

Today

• Rigorous definition of the Riemann integral

• A function with no Riemann integral

Integration is an idea

• Area above x-axis minus area below x-axis

• Accumulation at a rate over a time interval

• More than one way to define integral

• Some more general than others

• Today: Riemann integral

• More advanced, Lebesgue, Steljies, Ito

Idea

• Remember the integral is defined for simple functions

• Example: ∫ 4

0

2 · 1(x ∈ [0, 3)) + 5 · 1(x ∈ [3, 4]) dx = 2(3− 0) + 5(4− 3) = 11

0

2

5

3 4

6

5

4 +
√
x

• Easy to show facts about integral of simple functions.

Lemma 6
Let s1 and s2 be two simple functions over [a, b], and α, β ∈ R. Then∫ b

a

αs1(x) + βs2(x) dx = α

∫ b

a

s1(x) dx+ β

∫ b

a

s2(x) dx.
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Proof. Recall that s1 and s2 simple means that they are the sum of indicator functions fi and gi:

s1(x) = c1f1(x) + · · ·+ cnfn(x) =
∑
i

cifi(x)

s2(x) = d1g1(x) + · · ·+ dmgm(x) =
∑
j

djgj(x)

where fi = 1(x ∈ [ai, bi]) and gj = 1(x ∈ [`j , kj ]). Then αs1(x) + βs2(x) is also simple!

αs1(x) + βs2(x) = αc1f1(x) + · · ·αcnfn(x) + βd1g1(x) + · · ·+ βdmgm(x).

So by the definition of the integral of a simple function:

∫ b

x=a

αs1(x) + βs2(x) dx =

[∑
i

∫ b

a

αcifi(x) dx

]
+

∑
j

∫ b

a

βdjgj(x) dx


=

[∑
i

αci(bi − ai)

]
+

∑
j

βdj(kj − `j)


= α

[∑
i

ci(bi − ai)

]
+ β

∑
j

dj(kj − `j)


= α

[∑
i

∫ b

a

cifi(x) dx

]
+ β

∑
j

∫ b

a

djgj(x) dx


= α

∫ b

a

s1(x) dx+ β

∫ b

a

s2 dx

• Suppose a simple function s lies below f

• Then want
∫
x∈[a,b] s(x) dx to be a lower bound for

∫
x∈[a,b] f(x) dx. So∫

x∈[a,b]
s(x) dx ≤

∫
x∈[a,b]

f(x) dx.

• Similarly, if r(x) is a simply function with f(x) ≤ r(x), then want∫
x∈[a,b]

f(x) dx ≤
∫
x∈[a,b]

r(x) dx.

Definition 17
Let S be the set of simple functions s such that s < f , and R be the set of simple functions r such that
f < r. Then if there is a unique number I such that for all s ∈ S and r ∈ R,∫

x∈[a,b]
s(x) dx ≤ I ≤

∫
x∈[a,b]

r(x) dx,

then I is the Riemann integral of f(x) over [a, b], which is written
∫ b
a
f(x) dx.

37



Fact 13
I =

∫
x∈[a,b] f(x) dx exists iff there exists two sequences of simple functions s1, s2, s3, . . . and r1, r2, r3, . . .

with si ≤ f ≤ ri for all i such that

lim
i→∞

∫
[a,b]

si dx = lim
i→∞

∫
[a,b]

ri dx = I.

Theorem 1
If f is a continuous function over [a, b], then the Riemann integral

∫
x∈[a,b] f(x) dx exists.

(Not going to prove this one: see Math Analysis I, Math 137.)

• Typically do not use this definition in calculating the integral, use it to prove facts about integrals.

Lemma 7
If f(x) is integrable over [a, b] and c ∈ R, then

∫
x∈[a,b] c · f(x) dx = c

∫
x∈[a,b] f(x) dx.

Proof. Let I =
∫
x∈[a,b] f(x) dx. Let S be the set of simple functions s with s ≤ cf , and R be the set of

simple functions r with cf ≤ r. Let s ∈ S. Then s/c is a simple function with s/c ≤ f . So
∫
s/c ≤

∫
f = I

Hence
∫
s ≤ cI.

Similarly, for any r ∈ R,
∫
r ≥ cI.

So we have shown that cI is a number between the integral of any simple function bounding f below,
and the integral of any simple function bounding f above. Is it unique?

Suppose J is such a bound. Then for all s ∈ S,
∫
s ≤ J , so

∫
s/c ≤ J/c. Similarly for r ∈ S,

∫
r/c ≥ J/c.

So J/c = I, which means J = cI. So yes, the integral of cf over [a, b] is unique!

This definition allows us to prove two more important rules about integrals:

Lemma 8
If f and g are integrable over [a, b], then integration acts as a linear operatior, so for constants c1 and c2,∫ b

a

c1f(x) + c2g(x) dx = c1

∫ b

a

f(x) dx+ c2

∫ b

a

g(x) dx.

Lemma 9
If f(x) ≤ g(x) for all x ∈ [a, b], then ∫ b

a

f(x) dx ≤
∫ b

a

g(x) dx.

Calculating integrals

• We don’t use the definition to calculate integrals, so how are they calculated?

• One of the breakthrough realizations of humanity.

• Connects derivatives and integrals together.

• Fundamental theorem of Calculus: If f = F ′ is continuous over [a, b], then∫
x∈[a,b]

f(x) dx = F (b)− F (a).
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9.1 A function with no Riemann integral

When does the Riemann integral exist?

• It always does when f(x) is continuous over [a, b]

• It might not when f(x) is not continuous

• Example over [0, 1]:
f(x) = 1(x has a finite decimal expansion).

• So f(0.324) = 1, f(1/3) = f(0.33333 . . .) = 0.

• Note 0.69999 . . . = 0.7, so f(0.6999999 . . .) = f(0.7) = 1.

• Now for any a < b, there exists c1 and c2 such that a < c1 < c2 < b, c1 has a finite decimal expansion,
and c2 does not. Example

a = 0.34523452

b = 0.34538249

c1 = 0.34524

c2 = 0.34524111 . . .
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10 Infinite Series

Question of the Day What is

1 + (1/3) + (1/3)2 + (1/3)3 + · · ·?

Today

• Infinite series

• Convergence and divergence

Recall

• A sequence is a function from {1, 2, . . . , } to R.

• Example: f(i) = 1/i2.

• Could also write as 1, 1/4, 1/9, 1/16, . . .

• Or ai = 1/i2

• Note: limi→∞ ai = 0

Infinite series

• An infinite series (or just series for short) is the sum of the terms in a sequence

• Example:

– 1 + 1/4 + 1/9 + · · · is a series.

– 1, 1/4, 1/9, 1/25, . . . is a sequence.

• Qotd: 1 + (1/3) + (1/3)2 + · · · is a series.

• Now let’s formalize this idea:

Definition 18
A partial sum of a sequence {ai} is Sn = a1 + a2 + · · ·+ an, that is, the sum of the first n terms in the
sequence.

Definition 19
A series (or infinite series) is the limit of the partial sums of a sequence as n goes to infinity. Write

∞∑
i=0

ai = lim
n→∞

n∑
i=0

ai.

• It is not important what the number of first term is

∞∑
i=0

ai or

∞∑
i=10

ai

are also considered series.

• Sometimes the limit of the partial sums is not a real number.

Definition 20
If
∑∞
i=1 ai does not exist, then say the series diverges. If it does exist, say that the series converges.
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Example

• 1 + 1 + 1 + 1 + · · · has partial sums 1, 2, 3, . . . which diverges

• 1− 1 + 1− 1 + 1 + · · · has partial sums 1, 0, 1, 0, 1, 0, . . . which diverges

• Note that divergences or convergence does not depend on where the series starts.

Lemma 10
Let {ai}∞i=0 be a sequence. Then either

∑∞
i=j ai converges for all j ≥ 0 or

∑∞
i=j ai diverges for all j ≥ 0.

• Later in the course we’ll learn some tests to see whether a series converges or diverges. But for now
we’ll attack the problems directly.

10.1 Geometric series

• Qotd: What is 1 + (1/3) + (1/3)2 + · · · ?

• Let’s looks at the partial sums for ai = (1/3)i. (Starts with i = 0)

n Sn approx Sn

0 1 1
1 1 + 1/3 = 4/3 1.3333333. . .
2 4/3 + 1/9 = 13/9 1.4444444. . .
3 13/9 + 1/27 = 40/9 1.481481. . .
...

...
10 88573/59049 1.49999153 . . .

1 =
3

2
− 1

2
,

4

3
=

3

2
− 1

2
· 1

3
,

13

9
=

3

2
− 1

2
· 1

9
,

88573

59049
=

3

2
− 1

2
· 1

310

• Okay, so limit is probably 3/2, but how do you prove it?

• Need a way to calculuate the partial sums. A clever trick helps!

Sn = 1 + (1/3) + (1/3)2 + · · ·+ (1/3)n.

(1/3)Sn = (1/3) + (1/3)2 + · · ·+ (1/3)n+1

= Sn − 1 + (1/3)n+1.

Now treat Sn as an unknown and solve this equation!

(1/3)Sn = Sn − 1 + (1/3)n+1

1− (1/3)n−1 = Sn − (1/3)Sn = Sn(1− 1/3)

Sn =
1− (1/3)n+1

1− 1/3
.

• As n→∞, (1/3)n+1 → 0, so limn→∞ Sn = 1/(1− 1/3) = 1/(2/3) = 3/2 = 1.500.

• Used 1/3 here for illustration, but this trick works with any series of the form 1 + r+ r2 + r3 + · · · for
r ∈ R.

• I used r here for the variable because it is the ratio between successive terms in the sequence.

• These types of series come up a lot in geometry.
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Definition 21
A series of the form

∑∞
i=0 r

i is called a geometric series.

Lemma 11
For r 6= 0,

n∑
i=0

ri =
1− rn+1

1− r
.

Lemma 12
A geometric series converges if and only if |r| < 1. When |r| < 1,

∞∑
i=0

ri =
1

1− r
.

(If and only if means that if |r| ≥ 1, the series diverges.

Example

• Q: Which of the following series diverge?

∞∑
i=0

(1/2)i,

∞∑
i=10

3i,

∞∑
i=1

(−1/5)i.

• A: The second one diverges, the other two converge.

• What does
∑∞
i=1(−1/5)i =?

• A: We know
∑∞
i=0(−1/5)i = 1/(1− (−1/5)) = 1/(6/5) = 5/6.

Since
∑∞
i=0(−1/5)i = 1 +

∑∞
i=1(−1/5)i,

∑∞
i=1(−1/5)i = 5/6− 1 = −1/6 ≈ −0.1666.

10.2 The Harmonic Series

Definition 22
The series

1 +
1

2
+

1

3
+ · · · =

∞∑
i=1

1

i

is called the harmonic series

Lemma 13 (Harmonic series diverges)
The harmonic series sums to infinity.

Proof. Consider breaking the terms up into groups. The first group is the first term 1 ≥ 1/2. Then 1/2+1/3 ≥
1/4+1/4 = 1/2 is the second group. The third group is 1/4+1/5+1/6+1/7 ≥ 1/8+1/8+1/8+1/8 = 1/2.
So each group contains twice as many terms as the one before, which makes the sum of each group at least
1/2. Therefore

1 + 1/2 + 1/3 + · · · ≥ 1/2 + 1/2 + 1/2 + 1/2 + · · · =∞.

• The harmonic series is an important example

• Even through the terms of a series can be going to 0 in the limt, the sum of the terms can be going to
infinity (diverging)
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11 Derivatives: Inverses and Implicit

Question of the Day What is the derivative of arctan(x)?

Today

• The inverse rule for derivatives.

11.1 Inverse functions

Definition 23
Let f : A→ B be a function such that if f(x) = f(y), then x = y. Such a function is called one-to-one
(often written 1-1) or injective.

Definition 24
Let f : A → B be a function such that for all y ∈ B, there exists an x ∈ A such that f(x) = y. (So
(∀y ∈ B)(∃x ∈ A)(f(x) = y).) Call such a function f onto or surjective.

Definition 25
If f : A→ B is both 1-1 and onto, then it has an inverse function f−1 : B → A such that for all x ∈ A,
f−1(f(x)) = x.

Lemma 14
If f−1 is the inverse of f , then f is the inverse of f−1. So [f−1]−1 = f .

• If y = f(x), then f takes input x and outputs y. The inverse function f−1 takes input y and outputs
x.

f

f−1

x y

• Note: while f2(x) commonly means take f and raise to the nth power, f−1 is the exception, this does
not mean raise f to the −1 power.

• Example: exp : R→ (0,∞) has inverse ln : (0,∞)→ R. ln(exp(x)) = x

• To graph a function and its inverse, reflect the function over the line y = x:
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Inverses and derivatives

• Remember the derivative of f is the ratio between the change in y and the change in x,

f ′(x) =
dy

dx
.

• With inverses, just change x and y:

[f−1(x)]′ =
dx

dy
.

• One of those theorems that says treat dx and dy like variables instead of differentials: dx/dy =
1/(dy/dx).

Lemma 15 (The Inverse Rule)
Suppose f : A→ B is invertible and differentiable. Then

[f−1]′(y) =
1

f ′(f−1(y))
.

Easier to use in practice then statement might look like!

Example

• y = x2 (function from [0,∞)→ [0,∞))

• x =
√
y

dy

dx
= 2x,

dx

dy
=

1

2y
=

1

2
√
x

• Matches power rule:
[x1/2]′ = (1/2)x(1/2)−1 = 1/(2x1/2 = 1/(2

√
x)

Example

• Given that [ln(t)]′ = 1/t, what is [ex]′?

•
y = ex, x = ln(y),

dx

dy
=

1

y
=

1

ex
⇒ dy

dx
= ex.
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Example

• What is [arctan(x)]′?

• Let t = tan(θ) = sin(θ)/ cos(θ) = sin(θ)[cos(θ)]−1 Then

dt

dθ
= sin(θ)[[cos(θ)]−1]′ + [sin(θ)]′[cos(θ)]−1 Product Rule

= sin(θ)(−1)[cos(θ)]−2[cos(θ)]′ + [sin(θ)]′[cos(θ)]−1 Power and chain Rules

= − sin(θ) · (− sin(θ))

cos2(θ)
+

cos(θ)

cos(θ)
Sin and cos derivatives

= 1 + tan2(θ) = sec2(θ) =
1

cos2(θ)
.

dθ

ds
=

1

1 + tan2(θ)
=

1

1 + s2
.

• So [arctan(x)]′ = 1/(1 + x2).

Lemma 16 (Arctan derivative)
The derivative of arctan(x) is 1/(1 + x2).

11.2 Implicit differentiation

• More general than inverses is idea of implicit differentiation

• Recall the equation describing points on a circle:

x2 + y2 = 1.

• This isn’t a function exactly, since graph hits horizontal lines in two places
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• But if we restrict ourselves to a small region around some points, it is invertible.

• What is dy/dx (or dx/dy) at (x, y) = (1/2,
√

3/2).

• Start with equality of the circle
x2 + y2 = 1

• Differentiate term by term with respect to x

[x2 + y2]′ = [1]′

[x2]′ + [y2]′ = 0

2x+ 2y[y]′ = 0

Now solve for y′!

y′ = −2x

2y
= −x/y

and at (1/2,
√

3/2), y′ = −(1/
√

3) ≈ −0.5773502 . . ..

• This technique of solving for y′ is called implicit differentiation

Example

• What is y′ in terms of x and y if xy = 1?

[xy]′ = [1]′

xy′ + x′y = 0

xy′ + y = 0

y′ = −y/x
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• Reciprocal of what we got with the circle!

• xy = 1 is a hyperbola and x2 + y2 = 1 is a circle.
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12 Proving Derivative Rules

Question of the Day Give a formal proof of the chain rule

Today

• Formal proof of the chain rule

12.1 Proof of the chain rule

• If y = f(x) and z = g(y) are differentiable,

[g ◦ f ]′ = [g′ ◦ f ] · f ′

[g ◦ f ]′(x) =
dz

dx
=
dz

dy
· dy
dx

= g′(f(x)) · f ′(x).

• Recall the intuition: if x changes then y changes which causes z to change. then

(dz/dx) = (dz/dy) · (dy/dx) = g′(y)f ′(x) = g′(f(x))f ′(x).

• Now let’s make this intuition precise!

Proof of Lemma 4. The derivative we want is

lim
h→0

g(f(x+ h))− g(f(x))

h
.

Fix x, then y = f(x). It will help to define new functions

w(k) =
g(y + k)− g(y)

k
− g′(y)

v(h) =
f(x+ h)− f(x)

h
− f ′(x)

By the defn of derivatives, limk→0 w(k) = 0 and limh→0 v(h) = 0.
Rearranging gives

g(y + k) = g(y) + [w(k) + g′(y)]k

f(x+ h) = f(x) + [v(h) + f ′(x)]h

Now apply g to both sides of the f(x+ h) equation to get

g(f(x+ h)) = g(f(x) + (v(h) + f ′(x))h)

= g(y + (v(h) + f ′(x))h)

= g(y + k)

where we have set k = (v(h) + f ′(x))h. Expanding g(y + k) then gives:

g(f(x+ h)) = g(y) + [w(k) + g′(y)]k

= g(f(x)) + [w(k) + g′(y)][v(h) + f ′(x)]h.

Bring the g(f(x)) over to the left hand side and divide by h to get:

g(f(x+ h))− g(f(x))

h
= [w(k) + g′(y)][v(h) + f ′(x)].

Note that limh→0 k = 0 since v(h) ·h→ 0 and f ′(x) ·h→ 0. So as h→ 0, w(k)→ 0 and v(h)→ 0. Hence

lim
h→0

g(f(x+ h))− g(f(x))

h
= [g′(y)][f ′(x)] = g′(f(x))f ′(x).
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12.2 Proof of the product rule

• The rule: [fg]′ = f ′g + fg′.

• The picture: y = f(x), w = g(x),

y

w

dy

dw

• Old area yw, new area (y + dy)(w + dw)

• So

d(yw) = (y + dy)(w + dw)− yw
= yw + w dy + y dw + (dy)(dw)− yw
= w dy + y dw

• Divide through by dx to get
d(yw)

dx
= w

dy

dx
+ y

dw

dx
= f ′g + fg′.

• Let’s turn this idea into a formal proof...

Proof of Lemma 2. Let’s turn d(yw) = w dy + y dw into a functional statement. Use w = g(x + h),
dw = g(x + h) − g(x), y = f(x), dy = f(x + h) − f(x). Note that to turn this into a proof, we use
w = g(x+ h) rather than g(x) because as h→ 0, these will be the same.

g(x+ h)[f(x+ h)− f(x)] + f(x)[g(x+ h)− g(x)]

= g(x+ h)f(x+ h)− g(x+ h)f(x) + f(x)g(x+ h)− g(x)f(x)

= g(x+ h)f(x+ h)− g(x)f(x).

Now divide by h and take the limit as h→ 0. The left hand side becomes:[
lim
h→0

g(x+ h)

] [
lim
h→0

f(x+ h)− f(x)

h

]
+ f(x)

[
lim
h→0

g(x+ h)− g(x)

h

]
= g(x)f ′(x) + f(x)g′(x).

The right hand side becomes:

lim
h→∞

g(x+ h)f(x+ h)− g(x)f(x)

h
= [f(x)g(x)]′

thus proving the product rule.
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12.3 Differentiable functions are continuous

• A function with a finite derivative is continuous

• Intuition: when dx small dy = f ′(x)dx so also small

• There are functions that are continuous where the derivative does not exist

• Canonical example: f(x) = abs(x) = |x| at x = 0.

• Is slope of tangent line +1 or −1? Could be either!

Lemma 17
A function with finite derivative f ′(a) is continuous at a.

Proof. Let w(h) = [f(a + h) − f(a)]/h − f ′(a). Then using the composition rule of limits with h = x − a
gives

lim
x→a

f(x) = lim
h→0

f(a+ h)

= lim
h→0

w(h) + f ′(a)h+ f(a) = f(a).
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13 Sets operations, closed and open, supremum and infimum

Question of the Day What makes A ⊂ R closed?

Today

• What makes a closed set closed

• More set notation

• Open set characterization of continuity

• Suprema and infima

13.1 Closed and open sets

• [a, b] = {x : a ≤ x ≤ b} is a closed interval

• (a, b) =]a, b[= {x : a < x < b} is an open interval

• (a, b] = {x : a < x ≤ b} is neither open nor closed

• So what do these terms mean?

• Euclidean distance: means distance between two points on a line

distEuclidean(x, y) = |x− y|.

Definition 26
A set A ⊂ R is open (under Euclidean distance) if

(∀x ∈ A)(∃ε > 0)((x− ε, x+ ε) ⊆ A).

Example

• The interval (0, 1) is open.

• If x = 0.1, set ε = 0.05, (0.05, 0.15) ⊆ A.

• Proof: Let x ∈ (0, 1). Set ε = min{x/2, (1− x)/2}, then (x− ε, x+ ε) ⊆ (ε, 1− ε) ⊆ (0, 1)

Definition 27
The complement of a set is all elements that are not in the set. Write AC = {x : x /∈ A}.

Example

• A = [0, 1], AC = {x : x < 0 or x > 1}.

Definition 28
A set is closed if its complement is open.
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13.2 Union and Intersection

• Notation for “or” is useful

• Mathematical or means one or other or both are true.

• (5 > 3) or (3 > 1) is true, (5 > 3) or (1 > 3) is true, (3 > 5) or (1 > 3) is false.

Definition 29
The union of two sets is all elements that are in one set or the other or both. Write A ∪ B = {x : x ∈
A or x ∈ B}.

Example: [a, b] = (−∞, a) ∪ (b,∞)

• In mathematics, “and” means both things are true

• (5 > 3) and (3 > 1) is true, (5 > 3) and (1 > 3) is false.

Definition 30
The intersection of two sets is all elements that are in both sets. Write A∩B = {x : x ∈ A and x ∈ B}.

Example: [3, 5] ∩ [1, 4] = [3, 4]

13.3 Closed under limits

• Mathematicians used “closed” in general to mean that set is closed under an operation

• For instance, the positive integers {1, 2, 3, . . .} are closed under addition. Take any two positive integers
and add them, and you get a positive integer.

• The positive integers are not closed under subtraction.

• All integers {. . . ,−2,−1, 0, 1, 2, . . .} are closed under subtraction.

• All integers are not closed under division.

• In this way of looking at things, saying an interval (or set) is closed is shorthand for saying that it is
closed under limits.

Lemma 18
Suppose for all i ∈ {1, 2, . . .}, ai ∈ A, and limi→∞ ai = L exists. If A is closed, then L ∈ A.

Examples

• 0.9, 0.99, 0.999, . . . converges to 1

• [0, 1] is a closed set, so 1 ∈ [0, 1]

• (0, 1) is not closed, because 1 /∈ [0, 1)

• The set (0, 1] is not closed, but this sequence does not prove it!

• The sequence 0.1, 0.01, 0.001, . . .→ 0 does prove that (0, 1] is not closed.
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13.4 Supremum and Infimimum

• Two more concepts related to limits

• The supremum is the least upper bound on a set of numbers.

• For instance, the set {1, 2, 3} has an upper bound of 14, 11, 4, and 3.

• Can’t make the upper bound any smaller than 3. So 3 is the least upper bound, write sup({1, 2, 3}) = 3.

• With finite sets, supremum=maximum.

• Advantage of supremum is that all subsets of real numbers have a supremum.

• Example: sup({0.9, 0.99, 0.999, . . .}) = 1

• Example: sup({1, 2, 3, . . .}) =∞

• Example: sup({}) = sup(∅) = −∞. Why: since any number is an upper bound on nothing, all real
numbers are upper bounds. The smallest number of all “real” numbers is −∞.

• Why we learn about supremum: need it to prove the Intermediate Value Theorem

Definition 31
The extended real numbers are R ∪ {∞} ∪ {−∞}.

• Informally, supremum=least upper bound

• Formally, the supremum is defined as follows.

Definition 32
The supremum of S ⊆ R is defined as follows.

1: sup(S) = −∞ if S is empty

2: If there exists a b such that S ⊆ (−∞, b], then sup(S) = min{b : S ⊆ (−∞, b]}.

3: sup(S) =∞ if (∀n)(∃s ∈ S)(s > n)

Mnemonic for supremum

• Superman flies above the buildings, but as low as possible so he can respond to crime quickly

Infimum

• The opposite of supremum, infimum is the greatest lower bound.

• Same root as inferior, infernal, lies below the set S

Definition 33
The infimum of S ⊆ R is

1: ∞ if S is empty

2: max{a : S ⊆ [a,∞)} if such an a ∈ R exists

3: −∞ if (∀x)(∃s ∈ S)(s < x)
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Lemma 19
Let −S = {x : −x ∈ S}. Then sup(S) = − inf(−S).

negative positive

A

sup(A)inf(A)
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14 The Intermediate Value Theorem

Question of the Day Is there a root of x3 − 2x+ 3 between -2 and -1.5?

Today

• The Intermediate Value Theorem

• Supremum and infimum

• The Bisection method

Qotd

• A root is a place where a function equals 0

• Here f(x) = x3 − 2x+ 3

• f(−2) = −8 + 4 + 3 = −1

• f(−3/2) = −27/8 + 3 + 3 = 21/8

• So at −2 function is below 0, at −3/2 it is above zero

• Since f is continuous, intuition is that at some point, it must have crossed 0

• Intuition true! Result called Intermediate Value Theorem

Theorem 2 (Intermediate Value Theorem)
Let f be a continuous function over [a, b]. For all z between f(a) and f(b), there exists a c such that
f(c) = z

a b

z

History

• Definitions in mathematics are created by mathematicians, not discovered written in stone

• Some thought that this should be the defining notion of continuity

• There are functions that satisfy Intermediate Value Theorem that do not satisfy limit notion of con-
tinuity

• Example: f(x) = sin(1/x) when x 6= 0, f(0) = 0

• limx→0 f(x) does not exist, so not continuous at 0.
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14.1 Bisection Algorithm

• Goal: solve f(x) = 0

• Suppose f(a)f(b) < 0 (so min{f(a), f(b)} < 0, max{f(a), f(b)} > 0)

• Then let c = (a+ b)/2

• If f(a)f(c) > 0, then let a← c

• Else b← c

• Repeat until a is close to c

Example: f(x) = x3 − 2x+ 3

a b c f(a) f(b) f(c)
-2 -1.5 -1.75 -1 2.625 1.140625
-2 -1.75 -1.875 -1 1.140625 0.158203125
-2 -1.875 -1.9375 -1 0.158203125 -0.398193359

So the root is in [−1.9375, 1.875]

14.2 Proof of IVT

Idea of the proof

• Let z be any value between f(a) and f(b).

• There is at least one value x such that f(x) ≥ z

• Let c = sup{x : f(x) ≥ z}

• If f is continuous, then f(c) = z

• A logic fact will come in handy here...

Lemma 20 (Contrapositive rule)
p implies q is true if and only if ¬q implies ¬p is true.

Example: If an animal is a bear, then it is a mammal. If an animal is not a mammal, then it is not a
bear. This is called the contrapositive.

• Before proving the theorem, helpful to know a little more about suprema

Lemma 21
Suppose s = sup(S) and s ∈ (−∞,∞). Then

(∀ε > 0)(∃s′ ∈ S)(s− s′ ∈ [0, ε))

Proof. Let ε > 0. Let b be a real number such that S ⊆ (−∞, b]. Then s ≤ b. If S ⊆ (−∞, b − ε], then
s ≤ b− ε. So if s > b− ε, then S ∩ (b− ε, b] is nonempty. Let s′ be any element of S in (b− ε, b]. Then s′ ≤ s
since s is a supremum so s′ ∈ (b− ε, s] ⊆ (s− ε, s].

Proof of Theorem 2. Without loss of generality, assume f(a) ≤ f(b). Otherwise consider g(x) = f(a+(b−x)).
Let z ∈ [f(a), f(b)]. Then if z = f(a), or z = f(b), then we are done!
Otherwise, let c = sup{x ∈ [a, b] : f(x) ≥ z}. Then since f(b) is at least z, c ≤ b. Since c ∈ [a, b], c ≥ a.
Let c′ be any point in (a, c′) with f(c′)− z 6= 0. Let ε = |f(c′)− z|/2. Then since f is continuous, there

exists δ such that for all x ∈ [a, b] ∩ [c′ − δ, c′ + δ], |f(x)− z|
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14.3 Weird applications of the Intermediate Value Theorem

Traveling around a circle

• Suppose you travel in a circle

• Each point on the circle has its own height (at least 0)

Fact 14
If the height of the circle as a function of angle is continuous, then there must be two points on the
circle somewhere that are opposite one another with the same height.

h(θ)

h(θ + π)

Proof. If θ is an angle, θ + π is the angle on the opposite side of the circle.
Let f(θ) = h(θ)−h(θ+π) be the difference between the two points on the circle. Then if f(0) = 0 we are

done. Suppose f(0) 6= 0. Then f(π) = h(π)−h(2π) = −[h(0)−h(π)] = −f(0). In other words, f(π) and f(0)
have opposite sign. So there must be an angle θ in (0, π) with f(π) = 0. That means h(θ) = h(θ + π).

Round trips

A similar result is the following:

Fact 15
Suppose I take a round trip on continuous terrain. Then if I do not start at the highest or lowest point
on the path, at some point in my trip I will be exactly as high as when I started.

Proof. Let f(t) be the height I start at time 0 minus the height I am at time t. If I take T time to complete
the loop, f(T ) = f(0) = 0. Some point t1 has f(t1) > 0 since I didn’t start at the maximum, and some
point t2 has f(t2) < 0 since I didn’t start at the minimum. Between t1 and t2 must be another point t3 with
f(t3) = 0!
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15 First and Second derivatives

Question of the Day For x ≥ 0, where is x exp(−x) increasing?

Today

• First derivatives and increasing/decreasing

• Second derivatives and convex up and convex down

QotD

• The graph of the curve looks like

• Look at the factors x and exp(−x)

• x wants to make it increase, exp(−x) wants to make it decrease

• Looking at graph, growth of x dominates at beginning, later on exp(−x) factor dominates.

• Which effect is smaller when?

Using derivatives

• Idea: Function is increasing when tangent line has positive slope

• Otherwise function is decreasing

Lemma 22
If f has a nonnegative derivative over (a, b), then f is increasing on [a, b]. If f has a nonpositive derivative
over (a, b), then f is decreasing on [a, b].

• Proof idea

• Recall that f(x+ h) = f(x) + f ′(x)h+ o(h).

• So for h smaller than H, |o(h)| ≤ (1/2)f ′(x)h

• So for all h ∈ [0, H],

f(x+ h) > f(x) + f ′(x)h− (1/2)f ′(x)h = f(x) + (1/2)f ′(x)h.

• So if f ′(x) > 0, all points c in (x, x+H] have f(c) > f(x)

• If f ′(x) < 0, all points c in (x, x+H] have f(c) < f(x)
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• Qotd: Where is f(x) = x exp(−x) increasing?

• Product rule:

[x exp(−x)]′ = x[exp(−x)]′ + [x]′ exp(−x)

= x(− exp(−x)) + exp(−x)

= exp(−x)(1− x)

• Product positive when x < 1, negative when x > 1.

• When derivative is strictly positive, function is strictly increasing.

Lemma 23
If f has a positive derivative over (a, b), then f is strictly increasing on [a, b]. If f has a negative derivative
over (a, b), then f is decreasing on [a, b].

15.1 Convexity

convex not convex

Definition 34
A set S is convex if for any two points in the set, the line segment that connects the two points is also
in the set.

(∀a, b ∈ S)(∀λ ∈ [0, 1])(aλ+ (1− λ)b ∈ S)

• When λ = 0, aλ+ (1− λ)b = b

• When λ = 1, aλ+ (1− λ)b = a

• When λ = 1/5, aλ+ (1− λ)b = (a+ b)/2

λ = 0.7 λ = 0.2

Definition 35
The epigraph of a function is those points that lie on or above the function of the graph.

epi(f) = {(x, y) : y ≥ f(x)}

• epi means “upon” “on” or “over” in Greek

• The epidermis are cells on top of the skin

• The epigraph lies on top of the graph
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Definition 36
A function f is convex if its epigraph is convex.

convex not convex

• Need A to be convex so that λa+ (1− λ)b ∈ A as well.

• Only need to check line segments that touch the graph

convex

Fact 16
The function x2 is convex.

Proof. Let a < b be real numbers. Let λ ∈ [0, 1]
Start with (a− b)2 > 0. That gives a2 − 2ab+ b2 > 0 so a2 + b2 > 2ab.
So

λ(1− λ)a2 + λ(1− λ)b2 > 2λ(1− λ)ab

λa2 + (1− λ)b2 > λ2a2 + (1− λ)2b2 + 2λ(1− λ)ab

= (λa+ (1− λ)b)2.

• Complicated!

• A simpler way...

• Convex functions have increasing derivative

• f ′(x) is increasing if f ′′(x) is nonnegative

Lemma 24 (Nonnegative second derivative implies concavity.)
Suppose that f has a continuous second derivative. Then f is convex over any interval where f ′′(x) ≥ 0.

• f(x) = x2 is convex

• f ′(x) = 2x is convex

• f ′′(x) = 2 > 0

• Example: Show that e−x is convex

• [e−x]′ = e−x[−x]′ = −e−x

• [e−x]′′ = [−e−x]′ = −[e−x]′ = −(−e−x) = e−x > 0

• So the original function is convex!
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15.2 Concavity

Definition 37
A function f is concave if −f is convex.

• Example: Show −x2 is concave

• −(−x2) = x2 which is convex, so −x2 is concave

15.3 Cn notation

• Convexity proof requires that f have continuous second derivative.

• Say that f ∈ C2, or f is in C2.

Definition 38
Say that f ∈ Cn if the nth derivative of f is continuous. (C0 is the class of continuous functions.) Say
that f ∈ Cn[a, b] if the nth derivative of f is continuous over the interval [a, b]. C∞ is the class of functions
for which all derivatives are continuous.

Definition 39
Say that f ∈ Cn[a, b] if f : [a, b]→ B and f ∈ Cn.

• Example: |x| ∈ C0, but |x| /∈ C1

• Example: ex ∈ C∞.
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16 The Extreme Value Theorem

Question of the Day What is the maximum value of f(x) = x exp(−x) for x ∈ [0, 3]?

Today

• Boundedness theorem

• Extreme value theorem

Closed bounded intervals

• Closed bounded intervals have special properties

Definition 40
A set of real numbers A is bounded if there exists finite M such that |a| ≤M for all a ∈ A.

• Example: [−3, 4] is bounded, (−∞, 2) or [0,∞) are not.

Definition 41
An interval that is both closed and bounded is called compact.

• When an interval is not compact, continuous functions can fly off to infinity (or negative infinity)

• Example: f1(x) = 1/x for x ∈ (0,∞) can be arbitrarily large

• Example: f2(x) = x for x ∈ [1,∞) can be arbitrarily large

• Both these examples have bounded range over compact intervals though.

Theorem 3 (Boundedness Theorem)
A continuous function over a compact set has a range that is bounded.

• Continuous: draw without lifting pencil from the paper

• Closed: no asymptotic limits can happen

• Bounded: can’t keep drawing forever.

• Since it is bounded above, the supremum of the range exists and is finite

• Since it is bounded below, the infimum of the range exists and is finite

Theorem 4 (Extreme Value Theorem)
Let f be continuous over [a, b]. Then

(∃c, d ∈ [a, b])(∀x ∈ [a, b])(f(c) ≤ f(x) ≤ f(d)).

That is, there exists c and d in [a, b] such that maxx∈[a,b] f(x) = f(c) and minx∈[a,b] f(x) = f(d).

• In other words, there exists a point where the function f is maximized and where it is minimized.
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16.1 Optimization with the extreme value theorem

• Where can the maximum and minimum be?

• If f has a continuous derivative, then anywhere f ′(x) > 0, f is strictly increasing, can’t be a max or
min...

• ...anywhere f ′(x) < 0, f is strictly decreasing, can’t be a max or min.

• Max or min can only be at the endpoints of the interval or places where f ′(x) = 0.

Definition 42
A critical point is any place where f ′(x) = 0.

Optimizing continuous f over [a, b]

1: Find the critical points

2: Evaluate f at the critical points, and at a and at b

3: The smallest function value must be the maximum of the function

4: The largest function value must be the minimum.

Qotd

• Find the critical points:

[x exp(−x)]′ = [x]′ exp(−x) + x[exp(−x)]′ = exp(−x)− x exp(−x)

= (1− x) exp(−x).

• Recall, if rs = 0, either r = 0 or s = 0. So if (1 − x) exp(−x) = 0, either 1 − x = 0 or exp(−x) = 0.
Can’t have exp(−x) = 0, so only critical point is at x = 1.

• Make a table:

x f(x)

0 0
1 exp(−1) ≈ 0.3678 . . .
3 3 exp(−3) ≈ 0.1493 . . .

• Hence
max
x∈[0,3]

f(x) = 0.3678 . . .

• Not part of question, but also get:
arg max
x∈[0,3]

f(x) = 1

and
min
x∈[0,3]

f(x) = 0, arg min
x∈[0,3]

f(x) = 0

63



Symbolic problems

• Nowadays software (WA) can do max and min numerically

• Interesting problems symbolic

• Example: Find the maximum value of f(x) = λ2x exp(−λx) for x ∈ [0, 2/λ], where λ > 0 is a constant.

• Find the critical points.

[λ2x exp(−λx)]′ = λ2[x exp(−λx)]′

= λ2[[x]′ exp(−λx) + x[exp(−λx)]′]

= λ2(exp(−λx) + x exp(−λx)[−λx]′)

= λ2(exp(−λx)− λx exp(−λx)

= λ2 exp(−λx)(1− λx)

Setting equal to 0 gives 1− λx = 0, 1 = λx, x = 1/λ is the only critical point.

• Plug in values

x f(x)

0 0
1/λ λ exp(−1)
2/λ 2λ exp(−2)

• Which is bigger, λ exp(−1) or 2λ exp(−2)?

• Since λ > 0 and exp(−1) > 2 exp(−2), λ exp(−1).

• maxx∈[0,2/λ] λ
2x exp(−λx) = λ/e.

• Can check answer using WA.
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17 Optima on unbounded regions

Question of the Day What is the maximum of f(x) = x exp(−x) for x ∈ [0,∞)?

Today

• Optima (maxima and minima) over unbounded closed sets

• Global optima

Definition 43
Say that M is a global maximum for f : A → R (write M = maxx∈A f(x)) if there exists c such
that f(c) = M , and for all a ∈ A, f(a) ≤ M . Say that m is global minimum for f : A → R (write
m = minx∈A f(x)) if

(∃d)(∀a ∈ A)(f(a) ≥ f(d) = m)

• Global maxima are maxima where the function value is as large as any output.

• Local maxima are maxima where the function value is largest in a neighborhood of the input value.

Local max

Local min

Global min

Global max

-2 2

17.1 Local optima

Definition 44
Say (x, y) is a local maximum if f(x) = y, and there exists [a, b] such that x ∈ [a, b] and f(x′) ≤ y for
all x′ ∈ [a, b].

Definition 45
Say (x, y) is a local minimum if f(x) = y, and there exists [a, b] such that x ∈ [a, b] and f(x′) ≥ y for
all x′ ∈ [a, b].

• Global optima are also local optima

• To find local optima, just find points with f ′(x) = 0, and try to find a narrow enough [a, b] so that
f ′(x) is the global optima for that region.
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Example

• Show that (1,−3) is a local minimum of x3 − 3x− 1.

• For f(x) = x3− 3x− 1, f ′(x) = 3x2− 3, so the critical points are at 3x2− 3 = 0, so x is either −1 or 1.

• So [0, 2] only contains the critical point at x = 1.

• f(0) = −1, f(1) = −3, f(2) = 1, so (1,−3) is a local minima.

Using second derivatives

• Note that at a local minima, f ′(x) = 0, for a < x f ′(x) < 0, and for a > x, f ′(x) > 0. So f ′(x) is
increasing, which means f ′′(x) ≥ 0.

Lemma 25
Suppose f ∈ C2[a, b] and x ∈ [a, b]. If f ′(x) = 0 and f ′′(x) > 0, then (x, f(x)) is a local minimum of the
function f . If f ′(x) = 0 and f ′′(x) < 0, then (x, f(x)) is a local maximum of the function f .

Example

• Should that (1,−3) is a local minimum of f(x) = x3 − 3x− 1

• f ′(x) = 3x2 − 3, f ′′(x) = 6x.

• f(1) = 1− 3− 1 = −3, f ′(1) = 3(−1)2 − 3 = 0, f ′′(1) = 6(1) = 6 > 0.

• So (1,−3) is a local minimum

17.2 Optima over unbounded intervals

Now consider the problem of finding maxx∈[a,∞) f(x).

• The following fact will be helpful.

Lemma 26
Suppose f ′(x) ≤ 0 for all x ≥ a. Then

max
x∈[a,∞)

f(x) = f(a).

Idea

• If f ′(x) ≤ 0, f(x) is decreasing over [a,∞).

• Hence largest point is leftmost point

a

Proof. Note
max

x∈[a,∞)
f(x) = f(a)⇔ (∀b > a)(f(b) ≤ f(a)).

Let b > a. Since f ′(x) ≤ 0 for all x ∈ [a, 2b], f is decreasing on [a, 2b]. So f(b) ≤ f(a). This shows that
(∀b > a)(f(b) ≤ f(a)), which means f(a) = maxx∈[a,∞) f(x).
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Example

• Find maxx∈[3,∞) x exp(−x).

• As earlier, [x exp(−x)]′ = exp(−x)(1− x).

• For x ≥ 3, 1− x < 0, exp(−x) > 0, so f ′(x) ≤ 0.

• Hence maxx∈[3,∞) f(x) = f(3) = 3/e3 = 0.1493 . . .

Similar results hold for left intervals, max and min

Lemma 27
Suppose f ′(x) ≥ 0 over a closed set A. Then

1: maxx∈A = f(max(A))

2: minx∈A = f(min(A))

Suppose f ′(x) ≤ 0 over a closed set A. Then

1: maxx∈A = f(min(A))

2: minx∈A = f(max(A))

Don’t memorize this lemma, draw the picture (as above)!

What if not increasing or decreasing over the region?

• Break the region into manageable pieces

• Do the optimization on each piece

Lemma 28
Suppose maxx∈A f(x) and maxx∈B f(x) exist. Then

max
x∈A∪B

f(x) = max

{
max
x∈A

f(x),max
x∈B

f(x)

}
.

Example

• What is maxx≥0 x exp(−x)?

• Earlier found maxx∈[0,3] x exp(−x) = 1/e

• Also found maxx∈[3,∞) x exp(−x) = 3/e3. So

max
x∈[0,∞)

x exp(−x) = max{1/e, 3/e3}

= max{0.36 . . . , 0.14 . . .} = 1/e = 0.3678 . . . .

Example

• Find minx≤0
x

x2+2 .

• To know where to break up (−∞, 0], helps to know critical points
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• f(x) = x/(x2 + 2) = x(x2 + 2)−1

f ′(x) = [x]′(x2 + 2)−1 + x[(x2 + 1)−1]′

= (x2 + 2)−1 + x[(−1)(x2 + 1)−2[x2 + 2]′

= (x2 + 2)−1 − 2x2(x2 + 1)−2

To solve f ′(x) = 0, note that x2 + 1 is always at least 2, so not equal to 0, so

0 = (x2 + 2)−1 − 2x2(x2 + 1)−2

0 = x2 + 2− 2x2

0 = 2− x2

x2 = 2

x ∈ {−
√

2,
√

2}

Only worried about x ≤ 0, so −
√

2.

• Recall −
√

2 ≈ −1.41. So break up into [−2, 0] and (−∞, 2].

x f(x)

-2 −2/6 = −0.3333 . . .

−
√

2 −
√

2/4 ≈ −0.3535 . . .
0 0

Hence minx∈[−2,0] x/(x
2 + 2) = −

√
2/4

• Note f ′(x) is continuous, f ′(x) 6= 0 in (−∞, 2] and f ′(−2) = −1/4. So by the Intermediate Value
Theorem, f ′(x) < 0 for all x ∈ (−∞, 2]. Hence minx∈(−∞,−2] x/(x

2 + 2) = f(−2) = −1/3.

• Therefore minx∈(−∞,−2] f(x) = min{−
√

2/4,−1/3} ≈ -0.3535
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18 The Fundamental Theorem of Calculus

Question of the Day What is
∫ 2

x=0
x3 dx?

Today

• The Fundamental Theorem of Calculus

• Intuition of FTC

• Second form of FTC

Area of a triangle by rectangle

• There is a trick in finding the area of a triangle

• Turn it into an area of a rectangle problem

• The area of a triangle is exactly one half the area of the rectangle with the same base and height.

18.1 Turning integrals into the area of a rectangle

• How do we turn area under a curve like x3 into a rectangle?

Intuition

• For y = f(x) ∈ C1,
dy = f ′(x) dx.

• So how does that work with integrals? Remember goal is to find∫ 2

x=0

x3 dx.

– First, find y such that for y = f(x), dy = f ′(x) dx. So want f(x) such that f ′(x) = x3. Since
[x4/4]′ = (4/4)x3 = x3,

1 dy = x3 dx⇒
∫ 2

x=0

x3 dx =

∫ 2

x=0

1 dy.

– Second, change the limits from x to y. When x = 0, y = 04/4 = 0. When x = 2, y = 24/4 = 4.
So ∫ 2

x=0

x3 dx =

∫ 4

y=0

1 dy.

– Third, find the area of the simple integral in y!∫ 4

y=0

dy = 1(4− 0) = 4
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Generalize

• Want
∫ b
x=a

f(x) dx.

• Suppose w = F (x), and w′ = F ′(x) = f(x). Then w runs from F (a) to F (b)

• Also dw/dx = f(x), so f(x) dx = dw. So∫ b

x=a

f(x) dx =

∫ F (b)

w=F (a)

dw = F (b)− F (a).

Theorem 5 (Fundamental Theorem of Calculus)
Let f ∈ C0[a, b] and F be any function with F ′(x) = f(x). Then∫ b

a

f(x) dx = F (b)− F (a).

18.2 Using the FTC in practice

• To solve
∫ b
a
f(x) dx

• Find a function F (x) whose derivative is F ′(x) = f(x)

• Calculate F (b)− F (a)

Definition 46
Suppose F ′(x) = f(x). Say that F is an antiderivative of f , write F (x) ∈ antiderx(f(x)) (or adx(f(x))
for short.)

• Often abuse notation and write n2 = O(n3) instead of n2 ∈ O(n3).

• Same with antiderivatives, write
x3

3
= adx(x2),

instead of (x3/3) ∈ adx(x2).

• Note x3/3 is an antiderivative of x2, since [x3/3]′ = x2

• x3/3 + 4 is also an antiderivative of x2, since [x3/3 + 4]′ = [x3/3]′ + [4]′ = x2.

Lemma 29
If F is an antiderivative of f , so is F+C for any real constant C. Conversely, if F and G are antiderivatives
of f , then F −G = C for some constant C.

Notes

• Sometimes write adx(x2) = x3/3 + C to indicate that the family of antiderivatives is x3/3 plus any
constant.

• Don’t need C for FTC, any antiderivative F works.

• Do need it for solving differential equations as we’ll see later in the course.

• Nice property: antiderivatives are linear operators

Lemma 30
Suppose F = adx(f(x)) and G = adx(g(x)). Then for any a, b ∈ R, aF + bG = adx(af(x) + bg(x)).
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Example: stopping car

• A car traveling at 55 mph takes 6 seconds to stop. Assuming the brakes deliver constant acceleration,
how many feet did it travel in this time?

• First step: need to figure out velocity

55
miles

hour
= 55

5280 feet

3600 seconds
= 80 2/3 ft/s

Acceleration is the derivative of velocity, so saying the brake deliver constant acceleration means the
velocity is a line.

So v(0) = 80 2/3, v(6) = 0, the line that goes through these two points is about

v(t) = 80 2/3− [(80 2/3)/6]t.

• So our goal is to find ∫ 6

t=0

242/3− t · 242/18 dt.

• An antiderivative of 242/3 is (242/3)t. An antiderivative of t(242/18) = (t2/2)(242/18). So∫ 6

t=0

242/3− t · 242/18 dt = (242/3)(6− 0)− (242/18)(62/2− 02/2)

= 242[2− 1] = 242 feet

Example: pouring concrete

• Concrete is poured into a mold at rate 5t/(t + 5) cubic feet per sec. If the mold contains 1000 cubic
feet, how many seconds does it take to fill?

• The problem: find T such that ∫ T

t=0

5t

t+ 5
dt = 1000.

• Helps to use algebra trick:

t

t+ 5
= 1 + g(t)

g(t) =
t

t+ 5
− 1

=
t

t+ 5
− t+ 5

t+ 5

=
−5

t+ 5

so
t

t+ 5
= 1− 5

t+ 5∫ T

t=0

5t

t+ 5
dt = 5

∫ T

t=0

1− 5

t+ 5
dt.

The antiderivative of 1 is t, the antiderivative of 1/(t+ 5) is ln(t+ 5). So∫ T

t=0

5t

t+ 5
dt = 5[t− 5 ln(t+ 5)]|T0 = 5[T − 5 ln(T + 5) + 5 ln(5)]

• Setting this equal to 1000 gives a transcendental equation that can be solved numerically using bisection
method:

t = 219.01129276 . . . ≈ 219.0 seconds
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18.3 Second form of FTC

Another way to look at the FTC: suppose the upper limit is the variable. How does the area change when
the upper limit changes?

a x

dx

f(x)

Idea: for f continuous, let

A(x) =

∫ x

a

f(x) dx.

Then

A(x+ h)−A(x) =

∫ x+h

x

f(x) dx = f(x)h+ o(|h|).

Dividing by h and taking the limit as h→ 0 gives:

Theorem 6 (Second form of Fundamental Theorem of Calculus)
For f continuous over [a, b],

d

dx

∫ x

a

f(s) ds = f(x).
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19 Antiderivatives

Question of the Day What is the antiderivative of e3x?

Today

• General antiderivatives

• Six antiderivatives to memorize

19.1 Every continuous function has an antiderivative

Recall the second form of the Fundamental Theorem of Calculus, for f continuous[∫ x

s=a

f(s) ds

]′
= f(x).

Fact 17 (Continuous functions have antiderivatives)
Every continuous function over [a, b] has an antiderivative over [a, b],

(∀a ∈ R)

(∫ x

a

f(s) ds ∈ adx(f(x))

)
.

Proof. Let f ∈ C0
[a,b]. Then let

g(x) =

∫ x

s=a

f(s) ds.

By the FTC, g′(x) = f(x).

Recall

• There were six derivatives I said just to memorize:

f(x) f ′(x)

xa axa−1

sin(x) cos(x)
cos(x) − sin(x)
exp(x) exp(x)

arctan(x) 1/(1 + x2)
ln(x) 1/x

• Each of these has a corresponding antiderivative rule

f(x) adx(f(x)

xa (a 6= −1) xa+1/(a+ 1)
sin(x) − cos(x)
cos(x) sin(x)
exp(x) exp(x)

1/(1 + x2) arctan(x)
1/x = x−1 ln(x)
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Mnemonics for the Power Rule

• So [xa]′ = axa−1 and adx(xa) = xa+1/(a+ 1) (for a 6= 1)

• Sometimes hard to remember which is which

• First mnemonic: division
xa

x
= xa−1,

dxa

dx
= axa−1

• Second mnemonic: triangle ∫ 1

0

x dx = 1/2⇒ adx(x) = x2/2

Mnemonic for sin and cos

Again can be hard to remember where the negative sign goes

• Draw the unit circle

• As angle increases, move counter-clockwise, sin goes up, cos goes down

Mnemonic for ex

Since [ex]′ = adx(ex) = ex, no one ever has problems with this one

Mnemonics for ln(x)

• ln(x) is the inverse of ex, [ln(x)]′ is the multiplicative inverse 1/x

• Graph of ln(x):

1

• What is adx(1/x) = adx(x−1)? The power rule does not apply since you cannot divide by −1 + 1. One
antiderivative is g(x) = adx(1/x) =

∫ x
s=1

1/x dx.

– g(1) =
∫ 1

1
1/x dx = 0

– g(x) is an increasing function

–
∫ x
1

1/xdx ≤
∫ x
1

1 dx = x− 1

– So I want an elementary function that is 1) 0 at 1, 2) is increasing, 3) is smaller than x− 1.

– ln(x) fits the bill!

19.2 Antiderivatives of functions of lines

• A line is f(x) = ax+ b for constants a and b

• Consider [exp(3x− 4)]′

• Use the chain rule:
[exp(3x− 4)]′ = exp(3x− 4)[3x− 4]′ = 3 exp(3x− 4)
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Qotd

• Want adx(e3x).

• By chain rule [e3x]′ = 3e3x

• Divide both sides of equation by 3 to get [
e3x

3

]′
= e3x,

which means
adx(e3x) = e3x/3.

More generally...

• To find antiderivative of exp,sin,cos,power of ax+ b...

• Use regular antiderivative, then divide by a.

Examples

• Find an antiderivative of 1/(2x+ 5)

• A: ln(2x+ 5)/2

• Find an antiderivative of exp(−x)

• A: exp(−x)/(−1) = − exp(−x)

• What is adx(cos(πx))?

• A: sin(πx)/π

19.3 Notation for antiderivatives

Another common notation for antiderivatives is

adx(f(x)) =

∫
f(x) dx.

Some peoples call an antiderivative an indefinite integral
I do not use this notation for the following reasons

• The antiderivative of a function (like the derivative) is another function. The integral of a function is
a number that depends on the limits of integration. An antiderivative is not any type of integral, and
calling it one leads to confusion over what an integral is.

• The notation is overloaded (it means too different things)∫
f(x) dx =

∫
x∈R

f(x) dx.
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20 Integration by parts

Question of the Day What is
∫ π
0
x sin(x) dx?

Today

• Integration by parts

Integration by Parts

• IBP is the antidifferentiation counterpart to the product rule

• Recall for two functions f and g of x:

d

dx
[fg] =

df

dx
g + f

dg

dx
.

Writing using the prime notation:
[fg]′ = f ′g + g′f.

Rearrange this equation:
fg′ = [fg]′ − f ′g.

Antidifferentiating gives you integration by parts:

adx(fg′) = fg − adx(f ′g).

Definition 47
The integration by parts technique (or IBP) writes the function to be antidfferentiated as fg′, then
applies the formula to get:

adx(fg′) = fg − adx(f ′g).

When to use Integration by Parts

• Gets used a lot in more advanced courses

• For us, three main types of problems

1: xdg′(x), where d is a positive integer and g′(x) is an easy function to antidifferentiate like exp, square
root, sin, or cos.

2: xc ln(x), where c is any real number. When c = 0, this gives an antiderivative of ln(x).

3: ex cos(x) or ex sin(x).

• Note: in any of the above cases, you can replace one or more of the x with a linear function of x and
IBP still works.

• For instance,
(x+ 3)4 ln(x), e−x cos(πx), x3 sin(x− π),

can all be found using IBP.
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20.1 h(x) is x raised to a positive integer times something we can antidifferen-
tiate.

Example:
Find adx(x sin(x)).

This is x1 times sin(x), which we know how to antidifferentiate.
In these types of problems, always set f equal to the xpower part
And g′ equal to the thing we know how to antidifferentiate:

f(x) = x

g′(x) = sin(x)

Then figure out f ′ and g:

f ′(x) = 1

g(x) = − cos(x)

[Note you can let g be any antiderivative of g′.]
Now plug in the formula:

adx(x sin(x)) = adx(fg′)

= fg − adx(f ′g)

= x(− cos(x))− adx(− cos(x))

= −x cos(x) + adx(cos(x))

= −x cos(x) + sin(x) .

• Start with simple example: adx(x cos(x)).

• Suppose I try x sin(x).

• Then use product rule:

[x sin(x)]′ = x[sin(x)]′ + [x]′ sin(x) = x cos(x) + sin(x).

• So rearranging,
x cos(x) = [x sin(x)]′ − sin(x),

• Taking antiderivative

adx(x cos(x) = x sin(x)− adx(sin(x)) = x sin(x) + cos(x).

• Works on functions of the form:

xsome integer power · (something we can antidifferentiate).

Fact 18 (Repeated IBP)
To antidifferentiate xdg′(x) where d is a positive integer and g′(x) ∈ {cos(x), sin(x), exp(x), xc} requires d
uses of IBP.
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Example:
Find adx(x2 exp(−2x)).

• Since d = 2, have to use IBP twice

• First use:

f1(x) = x2 f ′1(x) = 2x

g′1(x) = exp(−2x) g1(x) = exp(−2x)/(−2).

gives

adx(x2 exp(−2x)) = x2 exp(−2x)/(−2)− adx(2x exp(−2x)/(−2))

= −(1/2)x2 exp(−2x) + adx(x exp(−2x)).

• Now use IBP again to find adx(x exp(−2x)):

f2(x) = x f ′2(x) = 1

g′2(x) = exp(−2x) g2(x) = exp(−2x)/(−2).

gives

adx(x exp(−2x)) = x exp(−2x)/(−2)− adx(exp(−2x)/− 2)

= −(1/2)x exp(−2x) + (1/2) exp(−2x)/(−2)

= −(1/2)x exp(−2x)− (1/4) exp(−2x).

Plugging back into above gives:

adx(x2 exp(−2x)) = −(1/2)x2 exp(−2x)− (1/2)x exp(−2x)− (1/4) exp(−2x)

= −(1/4) exp(−2x)[2x2 + 2x+ 1].

20.2 h(x) is x raised to any real power times ln

Example
Find adx(

√
x ln(x)).

• For these types of problems, always let f(x) = ln(x), and g′(x) = xc.

f(x) = ln(x) f ′(x) = 1/x

g′(x) = x1/2 g(x) = x3/2/(3/2)

gives

adx(x1/2 ln(x)) = (2/3)x3/2 ln(x)− adx((2/3)x3/2/x)

= (2/3)x3/2 ln(x)− (2/3) adx(x1/2)

= (2/3)x3/2 ln(x)− (2/3)x3/2/(2/3)

= x3/2[(2/3) ln(x)− (4/9)]

20.3 h(x) is exp times cos (or sin)

• A tricky place to use integration by parts is on problems of form:

adx(exp(c1x+ c2) sin(x)) or adx(exp(c1x+ c2) cos(x)).
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• Can use integration by parts twice to get the answer.

• Example: find adx(e2x sin(x)).

• Let F (x) = adx(exp(2x) sin(x))

• Let f1(x) = exp(2x), g′1(x) = sin(x)

• Then f ′1(x) = 2 exp(2x), g1(x) = − cos(x)

F (x) = − exp(2x) cos(x)− adx (− cos(x))2 exp(2x)

= − exp(2x) cos(x) + 2 adx exp(2x) cos(x).

• Now use IBP again on the last part.

• f2(x) = exp(2x), g′2(x) = cos(x)

• f ′2(x) = 2 exp(2x), g2(x) = sin(x)

adx exp(2x) cos(x) = exp(2x) sin(x)− adx(2 exp(2x) sin(x))

= exp(2x) sin(x)− 2F (x).

• Putting that in for earlier gives:

F (x) = − exp(2x) cos(x) + 2exp(2x) sin(x)− 4F (x)

5F (x) = − exp(2x) cos(x) + 2 exp(2x) sin(x)

F (x) = exp(2x)[(2/5) sin(x)− (1/5) cos(x)].
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21 Substitution/Change of Variables

Question of the Day Find
∫√π
0

x sin(x2) dx.

Today

• Substitution aka change of variables

Substitution

• Used whenever you have a function of a nonlinear function.

• Examples:
exp(x2), sin(cos(x)), ln(sin(x)) cos(x).

21.1 Substitution for Integrals (LID)

• Recall our intuition behind the Fundamental Theorem of Calculus:

dr = f ′(s) ds.

This allows us to change the differential from ds to dr:

ds =
1

f ′(s)
dr.

• If s ∈ [a, b], then the limits change to f(a) to f(b).

• Finally, write the integrand in terms of r instead of s.

Limits, Integrand, Differential (LID) Limits, Integrand, and differential are the three pieces of an
integral.

1: Change the limits.

2: Change the differential.

3: Change the integrand.

How do you choose f(s)?

• Pick r = f(s) to make problem more simple.

• In QotD, sin(x2) is hard. By making t = x2, now it is sin(t), which is simpler. Let’s go through our
steps for t = x2:

1: Limits: x ∈ [0,
√
π]→ t ∈ [02, π]

2: Differential: dt
dx = 2x⇒ dx = 1

2x dt. At this point the transformation is∫ √π
x=0

x sin(x2) dx =

∫ π

t=0

x sin(x2)
1

2x
dt

3: Integrand: replace any x2 with t to get:∫ √π
x=0

x sin(x2) dx =

∫ π

t=0

(1/2) sin(t) dt

Now use antidert(sin(t)) = − cos(t) to get:∫ π

t=0

(1/2) sin(t) dt = −(1/2) cos(t)|π0

= −(1/2)(−1)− (−(1/2)(1)) = 1 .
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21.2 Substitution for Antiderivatives

• Start with the chain rule:
[f(g(x))]′ = f ′(g(x))g′(x).

• So when you take the derivative of a function of a function, you multiply by the derivative of the inner
function.

• So when you antidifferentiate, you divide by the derivative of the inner function.

Definition 48
The substitution technique (also known as change of variables can be written

adx(f(x)) = adw

(
f(x)

w′(x)

)
.

Substitution steps

1: Look for an inner nonlinear function inside an outer function

2: Set w equal to inner function

3: Use formula: adx(f(x)) = adw(f(x)/w′(x)).

4: Write f(x)/w′(x) in terms of w.

5: Solve new problem.

6: Put back x variable for w.

Example

• Find adx(x3e−x
2

)

1: Note that −x2 is inside exp

2: So let w = −x2

3: Hence w′ = −2x, and

adx(x3e−x
2

) = adw(x3e−x
2

/(−2x)) = adw((−1/2)x2e−x
2

).

4: Putting in w = −x2:

adw(−(1/2)x2e−x
2

) = adw((1/2)wew) = (1/2) adw(wew).

5: Solving this problem requires integration by parts:

f = w f ′ = 1

g′ = ew g = ew

So
adw(wew) = wew − adw(ew) = wew − ew.

and
(1/2) adw(wew) = (1/2)ew(w − 1)

6: Hence adx(x3e−x
2

) = −(1/2)e−x
2

(x2 + 1).
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Checking answers

Can always check out answers by differentiating:

[−(1/2) cos(x2)]′ = −(1/2)[cos(x2)]′

= −(1/2)(− sin(x2))(2x) = x sin(x2)

Similarly, from the product rule and chain rule:

[−(1/2)e−x
2

(x2 + 1)]′ = −(1/2)[exp(−x2)(2x) + (−2x) exp(−x2)(x2 + 1)]

= −(1/2) exp(−x2)[2x− 2x3 − 2x]

= x3 exp(−x2).

Example
Find adr(1/(2 + er)).

• Note the “nonlinear function in a function” can hide a little bit.

• Rewrite the function as (2 + er)−1.

1: 2 + er is inside (stuff)−1.

2: Inner function w(r) = 2 + er.

3:
adx((2 + er)−1) = adw((2 + er)−1/er).

4: Write in terms of w:
adw((2 + er)−1/er) = adw([w(w − 2)]−1).

5: Later on, we’ll see how to systematically tackle problems like this. For now, note

1

w(w − 2)
=

(1/2)

w − 2
− 1/2

w
.

so

adw

(
1

w(w − 2)

)
= (1/2) ln(w − 2)− (1/2) ln(w).

6: Put the x back in:

adx(1/(2 + er)) = (1/2) ln(er)− (1/2) ln(er + 2) = (1/2)r − (1/2) ln(2 + er).

• Checking the answer:

d

dx

[
1

2
r − 1

2
ln(2 + er)

]
=

1

2
− er

2(2 + er)
=

2 + er − er

2(2 + er)

=
2

2(2 + er)
=

1

2 + er

Example
Find adθ(sin(θ) cos2(θ)).

1: Have a cos(θ) being squared.

2: Let w = cos(θ).

3:
adθ(sin(θ) cos2(θ)) = adw(sin(θ) cos2(θ)/(− sin(θ))).
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4:
adw(sin(θ) cos2(θ)/(− sin(θ))) = adw(− cos2(θ)) = adw(−w2).

5: adw(−w2) = −w3/3

6:
adθ(sin(θ) cos2(θ)) = − cos3(θ)/3.

When to use substitution?

• Consider these examples:

f1(x) = x2 exp(−x3) f2(x) = x2 exp(−3x+ 2)

f3(x) = x
√

1− x2 f4(x) =
√

3 + 4x.

• When should you use substitution?

• For f1, −x3 (a nonlinear function) is inside the exp function, so use substitution.

• For f2, −3x+ 2 is a linear function, so there is no need for substitution (although it won’t hurt to use
w = −3x+ 2, it does take longer to solve the resulting integral.)

• For f3,
√

1− x2 = (1− x2)−1/2. Definitely a nonlinear function inside
√

, so w = 1− x2.

• For f4, since what’s inside the
√

is a linear function, you don’t need substitution (although it won’t

hurt if you use it).
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22 Partial Fractions and rational functions

Question of the Day Find an antidervative of

1

(x− 2)(x− 3)

Today

• Partial fractions

22.1 Linear function in the denominator

Example

• What is
∫ 1

x=0
1/(2x+ 3) dx?

• antiders(1/s) = ln(s), antiderx(1/(2x+ 3)) = ln(2x+ 3)/2

• Answer: (1/2)[ln(6)− ln(3)] = ln(2)/2 ≈ 0.3465

Example

• Find an antiderivative of 1/(2x+ 3)4

• Use the power rule with power −4:

adx((2x+ 3)−4) =
(2x+ 3)−3

−3
· 1

2
= − 1

6(2x+ 3)

22.2 Product of linear functions in the denominator

The idea

• First an example using numbers
1

12
=

1

3 · 4
=

1

3
− 1

4

• Can also use polynomials

1

x− 3
− 1

x− 2
=

x− 2

(x− 2)(x− 3)
− x− 3

(x− 2)(x− 3)

=
1

(x− 2)(x− 3)

So that means

adx

(
1

(x− 2)(x− 3)

)
= adx

(
1

x− 3
− 1

x− 2

)
= ln(x− 3)− ln(x− 2)

• In fact, I can do more! For any a and b, there exist c1 and c2 such that

ax+ b

(x− 2)(x− 3)
=

c1
x− 3

+
c2

x− 2
.

• In the qotd, a = 0, b = 1, c1 = 1 and c2 = −1.
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Partial fractions method Breaking a fraction into partial fractions

• Let L1(x) and L2(x) be lines

• To write
ax+ b

L1(x)L2(x)
=

c1
L1(x)

+
c2

L2(x)

first multiply both sides of the equation by L1(x)L2(x) to get

ax+ b = c1L2(x) + c2L1(x).

• Next, plug in the values r1 and r2 where L1(r1) = 0 and L2(r2) = 0 to get c1 and c2.

Notes

• I used r1 and r2 for where L1(x) = 0 and L2(x) = 0 because the inputs where a function value is zero
is called a root of the function. Also called a zero of the function.

Example

• Find the partial fraction representation of

3x− 4

(2x− 6)(x+ 2)
.

• Here L1(x) = 2x− 6. 2x− 6 = 0⇒ r1 = 3

• L2(x) = x+ 2. x+ 2 = 0⇒ r2 = −2

• Now take the representation:
3x− 4

(2x− 6)(x+ 2)
=

c1
2x− 6

+
c2

x+ 2

multiply through by (2x− 6)(x+ 2):

3x− 4 = c1(2x− 6) + c2(x+ 2)

Put in x = 3 to get
5 = 7c2 ⇒ c2 = 5/7

Put in x = −2 to get
−10 = c1(−10)⇒ c1 = 1

So
3x− 4

(2x− 6)(x+ 2)
=

1

2x− 6
− 5/7

x+ 2
.

22.3 Quadratics in the denominator

A quadratic has from ax2 + bx+ c

• Recall adx(1/(x2 + 1)) = arctan(x)

• Find adx(1/(3x2 + 1))

•
adx

(
1

3x2 + 1

)
= adx

(
1

(
√

3x)2 + 1

)
=

arctan(
√

3x)√
3

.
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General rational functions

Definition 49
A polynomial is a function of the form f(x) = 0 or

f(x) =

n∑
i=0

aix
i

where an 6= 0. If f(x) = 0, the degree of the polynomial is deg(f) = 0. If f(x) 6= 0, the degree of the
polynomial is n.

Example

• deg(x2 + 3x− 2) = 2, deg(x3 − 2) = 3, deg(4) = 0.

Definition 50
A function which is a polynomial divided by another polynomial is called a rational function.

In turns out that by using advanced partial fraction techniques, all rational functions can be antidiffe-
rentiated using elementary functions.

Lemma 31
All rational functions have an antiderivative that is the sum of terms of the form a ln(bx+c), a arctan(bx+c),
a/(bx+ c)k, or (ax+ b)/(cx+ d)k.
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23 Exponential decay and separable differential equations

Question of the Day A wood beam has 20% of the the original 14C remaining. How old is it?

Today

• Exponential Decay

• Carbon dating

Many things grow or decay exponentially

• Populations (with unlimited resources)

• disease (early stage)

• Continuously compounded interest

• Radioactive materials

Let t = time and s(t) = amount of substance at time t.

The Model

ds = s(t) · k · dt

change in
amount

Amount at time t

constant

change in time

• Exponential growth: When k > 0, population is increasing

• Exponential decay: When k < 0, population is decreasing

• ds = ks dt is an example of a differential equation

• Recall: ds = f ′(t) dt if s = f(t)

ds = sk dt⇔ ds

dt
= ks⇔ 1

s
ds = k dt.

• Called separation of variables, since s and ds are on one side and t and dt are on the other.

• Now integrate both sides: ∫ s(T )

s=s(0)

1

s
ds =

∫ T

t=0

k dt

ln(s(T ))− ln(s(0)) = k(T − 0)

ln(s(T )/s(0)) = kT

s(T )/s(0) = ekT

s(T ) = s(0)ekT .

• Put back dummy variable t for T to get:

s(t) = s(0) exp(kt)

is the solution to ds = ks dt. This proves the following lemma.
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Lemma 32 (Exponential growth/decay)
If s′ = ks (or ds = ks dt) then

s(t) = s(0) exp(kt)

is the unique solution.

Definition 51
A differential equation or DE is an equation that involves one or more derivatives.

Definition 52
The order of a differential equation is number of the highest derivative in the equation.

Example

• For instance, ds = ks dt which is the same as s′ = ks is a first order DE, since it only contains one
derivative.

• The DE y′′ − x2y = ex is a second order DE

Definition 53
The separation of variables technique for y′ = f(x)g(y) is∫ y(b)

y=y(a)

1

g(y)
dy =

∫ b

x=a

f(x) dx.

Half life and k

Definition 54
For a radioactive substance, the half life is the value of t such that s(t) = (1/2)s(0), so for s(t) = s(0)ekt,
the half life is ln(1/2)/k.

• Radioactive materials decay rates usually given via half life.

• For instance, 14C has a half life of about 5730 years.

• After 5730 years, 1/2 of original material remains.

• After (2)(5730) = 11460, (1/2)(1/2) = 1/4 = 25% of original material remains

• After (3)(5730), 1/8 = 12.5% remains

• So how long until 20% of original remains?

• Find k:

(1/2)s(0) = s(0) exp(k(5730))⇒ 1/2 = exp(−5730k)

⇒ ln(1/2) = 5730k

⇒ k = ln(1/2)/5730 = − ln(2)/5730.

• Now turn equation around to find t:

(0.2)s(0) = s(0) exp(t ln(1/2)/5730)⇒ 0.2 = exp(t ln(1/2)/5730)

⇒ ln(0.2) = t ln(1/2)/5730

⇒ t =
ln(0.2)

ln(0.5)
5730

t = (2.321 . . .)5730 ≈ 13 300 years.

• Libby started in 1947, awarded Nobel Prize in Chemistry in 1960
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Exponential growth

• Many things grow exponentially

• Viruses

• Interest compounded continuously

Example Interest is compounded continuously at rate 3% per year. How long does it take $100 to double?

s = s0 exp(kt)

200 = 100 exp(0.03t)

2 = e0.03t

ln(2) = 0.03t

t = ln(2)/0.03 ≈ 23.10 years

The smaller k is (the interest rate), the longer it takes to double.

Separable D.E.’s

• Could get t and s on separate sides of equation

• General form:

g(t) ds = f(s) dt⇔ 1

f(s)
ds =

1

g(t)
dt.

antiders(f(s)−1) + C = antidert(g(t)−1).

• Example:
dy

dx
=
x

y
.

– Step 1: Separate x and y:
y dy = x dx.

– Step 2: Antidifferentiate both sides (with constant):

y2

2
+ Cy =

x2

2
.

– Step 3: Sometimes possible to simplify:

C = x2 − y2

[Note that C = 2Cy is just a new constant.]

• These are hyperbolas
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C = −3
C = −6

C = −1/2

C = −3
C = −6

C = −1/2
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24 Improper Integrals

Question of the Day What is ∫ ∞
x=1

1/x2 dx?

Today

• Improper integrals

Our story so far

• Defined Riemann integral for
∫
x∈[a,b] f(x) dx.

• [a, b] = {x : a ≤ x ≤ b}

• Let x1, x2, x3, . . . be any sequence of points in [a, b] with a limit.

• Nice fact: limn→∞ xi ∈ [a, b].

• The interval [a, b] is closed under the operation of taking limits.

• Now consider (0, 1) = {x : 0 < x < 1}.

• Then xi = 1− 1/i give points in (0, 1). But

lim
i→∞

xi = 1 /∈ (0, 1).

• So (0, 1) is not closed.

• Now consider [1,∞). For any sequence of points in [1,∞) with a limit, the limit is in [1,∞). So [1,∞)
is closed. However, it is not bounded.

Definition 55
An integral of the form ∫

x∈A
f(x) dx,

where A is not compact, is called an improper integral.

24.1 Noncompact A

Turn noncompact sets into the union of compact sets.

Definition 56
Suppose

A = [a1, b] ∪ [a2, b] ∪ [a3, b] ∪ · · ·

or
A = [a, b1] ∪ [a, b2] ∪ [a, b3] ∪ · · ·

Let Ai stand for [ai, b] or [a, bi] as appropriate. Then∫
A

f(x) dx = lim
i→∞

∫
Ai

f(x) dx.

In practice, this means to find the value of improper integrals, we use limits.
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Qotd

• Note [1,∞) = [1, 2] ∪ [1, 3] ∪ [1, 4] ∪ · · · .

• Also, 1/x2 ≥ 0 for all x ∈ [1,∞). So∫
x∈[1,∞)

1/x2 dx = lim
b→∞

∫
x∈[1,b]

x−2 dx

= lim
b→∞

x−1/(−1)|b1

= lim
b→∞

1− 1/b

= 1.

Example:

Find

∫ 1

0

1/
√
x dx.

Since 1/
√
x is not defined at 0, this integral is really:∫

x∈(0,1]
1/
√
x dx

so is improper! In this case,
(0, 1] = [1/2, 1] ∪ [1/3, 1] ∪ [1/4, 1] ∪ · · ·

That means: ∫ 1

0

1/
√
x dx = lim

i→∞

∫
x∈[1/i,1]

x−1/2 dx

= lim
i→∞

x1/2/(1/2)|11/i

= lim
i→∞

2− 2
√

1/i

= 2.

Definition 57
A limit which exists and is finite is called convergent (say the function or sequence converges. If the limit
does not exist, or is +∞ or is −∞, the limit is divergent (say the function or sequence diverges.

Definition 58
An improper integral where the limit does not exist, or is ∞ or −∞, is called divergent. When the limit
does exist, the integral is convergent.

Example

• Find
∫ 1

0
1/x dx.

• Again (0, 1] = [1/2, 1] ∪ [1/3, 1] ∪ · · · , so∫ 1

0

1/x dx = lim
i→∞

∫ 1

1/i

1/x dx

= lim
i→∞

[ln(1)− ln(1/i)] =∞

• So this improper integral diverges or we say is divergent .
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Be careful when looking at if an integral is improper!

• Example:

Is

∫ 3

0

1

x− 1
dx improper?

Yes! Since 1/(x− 1) is not defined at 1, integral is really:∫
x∈[0,1)∪(1,3]

1

x− 1
dx =

∫
x∈[0,1)

1

x− 1
dx+

∫
x∈(1,3]

1

x− 1
dx.

• Both integrals on RHS are improper.

• The integrand on one is negative. So what do we do?

24.2 Unbounded on both sides

• Note that the Ai have to be fixed on one side, either [ai, b] for all i or of the form [a, bi] for all i.

• What if they are not?

• Break A into two pieces.

– Example, A = (−∞,∞),∫
A

f(x) dx =

∫
x∈(−∞,0]

f(x) dx+

∫
x∈[0,∞)

f(x) dx.

Did not have to break at 0, for instance,∫
A

f(x) dx =

∫
x∈(−∞,1.5]

f(x) dx+

∫
x∈[1.5,∞)

f(x) dx.

Also works for intervals open on both ends:∫
x∈(0,1)

1√
x(1− x)

dx =

∫
x∈(0,1/2]

1√
x(1− x)

dx+

∫
x∈[1/2,1)

1√
x(1− x)

dx.

• After the break up, need to know how to add and subtract ∞, −∞

Definition 59
(Adding with ∞ in extended reals.) For c ∈ R, addition and substraction with ∞ is defined as follows:

∞− c =∞
c−∞ = −∞
∞−∞ = does not exist

Example (continued) What is ∫ 3

0

1

x− 1
dx?

Since it is negative for x < 1, this integral can be broken up as:∫ 3

0

1

x− 1
dx =

∫
x∈(1,3]

1

x− 1
dx−

∫
x∈[0,1)

−1

x− 1
dx

Working as before, both of these integrals turn out to be infinity, so the original integral does not exist.
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Example (In probability, this integral arises in finding the normalizing constant of a normal distribution.)
Find

I =

∫
x∈R

x
1√
2π

exp(−x2/2) dx.

The integrand is positive when x ≥ 0 and negative when x ≤ 0. Hence

I =

∫ ∞
0

x
1√
2π

exp(−x2/2) dx−
∫ 0

−∞
(−x)

1√
2π

exp(−x2/2) dx

= lim
b→∞

∫ b

0

x
1√
2π

exp(−x2/2) dx− lim
a→−∞

∫ 0

a

(−x)
1√
2π

exp(−x2/2) dx

Note that the same change of variables: w = x2/2 works for both integrals. Here dw = x dx, so

I = lim
b→∞

∫ b2/2

0

1√
2π

exp(−w) dw − lim
a→−∞

∫ 0

a2/2

−1√
2π

exp(−w) dw

= lim
b→∞

− exp(−w)√
2π

∣∣∣∣b2/2
0

− lim
a→−∞

exp(−w)√
2π

∣∣∣∣0
a2/2

= lim
b→∞

1− exp(−b2/2)√
2π

− lim
a→−∞

1− exp(a2/2)√
2π

= (1− 0)− (1− 0) = 0.

Example (This problem arises in probability, where it is known as finding the normalizing constant of a
Cauchy distribution.) Find ∫

x∈R

1

1 + x2
dx.

Break it up into two pieces∫ ∞
−∞

1

1 + x2
dx =

∫ 0

−∞

1

1 + x2
dx+

∫ ∞
0

1

1 + x2
dx

= lim
a→−∞

arctan(a)|0a + lim
b→∞

arctan(b)|b0

= π/2− (−π/2) = π ≈ 3.141
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25 Series tests: Divergence, Integral, and p-series

Question of the Day Does
∞∑
i=1

1

i2

converge?

Today

• Divergence test

• Integral test

• p-series test

25.1 The Divergence Test

Recall

• Series is the limit of a partial sum:
∞∑
i=0

ai = lim
n→∞

n∑
i=0

ai.

• Series where the limit exists are convergent, and when the limit does not exist are divergent

• If limn→∞ ai does not exist, or exists and is not 0, then the series must be divergent.

Lemma 33 (The Divergence Test)
For a series

∑∞
i=k ai, the only way the series can converge is if limi→∞ ai = 0.

• So 1 + 1 + 1 + · · · does not converge

• So
∑
i/(i+ 1) does not converge

• Does
∑
i/(i2 + 1) converge? The divergence test does not tell us!

Converge, diverge, fail

• A series test has at most three outcomes

1: The test reports the series converges

2: The test reports the series diverges

3: The test fails.

• In the last case, the test gives no information about whether the series converges or not.

• The divergence test reports either divergence or fails, it never can be used to prove convergence!

• In the qotd: limi→∞ 1/i2 = 0, so the divergence test fails. Need a better test!
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25.2 Integral test

• A series is area of positive bars minus area of negative bars

• An integral is area under positive function minus area under negative function

• Idea: use integrals to see how bars behave

Lemma 34 (Integral Test)
Suppose ai = f(i) for i ∈ {1, 2, 3, . . .} where f is a positive, continuous decreasing function of x for x ≥ 1.
Then

∑∞
i=c ai and

∫∞
x=c

f(x) dx either both converge or both diverge.

• When integral test applies, always returns “converges” or “diverges”, never fails!

• Qotd: 1/x2 is a positive, continuous, decreasing function. So

∞∑
i=1

1

i2
converges⇔

∫ ∞
x=1

1

x2
dx converges.

And ∫ ∞
x=1

1

x2
dx = lim

b→∞

∫ b

x=1

1

x2
dx

= lim
b→∞

− 1

x

∣∣∣∣b
1

= lim
b→∞

−1/b− (−1/1)

= 1.

Hence
∑∞
i=1 1/i2 converges.

Example Does
n∑
i=1

1

i3/2

converge?
Again, f(x) = x−3/2 is continuous, positive, and decreasing, so check∫ ∞

x=1

x−3/2 dx = lim
b→∞

∫ b

x=1

x−3/2 dx

= lim
b→∞

x−1/2/(−1/2)|b1

= lim
b→∞

−2b−1/2 + 2

= 2.

Example Does
∞∑
k=1

1

k

converge?

• We know it doesn’t (Harmonic series), but let’s try integral test:

96



• f(x) = 1/x is continuous, positive, decreasing:∫ ∞
x=1

1/x dx = lim
b→∞

∫ b

x=1

1/x dx

= lim
b→∞

ln(x)|b1

= lim
b→∞

ln(b)− ln(1)

=∞.

So the Harmonic series diverges. There’s a pattern here!

Definition 60
A p-series is (for p > 0)

∞∑
n=1

1

np
.

The p-series with p = 1 is called the Harmonic Series.

Lemma 35 (p-series test)
A p-series (

∑∞
i=1 1/ip) converges if and only if p > 1.

Proof. The p = 1 case is the Harmonic series, which diverges. Suppose p > 1. Then f(x) = 1/xp is positive,
continuous, and decreasing, so ∫ ∞

x=1

= lim
b→∞

∫ b

x=1

x−p dx

= lim
b→∞

x−p+1/(−p+ 1)|b1

= lim
b→∞

(1− p)−1b1−p − (1− p)−1

= (p− 1)−1.

Hence the p-series converges in this case.
Now suppose p ∈ (0, 1). Then∫ ∞

x=1

= lim
b→∞

∫ b

x=1

x−p dx

= lim
b→∞

x−p+1/(−p+ 1)|b1

= lim
b→∞

(1− p)−1b1−p − (−(1− p)−1)

=∞.

So in this case, the p-series diverges.

Why does the integral test work?

• Start with a picture:
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i i+ 1 i+ 2

ai+1

ai

• Because f(x) continuous,positive, decreasing

(∀x ∈ [i, i+ 1])(ai+1 ≤ f(x) ≤ ai).

• Integrating gives: ∫ i+1

x=i

ai+1 dx ≤
∫ i+1

x=i

f(x) dx ≤
∫ i+1

x=i

ai dx.

ai+1 ≤
∫ i+1

x=i

f(x) dx ≤ ai.

• Summing up for i from 1 to n− 1:

n−1∑
i=1

ai+1 ≤
∫ n

x=1

f(x) dx ≤
n−1∑
i=1

ai.

• Rearrange terms to get:

Fact 19
Suppose f(i) = ai for i ∈ {1, 2, . . .} and f(x) is positive, continuous, and decreasing. Then

an +

∫ n

x=1

f(x) dx ≤
n∑
i=1

ai ≤ a1 +

∫ n

x=1

f(x) dx

Example: Using an integral, bound
n∑
j=1

j3.

This isn’t decreasing, but by using

n∑
j=1

j3 =

n∑
k=1

(n+ 1− k)3,

now f(x) = (n+ 1− x)3 is positive, continuous, and decreasing. So∫ n

x=1

(n+ 1− x)3 dx = −(n+ 1− x)4/4|n1

= n4/4− 1/4
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Here k1 = n3 and kn = 1, so

n4

4
+

3

4
≤

n∑
i=1

i3 ≤ n4

4
+ n3.

For instance, when n = 10 this gives:

2500 ≤
10∑
j=1

j3 ≤ 3500.

The proof of the Integral test uses an advanced fact from real analysis.

Fact 20
Suppose ai ≥ 0 for all i. Then either

∑
i ai =∞ or

∑
i ai = L for some finite L.

Proof of Integral Test. Using the inequalities above, if
∫∞
x=1

f(x) dx = ∞, then
∑∞
i=1 ai = ∞. And if∫∞

x=1
f(x) dx is finite, then

∑∞
i=1 ai is bounded above by a constant so can’t be ∞. Hence by the previous

fact
∑
ai converges.
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26 Series tests: alternating

Question of the Day Does
∑∞
i=1

(−1)i−1

i converge?

Today

• Alternating series

• Bounding the series using partial sums

The Harmonic series

• The series 1 + 1/2 + 1/3 + · · · is the harmonic series

• This series diverges by the p-series test

• 1 − 1/2 + 1/3 − 1/4 + · · · =
∑

(−1)i−1/i is called the alternating harmonic series because its terms
alternate in sign.

• Does this series converge?

Definition 61∑
ai is an alternating series if ai+1/ai < 0 for all i.

Look at the partial sums

• A partial sum of a series
∑∞
i=1 ai is Sn =

∑n
i=1 ai

• Look at the partial sums of the alternating harmonic series:

n Sn

1 1
2 1− 1/2 = 1/2 = 0.5555 . . .
3 5/6 = 0.8333 . . .
4 7/12 = 0.5833 . . .
5 47/60 = 0.7833 . . .
6 37/60 = 0.6166 . . .

• Note: S1 > S3 > S5 and S2 < S4 < S6

• This pattern holds when terms are decreasing in absolute value

Lemma 36
Suppose that |ai+1| ≤ |ai| for an alternating series and as > 0. Then Ss ≥ Ss+2 ≥ Ss+4 ≥ · · · and
Ss+1 ≤ Ss+3 ≤ Ss+5 ≤ · · · .

Proof. Let k ∈ {1, 2, 3, . . .}. Then

Ss+2k − Ss+2k+2 =

[
s+2k∑
i=s

ai

]
−

[
s+2k+2∑
i=s

−2

]
= −a2+2k+1 + a2+2k+2.

By assumption |a2+2k+2| ≤ |a2+2k+1|, and since this is an alternating series −a2+2k+1 > 0, so Ss+2k −
Ss+2k+2 ≥ 0. So Ss+2k ≥ Ss+2k+2.

The proof that Ss+2k−1 ≤ Ss+2k+1 is similar.
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In picture form, for a1 > 0, the odd Sn gives upper bounds on the series, while the even Sn give lower
bounds

n
1 2 3 4 5 6

• Note Sn − Sn+1 = −an+1.

• So upper and lower bounds converge to a single number if and only if an+1 → 0

Lemma 37 (Alternating series test)
An alternating series converges if and only if ai+1 → 0 as n→∞.

• Remember, only works for alternating!

• Harmonic series 1 + 1/2 + · · · an example of series whose terms go to 0 in magnitude, but which does
not converge!

Qotd

•
∑

(−1)i−1/i is an alternating series

• limi→∞(−1)i−1/i = 0

• Therefore it converges!

Absolute versus conditional convergence

• So for ai = (−1)i−1/i, |ai| = 1/i

• Hence
∑
ai converges, but

∑
|ai| does not.

Lemma 38
If
∑
|ai| converges, so does

∑
ai

Definition 62
If
∑
ai converges and

∑
|ai| converges, say that the series is absolutely convergent. If

∑
ai converges

but
∑
|ai| diverges, say that the series is conditionally convergent.

• The alternating harmonic series is conditionally convergent

• Why does it matter?

• For a series that is absolutely convergent, you can rearrange the terms and you get the same answer

• For a series that is conditionally convergent, rearranging the terms can get you a different answer!

Original terms 1 −1/2 1/3 −1/4 1/5 −1/6
New ordering 1 −1/2 −1/4 1/3 −1/6 −1/8
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• How do

A = 1− 1

2
+

1

3
− 1

4
+

1

5
− 1

6
+ · · ·

and

B = 1− 1

2
− 1

4
+

1

3
− 1

6
− 1

8
+ · · ·

compare?

• Note that 1− 1/2 = 1/2 and 1/3− 1/6 = 1/6, etcetera, so

B = 1/2− 1/4 + 1/6− 1/8 + · · · = (1/2)(1− 1/2 + 1/3− 1/4) = A/2

• Just by rearranging the terms, have dropped the value of the series in half!

26.1 Factorials

A useful notation in mathematics is that of the factorial.

Definition 63
The factorial of a nonnegative integer n (written n!) is defined to be

• 1 when n = 0

• The product of the integers from 1 up to n when n > 0

Example
3! = 1 · 2 · 3 = 6, 10! = 3 628 800

Also, n! is the number of ways to arrange n different objects in a line.

Problem

• Find

1− 1

1!
+

1

2!
− 1

3!
+

1

4!
− · · ·

to 4 sig figs

• Terms are decreasing in magnitude. Each partial sum gives an upper or lower bound on the sum. So
just calculate partial sums until desired accuracy achieved.

n Sn

0 1
1 0
2 0.500000
3 0.333333
4 0.375000
5 0.366666
6 0.368055
7 0.367857
8 0.367881

• To 4 sig figs, the value is 0.3678 .
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Example

• Find upper and lower bounds on

1− 5 +
52

2!
− 53

3!
+

54

4!
− 55

5!
+

56

6!
− · · ·

• Note that the terms at the beginning at getting larger in magnitude 5 > 1 nd 52/2! > 5 until we reach
55/5! > 56/6!.

• At that point the factorial in the denominator divides by a number at each term which is larger than
5, so the term is getting smaller in magnitude.

• Here S23 = 0.006737867 and S24 = 0.006737963, so to 4 sig figs, the answer is 0.006737 .
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27 Series tests: ratio

Question of the Day Does

(1/2) + 2(1/2)2 + 3(1/2)3 + 4(1/2)4 + · · ·

converge or diverge?

Today

• Ratio test for series convergence

• Power series

Could use integral test

• Positive, decreasing, ai = i(1/2)i is a continuous function in i.

• So could use Integral test

• Need to do integration by parts, so somewhat difficult

• Faster way is to use ratio test

Geometric series

• Recall a geometric series has the form

1 + r + r2 + r3 + · · ·

– Converges if and only if |r| < 1

– When it converges, adds up to 1/(1− r).

• There’s a way to define geometric series using ratios

Lemma 39
A series

∑
ai is a geometric series if and only if ai+1/ai = r for all i.

• Qotd almost a geometric series with r = 1/2, but not quite

• ai = i(1/2)i, so
ai+1

ai
=

(i+ 1)(1/2)i+1

i(1/2)i
=

(
1 +

1

i

)
(1/2)

• Close enough to geometric with r = 1/2 to make it converge!

Lemma 40 (The ratio test)

Suppose limi→∞

∣∣∣ai+1

ai

∣∣∣ = L. Then if L > 1 the series diverges. If L < 1 the series absolutely converges. If

L = 1 the test fails.

Qotd

• Since

lim
i→∞

(
1 +

1

i

)
(1/2) = 1/2 ∈ (−1, 1),

the series converges.
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Example

• For what values of x does
∑∞
i=0(2x)i converge?

• It always does if x = 0

• Suppose x 6= 0 Look at the ratio between successive terms:

ai+1

ai
=

(2x)i+1

(2x)i
= 2x

• If |2x| < 1, then the series converges, if |2x| > 1 it diverges, and if |2x| = 1, the test fails.

• So for |x| < 1/2, the series converges, that is, x ∈ (−1/2, 1/2).

• At x = 1/2, 1 + 1 + 1 + · · · diverges

• At x = −1/2, 1− 1 + 1− 1 + · · · diverges

• So the series converges if and only if x ∈ (−1/2, 1/2)

The ratio test is especially helpful when dealing with terms that contain factorials.

Using the ratio test on a factorial example

• Show that the series

1 + x+
x2

2!
+
x3

3!
+ · · ·

converges

• Before tackling that, look at some ratios of factorials:

6!

7!
=

1 · 2 · 3 · 4 · 5 · 6
1 · 2 · 3 · 4 · 5 · 6 · 7

=
1

7
.

• In general:
n!

(n+ 1)!
=

1

n+ 1

• Now for the ratio test: ai = xi/i!

ai+1

ai
=
xi+1/(i+ 1)!

xi/i!
=
xi+1

xi
· i!

(i+ 1)!
=

x

i+ 1
.

Since limi→infty x/(i+ 1) = 0 no matter what x is this series always converges.

27.1 Power series

Definition 64
A series of the form

∞∑
i=0

ai(x− c)i

for constant c is called a power series.

• A power series is like a polynomial that goes on forever.

• Always converges when x = 0

•
∑

(2x)i =
∑

2ixi converges when x ∈ (−1/2, 1/2)

•
∑
xi/i! converges for all real numbers
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Lemma 41
For any power series, there are three possibilities

1: The power series only converges when x = 0.

2: There exists finite R such that the power series absolutely converges when |x− c| < R, and diverges
when |x− c| > R.

3: The power series converges for all values of x.

Definition 65
The radius of convergence of a power series is

1: 0 when the series only converges at x = 0,

2: R when the series converges for |x− c| < R and diverges for |x− c| > R,

3: ∞ when the series converges everywhere.

When |x− c| < R, say that x is inside the radius of convergence.

Examples

series radius of convergence∑
i2ixi 1/2∑
xi/i! ∞∑
i!xi 0

27.2 Swapping limits inside the radius of convergence

• The radius of convergence is important because if x is inside it, you can swap limit operators

Lemma 42
Say that f(x) =

∑∞
i=0 ai(x− c)i for |x− c| < R. Then for continuous functions g and h,

lim
w→a

g(w)f(h(w)) = lim
w→a

g(w)

∞∑
i=0

ai(h(w)− c)i

=

∞∑
i=0

ai lim
w→a

g(w)(h(w)− c)i.

• In particular, inside the radius of convergence, you can swap differentiation and summation

• Example: Recall
1

1− x
= 1 + x+ x2 + · · · (∀x ∈ (−1, 1))
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[
1

1− x

]′
= lim
h→0

(1/(1− (x+ h)))− (1/(1− x))

h

= lim
h→0

∞∑
i=0

(x+ h)i − xi

h

=

∞∑
i=0

lim
h→0

(x+ h)i − xi

h

=

∞∑
i=0

[xi]′

=

∞∑
i=0

ixi−1.

Useful fact:
∑∞
i=0 ix

i−1 = (1− x)−2 for x ∈ (−1, 1)

– Comes up center of mass calculations physics

– Comes up in expected value in probability

What happens on the edge of the radius of convergence?

• What happens at x ∈ {−1, 1} for
∞∑
i=1

xi

i

• What happens at x ∈ {−1, 1} for
∞∑
i=1

xi

i2
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28 Power series and Taylor series

Question of the Day What is
∑∞
i=1(1/2)i/i?

Today

• Analytic functions

• Differentiation and antidifferentiation of a power series

• Power series for elementary functions

• Taylor series

28.1 Analytic functions

Definition 66
A function that is equal to a power series is called analytic.

Example:
1

1− x
= 1 + x+ x2 + x3 + · · ·

for x ∈ (−1, 1). Hence 1/(1− x) is analytic.

28.2 Differentiation/Antidifferentiation of power series

• Differentiate polynomials term by term

[1 + x+ 2x2]′ = [1]′ + [x]′ + [2x2]′ = 0 + 1 + 4x = 1 + 4x

• Antidifferentiate polynomials term by term

adx(1 + x+ 2x2) = x+ x2/2 + (2/3)x3.

Lemma 43
For a power series f(x) =

∑
ai(x− c)i with nonzero radius of convergence R, if |x− c| < R, then[∑
ai(x− c)i

]′
=
∑

[ai(x− c)i]′ =
∑

i · ai(x− c)i−1

and

adx

(∑
ai(x− c)i

)
=
∑

adx(ai(x− c)i) =
∑ ai(x− c)i+1

i+ 1

1: In other words, you can swap the summation and derivative/antiderivative operators when working
inside the radius of convergence.

2: Technically:
∑
ai(x− c)i+1/(i+ 1) ∈ adx(

∑
ai(x− c)i).

Example

• What is
∑∞
i=1(1/2)i/i?

• Let f(x) =
∑∞
i=1 x

i/i. Then the goal is to find f(1/2).
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• What is the radius of convergence. Ratio test!

lim
i→∞

xi+1/(i+ 1)

xi/i
= lim
i→∞

x
i

i+ 1
= x,

so converges when |x| < 1. Radius of convergence is 1.

• Differentiating gives:

f ′(x) =

∞∑
i=1

[xi/i]′ =

∞∑
i=1

xi−1 =

∞∑
j=0

xj ,

where the last equality was just j = i− 1.

Note that in a summation you need only change the limits and the summand, there is no differential.

• That last is a geometric series, so

f ′(x) =

∞∑
j=0

xj =
1

1− x
.

• Now antidifferentiate both sides:

f(x) = ln(1− x)/(−1) = − ln(1− x).

• So f(1/2) = − ln(1/2) = ln(2) ≈ 0.6931

The exponential function

• Recall

f(x) = 1 + x+ x2/2 + · · · =
∞∑
i=0

xi/i!

has infinite radius of convergence

• What is f ′(x)? [
1 + x+ x2/2! + x3/3! + · · ·

]′
= [1]′ + [x]′ + [x2/2!]′ + [x3/3!]′ + · · ·
= 1 + x/1! + x2/2! + · · · = f(x).

• So f ′(x) = f(x) and f(0) = 1. But from our earlier separation of variables argument, that has a unique
solution f(x) = ex.

• Hence
exp(x) = 1 + x+ x2/2! + x3/3! + · · ·

This gives us a way to rigorously define the common elementary functions: use power series!

Definition 67
The exponential (exp), sine (sin), and cosine (cos) functions are defined as follows

exp(x) = 1 + x+
x2

2!
+
x3

3!
+ · · ·

sin(x) = x− x3

3!
+
x5

5!
− · · ·

cos(x) = 1− x2

2!
+
x4

4!
− · · ·

Using an argument similar to the qotd, can show
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Lemma 44
The power series for natural logarithm is

ln(1 + x) = x− x2

2
+
x3

3
− x4

4
+ · · ·

for |x| < 1.

28.3 Taylor series

Definition 68
A function that is equal to a power series is called analytic.

• Inside radius of convergence, can use power series to get derivatives.

• Suppose f(x) = a0 + a1x+ a2x
2 + · · · . Then f(0) = a0.

• What is f ′(0)?

[f(x)]′|x=0 = [a0 + a1x+ a2x
2/2! + a3x

3/3! + · · · ]′|x=0

= [a1 + a2x/1! + a3x
2/2! + · · · ]|x=0 = a1.

• What is f ′′(0)?

[f ′(x)]′|x=0 = [a1 + a2x/1! + a3x
2/2! + · · · ]′|x=0

= [a2 + a3x/1! + a4x
2/2! + · · · ]|x=0

= a2

Let f (i) denote the ith derivative of f . (f (0) = f .)

Lemma 45
If f(x) =

∑∞
i=0 aix

i, then

f(x) = f(0) + f ′(0)x+ f ′′(0)
x2

2!
+ f (3)(0)

x3

3!
+ · · · ,

or in other words, ai = f (i)(0)/i!.

Definition 69
Suppose f ∈ C∞. Then the Taylor series of f centered at c is

f(c) + f ′(c)(x− c) + f ′′(c)
(x− c)2

2!
+ · · · =

∞∑
i=0

f (i)(c)
(x− c)i

i!
.

When c = 0, this is also known as a Maclaurin series.

Lemma 46
If f is analytic, then f equals its Taylor series for all x in the radius of convergence.

Note

• The Taylor series of a function might only equal the function at x = c!
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Example of a function that does not equal its Taylor series

• Consider the function
f(x) = e−1/x1(x > 0)

A graph of the function from −1 to 1 looks like:

-1 1

1/e

• This function is very flat at 0, in fact, f (n)(0) = 0 for all n

• So the Taylor series is
0 + 0x+ 0x2/2! + 0x3/3! + · · · = 0.

This has infinite radius of convergence

• But the function is not zero if x > 0, so the function does not equal the Taylor series inside the radius
of convergence.

28.4 Finding power series

Example

• What is the power series for exp(−x2/2)?

• Plug −x2/2 into the series for exp

1− x2

2
+

1

2!
· x

4

22
− 1

3!
· x

6

23
=

∞∑
i=0

x2i

2ii!

• Can build on previous work

• What is the power series for x exp(−x2/2)?

x

(
1− x2

2
+

x4

22 · 2!
− x6

23 · 3!
+ · · ·

)
= x− x3/2 + x4/(22 · 2!)

=

∞∑
i=0

x2i+1

2ii!
.
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29 Taylor Polynomials

Question of the Day What is the best quadratic approximation to exp(x) at x = 1?

Today

• Approximating functions with polynomials

• Bounding the error

Recall

• The derivative is the slope of the line that best approximates f(x) near (c, f(c)).

f(x) = f(c) + f ′(c)(x− c) + o(x− c).

• Let T1(x) = f(c) + f ′(c)(x− c).

• Then T1(c) = f(c), and T ′1(x) = f ′(c) = T ′1(c), so T1 matches both f and f ′ at x = c.

• The best fit quadratic approximation can do better: can match f , f ′, and f ′′ at x = c.

• Write the quadratic as
T2(x) = f(c) + f ′(c)(x− c) + a2(x− c)2.

• What should a2 be in order that T ′′2 (c) = f ′′(c)?

Answer

• First we need to calculate the second derivative

T ′′2 (x) = [[T1(x)]′]′

= [f ′(c) + 2a2(x− c)]′

= 2a2

To make 2a2 = f ′′(c), a2 = f ′′(c)/2.

• For f(x) = ex, f ′(x) = f ′′(x) = ex, so f ′(1) = f ′′(1) = e1 = e.

• So best quadratic approximation to exp(x) at x = 1 is:

T2(x) = e+ e(x− 1) + (e/2)(x− 1)2

• Try plotting this in WA

plot exp(x) and (e + e(x-1)+e(x-1)^2) from -1 to 2

• Could also write in ax2 + bx+ c form:

(e/2)x2 + e/2
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What if we have a cubic?

• What T3(x) such that T3(c) = f(c), T ′3(c) = f ′(c), T ′′3 (c) = f ′′(c) and T (3)(c) = f (3)(c).

• Use T2(x) to get first three identities:

T3(x) = T2(x) + a3(x− c)3

• Now take third derivative:

[[[T3(x)]′]′]′ = [[[T2(x) + a3(x− c)3]′]′]′

= [[T ′2(x) + 3a3(x− c)2]′]′ = [T ′′2 (x) + 3 · 2a3(x− c)]′

= T
(3)
2 (x) + 3 · 2 · · · 1a3

• Note T2 is a quadratic, so the third derivative is 0 [In general, for a polynomial of degree n, the mth
derivative where m > n is zero.]

• So T
(3)
3 (x) = 3!a3, hence a3 = f (3)(c)/3!

• Can generalize this arugment

Definition 70
For a function f ∈ Cn((a, b)) and c ∈ (a, b), let

Tn(x) = f(c) + f ′(c)(x− c) +
f ′(c)

2!
(x− c)2 + · · ·+ f (n)(c)

n!

be the nth degree Taylor polynomial

Lemma 47 (Taylor polynomials)
For a function f ∈ Cn, the nth degree Taylor polynomial Tn is the unique polynomial of degree n such

that (∀i ∈ {0, . . . , n})(T (i)
n (c) = f (i)(c))

Factorials

• The nth derivative of (x− c)n is n · (n− 1) · (n− 2) · · · 1

• That’s where the n! in the Taylor polynomials is coming from

Relation to Taylor series

• limn→∞ Tn(x) = T (x), the Taylor series expansion.

29.1 Applications of power/Taylor series

• Taylor series can be used to approximately solve DE’s

• Consider the following second order DE:

y′′ − x2y = ex.

• Try to find the power series for the left hand side, and the right hand side. Let

y =

∞∑
i=0

aix
i.
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• Inside the radius of convergence

−x2y =

∞∑
i=0

aix
i+2

= a0x
2 + a1x

3 + · · ·

y′(x) =

∞∑
i=1

iaix
i−1

y′′(x) =

∞∑
i=2

i(i− 1)aix
i−2

= 2a2 + 6a3x+ 12a4x
2 + · · ·

ex = 1 + x+ x2/2 + x3/6 + · · ·

• If I say (a+ b)x2 + (b+ c)x+ b = 3x2 + 2x+ 1, then you know

a+ b = 3, b+ c = 2, b = 1.

• This is called coefficient matching

• Same works for power series

• For y′′ − x2y = ex, it must be true that

2a2 = 1

6a3 = 1

12a4 + a0 = 1/2

20a5 + a1 = 1/6

30a6 + a2 = 1/24

42a7 + a3 = 1/120

...and so on.

• This is an underdertermined set of equations

y(x) = a0 + a1x+ (1/2)x2 + (1/6)x3 + (((1/2)− a0)/24)x4 + · · ·

• Suppose you are told y(0) = y′(0) = 0. Then the power series solution is:

y(x) =
1

2
x2 +

1

6
x3 +

1

48
x4 + · · ·

This is very accurate near 0.

Quickly finding limits

• What is

lim
x→0

1− cos(x)

x2
?

• Remember cos(x) = 1− x2/2 + x4/4!− · · ·

• So 1− cos(x) = x2/2− x4/4! + · · ·

• The radius of convergence is ∞, so

1− cos(x)

x2
=

1

2
− 1

4!
x2 + · · · .

• Taking the limit as x goes to 0 gives 1/2
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30 Finding the error in Taylor polynomial approximations

Question of the Day Bound exp(1) above and below using the fourth degree Taylor polynomial

Today

• Error with alternating Taylor series

• Error in Taylor polynomials

What is error?

• If ŷ approximates y, then the error in the approximation is y − ŷ.

• Typically care about absolute error, |y − ŷ|

• Sometimes care about relative error, |(y − ŷ)/y|

30.1 Bounding with Taylor series for alternating series

• Recall that for an alternating series whose terms are decreasing in magnitude, can bound using odd or
even sums.

• Bound ln(3/2) using the second and third degree Taylor polynomials for ln(1 + x)

• Recall for x ∈ (−1, 1),

ln(1 + x) = x− x2/2 + x3/3− x4/4 + x5/5− x6/6 + · · · .

For x ∈ [0, 1), terms alternate and are decreasing. So

x− x2/2 ≤ ln(1 + x) ≤ x− x2/2 + x3/3

which gives ln(1 + 1/2) ∈ [3/8, 5/12], ln(3/2) ∈ [0.3750, 0.4167]

• Note, when finding answer to 4 sig figs, have to round final digit down for lower bound, and up for
upper bound.

30.2 Finding the error in a general Taylor series

Error in a linear approximation

• Look at how well a line approximates a parabola:

1 2

115



• The greater the second derivative of the parabola is, the farther it pulls away from the line.

• If the second derivative was 0, it would be a line!

• This motivates the following result

Lemma 48
Let f ∈ C2((a, b)) and c ∈ (a, b). Then T1(x) = f(c) + f ′(x)(x − c). Then there exists a function Rn(x)
such that

f(x) = T1(x) +R1(x),

where there is some α between x and c such that

R1(x) =
f ′′(α)

2!
(x− c)2.

• Apply this result to exp(x) when x = 1

i f (i)(x)

0 exp(x)
1 exp(x)
2 exp(x)

• For c = 0, the result says that

exp(x) = exp(0) + exp(0)x+R1(x) = 1 + x+R1(x),

where R1(x) = exp(α)x2/2! for some α between 0 and x.

• Suppose x > 0. Then α ∈ [0, x], and since exp(α) is increasing in α,

min
α∈[0,α]

R1(x) = x2/2, max
α∈[0,α]

R1(x) = exx2/2,

• Hence for x > 0,

1 + x+
x2

2
≤ exp(x) ≤ 1 + x+

exx2

2
.

• So when x = 1,
2.5 ≤ e1 ≤ 2 + e1(1/2).

• Note upper bound involves e1, but that is what we are trying to find. Treat e1 as an unknown to
eliminate it from both sides:

e1(1− 1/2) ≤ 2⇒ e1 ≤ 2/(1− 1/2) = 4.

So
2.500 ≤ e1 ≤ 4

General result

• Last item presented it for T1 and R1, generalizes

116



Lemma 49
Let f ∈ Cn+1((a, b)) and c ∈ (a, b). Then for

Tn(x) =

n∑
i=0

f (i)(c)

i!
(x− c)i,

let
Rn(x) = f(x)− Tn(x).

Then for each x there exists an α between x and c such that

Rn(x) =
f (n+1)(α)

(n+ 1)!
(x− c)n+1.

Qotd

• The fourth degree Taylor polynomial for exp(x) is

T4(x) = 1 + x+ x2/2! + x3/3! + x4/4!.

The difference between this and exp(x) is R4(x), where

R4(x) =
exp(α)

5!
x5.

where α is between 0 and x.

• Suppose x > 0, then exp(α) ∈ [1, ex]. So

T4(1) + 1/5! ≤ e1 ≤ T4(1) + e11/5!.

Since T4(1) = 65/24,
e1 ≤ 65/24 + e1(1/120)→ e1 ≤ (65/24)/(119/120)

so
e1 ∈ [163/60, 325/119] ∈ [2.716, 2.732].

30.3 Writing the error using Big-O notation

Recall

• If limx→c f(x)/g(x) <∞, say f(x) is Big-O of g(x).

Lemma 50
Let f ∈ Cn+1((a, b)) and c ∈ (a, b). Then

f(x) =

n∑
i=0

f (i)(c)

i!
(x− c)i +O((x− c)n+1).

• Less helpful than actually calculating error bounds explicitly

• Still, gives idea of how error grows as x moves away from c.

117



Example

• What is the fourth degree Taylor polynomial (with error in Big-O notation) for sin(x)?

• Answer: The Taylor series is
x− x3/3! + x5/5!− x7/7! + · · ·

so the fourth degree Taylor polynomial is
x− x3/3!

(note that the x4 term has a 0 coefficient in front of it.)

• The error term is then O(x5). Hence

x− x3/3! +O(x5)

is the answer.
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31 Numerical methods for integration

Question of the Day Approximately what is
∫ 1

x=0
exp(−x2/2) dx?

Today

• Constant Rule

• Trapezoidal Rule

• Simpson’s Rule

Solving integrals analytically versus numerically

• Sometimes we can find an antiderivative of a function explicity

• When that happens, can solve an integral analytically to find the exact solution

• Analytic solutions can include variables in the integral. Example:∫ 1

0

λ exp(−λx) dx = 1− exp(−λx)

• Otherwise, have to solve the integral numerically.

– Get a number at the end

– Only an approximation, never the exact answer

– Doesn’t work with variables

The idea

• Take a complicated function (like exp(−x2/2))

• Replace it with a function that we know how to integrate

– Like a line

– Or a parabola

• Integrate the approximation of the function instead

31.1 Left Endpoint Rule

• Simplest approximation exp(−x2/2) = exp(−02/2) for all x ∈ [0, 1].∫ 1

x=0

exp(−x2/2) dx ≈
∫ 1

x=0

exp(−02/2) dx = 1(1− 0) = 1.

• More generally: ∫ b

x=a

f(x) dx ≈
∫ b

x=a

f(x) dx = f(a)(b− a).

• Better if you break into more than one interval∫ 1

x=0

exp(−x2/2) dx =

∫ 1/2

x=0

exp(−x2/2) dx+

∫ 1

x=1/2

exp(−x2/2) dx

≈ exp(−02/2)(1/2− 0) + exp(−(1/2)2/2)(1− 1/2)

≈ 1− 0

2

[
exp(−02/2) + exp(−(1/2)2/2)

]
= 0.9412 . . .
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Definition 71 (Left Endpoint Rule)
For a < b, and i ∈ {0, 1, . . . , n}, let xi = a+ i(b− a)/n. Then the left endpoint rule approximation for∫ b
a
f(x) dx is

Îtrap =
b− a
n

[f(x0) + f(x1) + f(x2) + · · ·+ f(xn−1)] .

In general, break the line up into n intervals of equal length

x1 x2 x3 x4 x5 x6 x7 x8 x9

Qotd

• Use a line to approximate exp(−x2/2);

0

1

0 1

exp(−x2/2) ≈ 1 + (e−1/2 − 1)x

So ∫ 1

x=0

exp(−x2/2) dx ≈
∫ 1

x=0

1 + (e−1/2 − 1)x dx

= x+ (e−1/2 − 1)x2/2|10 ≈ 0.8032

• Natural question to ask: How good is this approximation? Next time...

31.2 Trapezoidal Rule

General formula

0

f(a)

a b

f(b)
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• Want line c1 + c2x to pass through (a, f(a)) and (b, f(b)):

c1 + c2a = f(a)

c2 + c2b = f(b)

Solve to get
c1 = (bf(a)− af(b))/(b− a), c2 = (f(b)− f(a))/(b− a).

• So ∫ b

a

f(x) dx ≈
∫ b

a

f(b)− f(a)

b− a
x+

bf(a)− af(b)

b− a
dx

= [f(b)− f(a)]
b2 − a2

2(b− a)
+ bf(a)− af(b)

=
1

2
[f(b)− f(a)](b+ a) + bf(a)− af(b)

=
f(b) + f(a)

2
(b− a)

• This is the area of a trapezoid when f(a) and f(b) are at least 0, so call this the trapezoidal rule:∫ b

a

f(x) dx ≈ f(a) + f(b)

2
(b− a)

Improving the rule

• The smaller the interval, the better the line approximates the function.

• Break the integral into smaller intervals to improve the approximation.

• Example:∫ 1

x=0

exp(−x2/2) dx =

∫ 1/2

x=0

exp(−x2/2) dx+

∫ 1

x=1/2

exp(−x2/2) dx

≈ exp(−(1/2)2/2) + exp(0)

2
(1/2− 0) +

exp(−12/2) + exp(−(1/2)2/2)

2
(1− 1/2)

≈ 0.8428

• Using more intervals:

n Î

1 0.8032
2 0.8428
3 0.8499
...

...
∞ 0.85556

• To fit n intervals between a and b, set x0 = a, xn = b, width of interval is w = (b− a)/n, x1 = x0 +w,
x2 = x0 + 2w, and so on.

Definition 72 (Trapezoidal Rule)
For a < b, and i ∈ {0, 1, . . . , n}, let xi = a + i(b − a)/n. Then the Trapezoidal rule approximation for∫ b
a
f(x) dx is

Îtrap =
b− a
n

[
1

2
f(x0) + f(x1) + f(x2) + · · ·+ f(xn−1) +

1

2
f(xn)

]
.
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Example

• Estimate
∫ 2π

π
sin(x)/x dx using the Trapezoidal Rule with 4 intervals.

• Width of an interval (2π − π)/4 = π/4.

• Interval endpoints (4/4)π < (5/4)π < (6/4)π < (7/4)π < (8/4)π

xi f(xi)

π 0
(5/4)π -0.18006324
(6/4)π -0.21220659
(7/4)π -0.12861662

2π 0

• So approximation

2π − π
4

[(1/2)0− 0.18006− 0.2122− 0.1286 + (1/2)0] ≈ -0.4091

• Exact answer -0.4337

31.3 Simpson’s Rule

• Instead of using lines, can use parabolas when n is even.

• Gives a rule that is usually more accurate.

Definition 73 (Simpson’s Rule)
For a < b, and i ∈ {0, 1, . . . , n}, let xi = a + i(b − a)/n. Then the Simpson’s rule approximation for∫ b
a
f(x) dx is

ÎSimp =
b− a
n

[
1

3
f(x0) +

4

3
f(x1) +

2

3
f(x2) + · · ·+ 4

3
f(xn−1) +

1

3
f(xn)

]
.

• Using Simpson’s rule:∫ 2π

π

sin(x)

x
dx ≈ π

4
[(4/3)(−0.1800) + (2/3)(−0.2122) + (4/3)(−0.1286)] ≈ −0.4343

• Better estimate with same amount of computation!
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32 Error in numerical methods for integration

Question of the Day Bound
∫ 1

0
exp(−x2/2) dx using the Trapezoidal rule

Today

• Error bounds on trapezoidal rule approximation for integrals

32.1 Error of Trapezoidal rule

Idea

• Get an upper and lower bound on f from a to b

• How big can f be an still pass through f(a) and f(b)?

• Suppose f ′′(x) ≥ m. Then f must lie below the parabola p(x) where p′′(x) = m, p(a) = f(a),
p(b) = f(b).

• Suppose f ′′(x) ≤ M . Then f must lie above the parabola q(x) where q′′(x) = M , q(a) = f(a),
q(b) = f(b).

• Then its just algebra to calculate the integral of the upper parabola and the lower parabola

Lemma 51
Suppose f ∈ C2[a, b] and f ′′(x) ∈ [m,M ] for all x ∈ [a, b]. Then

Îtrap −
(b− a)3

12
M ≤

∫ b

a

f(x) dx ≤ Îtrap −
(b− a)3

12
m

Lemma to algorithm

• This lemma gives an algorithm for bounding integrals

1: Find the second derivative of f

2: Maximize and minimize f over [a, b] (Note that involves finding the third derivative of f to get
critical points!)

3: Use the bounds of the lemma to bound the integral

Note

• Result generalizes to handle case where divide [a, b] into n intervals.

• b− a→ (b− a)/n, so (b− a)3 → (b− a)3/n3.

• Adding the inequalities for n different subintervals multiplies by n
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Lemma 52 (Trapezoidal rule error)
Suppose f ∈ C2[a, b] and f ′′(x) ∈ [m,M ] for all x ∈ [a, b]. Then

Îtrap −
(b− a)3

12n2
M ≤

∫ b

a

f(x) dx ≤ Îtrap −
(b− a)3

12n2
m

• The number of points to evaluate for trapezoid rule is n+ 1

• Since the error decreases inversely with n2, call this a quadratic method

Qotd

• Find second (and third) derivative

f(x) = exp(−x2/2)

f ′(x) = exp(−x2/2)[−x2/2]′ = −x exp(−x2/2)

f ′′(x) = [−x]′ exp(−x2/2) + (−x)[exp(−x2/2)]′

= − exp(−x2/2) + x2 exp(−x2/2)

= (x2 − 1) exp(−x2/2)

f ′′′(x) = [x2 − 1]′ exp(−x2/2) + (x2 − 1)[exp(−x2/2)]′

= 2x exp(−x2/2) + (x2 − 1)(−x) exp(−x2/2)

= exp(−x2/2)[3x− x3]

• Since exp(−x2/2) > 0, zeros when 3x− x3 = 0, x = 0, x ∈ {−
√

3,
√

3}.

• No critical points inside [0, 1]

• f ′′(0) = −1, f ′′(1) = 0

• Îtrap = (1 + exp(−1/2))/2 = 0.803265329

• Result:

0.8032 ≤
∫ 1

0

exp(−x2/2) dx ≤ 0.8866

32.2 Error of Simpson’s rule

• Can do the same sort of thing with Simpson’s rule

• Bound the difference between f and a parabola that passes through (a, f(a)) and (b, f(b)) using the
fourth derivative

Lemma 53 (Simpson’s rule error)
Suppose f ∈ C4[a, b] and f (4)(x) ∈ [m,M ] for all x ∈ [a, b]. Then

ÎSimp −
(b− a)5

180n4
M ≤

∫ b

a

f(x) dx ≤ ÎSimp −
(b− a)5

180n4
m

• Error goes down as 1/n4, fourth order method

• Is it better than Trapezoidal rule?

• Yes if f (4) small in magnitude compared to f (2)...
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• ...and n is large compared to b− a

• To apply it to the question of the day, need fourth and fifth derivatives of exp(−x2/2):

[exp(−x2/2)](4) = exp(−x2/2)(x4 − 6x2 + 3)

[exp(−x2/2)](5) = exp(−x2/2)(−x5 + 10x3 − 15x)

• Setting −x(x4 + 10x2 − 15) = 0 gives x = 0 as a solution, making w = x2 gives w2 + 10w − 15 = 0⇒
w = −5± 2

√
10

• Since w = x2 only the positive root matters, x2 = −5 + 2
√

10, so x =
√
−5 + 2

√
10 ≈ 1.150 so out of

the interval

• f (4)(0) = 3, f (4)(1) = −2, ÎSimp = 0.856086

0.8394 ≤ 0.8672

32.3 Fixing the error bound

• Suppose I want an estimate L ≤ I ≤ U such that |U − L| ≤ ε for some tolerance ε How large does n
need to be?

• Example: for qotd get bounds within 0.001 of each other

• For Trapezoidal rule

upper bound− lower bound =
(b− a)3

12n2
[M −m]

Want
1

12n2
≤ 0.001⇒ n >

√
(1/12)/0.001 = 9.12 . . . .

So for Trapezoidal rule, n = 10 suffices (note n must be rounded up to guarantee error bound

• For Simpson’s rule

upper bound− lower bound =
(b− a)5

180n4
[M −m]

Want
1

180n4
5 ≤ 0.001⇒ n > ((5/180)/0.001)1/4 = 2.295 . . . .

So for Simpson’s rule, n = 4, (can’t use n = 3 with Simpson’s, the number of intervals must be even)
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33 First order linear DE’s

Question of the Day Consider the following model for spread of disease:

ds = ks(m− s) dt

where k is a constant rate of growth, and m is the maximum population. Find s(t).

Today

• Using partial fractions to solve DE’s

Recall: separable DE’s

ds = ks dt⇔ 1

s
ds = k dt

ln(s) + Cs = kt+ Ct

ln(s) = kt+ C

s = ekteC

s = s0e
kt .

• This was exponential growth.

Logistic model

• Growth fast when s far away from m

• Growth slows to 0 as s approaches m

• New DE called logistic model

• Try the same thing for new model.

ds = ks(m− s) dt
1

s(m− s)
ds = k dt.

• Can use partial fractions to antidifferentiate LHS

1

s
· 1

m− s
=
c1
s

+
c2

m− s
1 = c1(m− s) + c2s.

• Put in s = m to get c2 = 1/m and s = 0 to get c1 = 1/m.

• So
1

s(m− s)
ds =

1

m

[
1

s
+

1

m− s

]
ds = k dt.
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• Hence

kt+ Ct =
1

m
[ln(s)− ln(m− s)] + Cs

=
1

m
ln

(
s

m− s

)
+ Cs

mkt+ C = ln

(
s

m− s

)
exp(mkt+ C) = s/(m− s)

(m− s) exp(mkt+ C) = s

m exp(mkt+ C) = s(1 + exp(mkt+ C)

s =
m exp(mkt) exp(C))

1 + exp(mkt) exp(C)
.

Let exp(C) = A, then our solution is:

s =
mAemkt

1 +Aemkt
.

m

s0

t

Logistic curve

• Unfortunately, not all de’s are separable. For example:

dy = (e−x − 2y) dx.

• Can also use FTC to write this:
dy

dx
= y′ = e−x − 2y.

Definition 74
A first order linear differential equation is of the form

y′ + P (x)y = Q(x).

• First order means there is y′ but no y′′ or y′′′ etcetera.

• Linear means that P (x) multiplies y but not y2 or other nonlinear function.

• The following theorem gives the solution to all first order linear differential equations.
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Theorem 7 (First order linear DE’s)
Consider y′ + P (x)y = Q(x). All solutions to this DE are of the form

y =
1

I(x)
[adx(I(x)Q(x)) + C] ,

where I(x) = eadx(P (x)).

Example:
Solve y′ = e−x − 2y.

• First get in same form as formula:
y′ + 2y = e−x.

• Identify P (x) and Q(x).
P (x) = 2, Q(x) = e−x.

• Calculate I(x).
I(x) = exp(adx(P (x))) = exp(2x).

• Use formula:

y(x) =
1

exp(2x)
[adx(exp(2x) exp(−x)) + C)]

= exp(−2x)[exp(x) + C]

= e−x + Ce−2x .

Proof. Let y = [adx(I(x)Q(x)) + C] /I(x), and put it in DE.

y′ = I(x)−2(−1)I ′(x) [adx(I(x)Q(x)) + C] + I(x)−1 [I(x)Q(x)]

= −I(x)−1I ′(x) [adx(I(x)Q(x) + C] /I(x) +Q(x)

= −I(x)−1I ′(x)y +Q(x).

Now
I ′(x) = [exp(adx(P (x)))]′ = P (x) exp(adx(P (x))) = P (x)I(x).

So
y′ = −I(x)−1P (x)I(x)y +Q(x),

which means y′ + P (x)y = Q(x).
Showing that this is the only solution is much more difficult!

Example:
Solve x dy = (xe2x − y) dx, x > 0.

• First get in proper form:

dy

dx
=

1

x
(xe2x − y)

y′ = e2x − y/x
y′ + (1/x)y = e2x.

• So P (x) = 1/x, Q(x) = e2x.

• Hence adx(P (x)) = ln(x), I(x) = eln(x) = x.
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• Using formula:

y =
1

x
[adx(xe2x) + C]

=
1

x

[
(2x− 1)e2x + C

]
.
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34 Euler’s Method for numerical differentiation

Question of the Day For
y′(x)− x = ln(y),

if the solution passes through the point (4, 6), approximately what is the y value at x = 4.3?

Today

• Numerical solution of differential equations

Classifying the problem

• This is a differential equation

• It is first order, since it contains only a first derivative

• It is nonlinear, since it is can’t be put in the form y′ + P (x)y = Q(x) for functions P and Q

• Can’t use our first order linear de solution

• Can however, solve it numerically.

• Simplest numerical method called Euler’s method

• Euler did not invent, but did analyze the method

34.1 Using Euler’s method

Consider the differential equation:
dy = f(x, y(x)) dy.

For instance, if y′ − x = ey, then y′ = x+ ey, so f(x, y(x)) = x+ ey. Now suppose that x = 4 and y = 6, so
we are at the point (4, 6) in the x− y plane.

(4, 6)

Now suppose we move a tiny bit h in the x direction. How much should y change?

(4, 6)

(4 + h, 6 + dy)

Recall that
dy = f(x, y(x)) dx,

so a good approximation for dy is
d̂y = f(x, ŷ(x)) · h.

This is the basis of Euler’s Method:

Definition 75
Suppose y′ = f(x, y(x)). Then Euler’s approximation follows the rule:

ŷ(x+ h) = ŷ(x) + h · f(x, ŷ(x)).
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Qotd

• First put it in the right form:
y′(x) = x+ ln(y)

• Next, decide on h. Suppose h = 0.3.

• It is important to know at least one point. In this case we know that y(4) = 6, so set ŷ(4) = 6.

• Apply the formula with x = 4:

ŷ(x+ h) = ŷ(x) + h · f(x, ŷ(x))

ŷ(4 + 0.3) = 6 + (0.3)[4 + ln(6)]

ŷ(4.3) = 7.737 . . .

• This answers the QotD, but is it a good answer?

• A better approximation could be made by taking smaller steps. If h = 0.1 instead of h = 0.3, then
instead of moving from ŷ(4) to ŷ(4.3), we would do:

ŷ(4)→ ŷ(4.1)→ ŷ(4.2)→ ŷ(4.3).

So that means:

ŷ(4.1) = ŷ(4) + h · f(4, ŷ(4)))

ŷ(4.2) = ŷ(4.1) + h · f(4.1, ŷ(4.1))

ŷ(4.3) = ŷ(4.2) + h · f(4.2, ŷ(4.2))

Plugging in the numbers starting at (4, 6) with h = 0.1 gives:

y Euler’s Method

ŷ(4) 6
ŷ(4.1) 6.057918 = 6 + 0.1[4 + ln(6)]
ŷ(4.2) 6.116835 = 6.057918 + 0.1[4.1 + ln(6.057918)]
ŷ(4.3) 6.176753 = 6.116835 + 0.1[4.2 + ln(6.116835)]

Taylor series point of view

• The general DE:
y′ = f(t, y)

• The solution to the DE satisfies

y(t+ h) = y(t) + y′(t)(t+ h− t) +
1

2
y′′(α)h2

for some α ∈ [t, t+ h].

• Since y′(t) = f(t, y),
y(t+ h) = y(t) + f(t, y)h+O(h2)

• So the error is

ŷ(t+ h)− y(t+ h) =
1

2
y′′(α)h2

• That is the error created in one step.

• Total number of steps is 1/h, so (roughly speaking) error is O(h). Call Euler’s method a first order
method
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34.2 Error in Euler’s method

Continuous functions
lim
x→a

f(x) = f(a)

• Continuity does not say how quickly f(x) approaches f(a)

• Lipschitz continuity does

Definition 76 (Lipschitz continuity)
A function f is Lipschitz continuous there exists L such that for any x1 and x2 in the domain |f(x1)−
f(x2)| ≤ L|x1 − x2|. Call L the Lipschitz constant.

Example

• Show that f(x) = |2x| is Lipschitz constant with parameter 2.

Proof: Let x1, x2 ∈ R. Then

|f(x1)− f(x2)| = |2x1 − 2x2| = 2|x1 − x2|,

so we are done! .

• Note |2x| not differentiable at 0.

• Not all Lipschitz functions are differentiable, all continuously differentiable functions over a compact
domain are Lipschitz

Lemma 54
Suppse f ∈ C1 and |f ′(x)| ≤ L for all x ∈ [a, b]. Then f is Lipschitz with parameter L over [a, b].

Lemma 55 (Euler’s method error)
Given y(t0) = y0, and y′(t) = f(t, y), let ŷ(t) be the Euler’s method estimate of y(t). For fixed t, let
gt(y) = f(t, y). Then suppose for all t, y′′(t) ≤M , and for all t, gt is Lipschitz continuous with parameter
L. Then

|ŷ(t)− y(t)| ≤ hM
2L

(exp(L(t− t0)− 1) .

Notes

• Error bound rarely used in practice

• The (1/2)M comes from the (1/2)y′′ term in the Taylor series expansion

• Error is linear in h

• Error grows exponentially in t − t0: the farther away you are from the starting point, the worse the
error can be

• In practice, this bound is pessimistic

34.3 Improving upon Euler’s method

Backward Euler

• In Euler: ŷ(t+ h) = ŷ(t) + f(t, ŷ(t))h

• Called “forward Euler” because f evaluated at (t, ŷ(t))

• Backward Euler: Solve ŷ(t+ h) = ŷ(t) + f(t, ŷ(t+ h))h for ŷ(t+ h)

• Mathematicians call backwards Euler an implicit method, while forwards Euler is an explicit method
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Runge-Kutta

• Euler estimates y(t+ h) using times {t, t+ h}

• Runge-Kutta uses times {t, t+ h/n, t+ 2h/n, . . . , t+ nh/n}

• Gets higher order error

• Example (n = 2)
ŷ(t+ h) = ŷ(t) + hf(t+ h/2, ŷ(t) + (1/2)hf(t, ŷ(t)))

Multistep

• Gets higher order convergence without using extra times

• Uses ŷ(t), ŷ(t− h), . . . , ŷ(t− nh) to find ŷ(t+ h)

• Example: n = 2 (Adams-Bashforth)

ŷ(t+ h) = ŷ(t) + (3/2)hf(t, ŷ(t))− (1/2)hf(t− h, ŷ(t− h))

• Procedure: Use Euler to get ŷ(t0 + h), then use y(t0), ŷ(t0 + h) from there with Adams-Bashforth

• Generally best way to do estimation

Method ŷ(1)

Euler h = 0.1 0.39844
Euler h = 0.01 0.4256
Adams-Bashforth h = 0.1 0.4275
Adams-Bashforth h = 0.01 0.428571
Adams-Bashforth h = 0.005 0.428578

• To 4 sig figs, 0.4285
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35 Polar Coordinates

Question of the Day Find the area enclosed by a four leaf rose, r = cos(2θ).

Today

• Polar coordinates

• Areas using polar coordinates

Polar coordinates

• Rectangular (x, y)

• Polar coordinates (r, θ)

r

θ

• Conversion between polar and rectangular:

x = r cos(θ) r =
√
x2 + y2

y = r sin(θ) θ = arctan(y/x)

To graph r = cos(2θ)

• Two common approaches

1: Convert equation to rectangular coordinates

2: Or just plug in various values of θ to find r and plot.

θ r

0 1

π/8 cos(π/4) =
√

2/2
π/4 cos(π/2) = 0

3π/8 cos(3π/4) = −
√

2/2
π/2 cos(π) = −1

...
...

2π cos(4π) = 1
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• Wolfram alpha: plot r = cos(2*theta)

Areas w/ polar coordinates

• Rectangular coordinates: differential element look like rectangles

• Polar coordinate: differential element looks like pizza slices

dx

f(x)

Area is f(x) dx

r(θ)

dθ

Area is (1/2)r(θ)2 dθ

– For rectangular coord area between f(x) and x-axis is∫ b

x=a

|f(x)| dx.
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Fact 21
In polar coordinates, area between the origin and the r(θ) is∫ b

θ=a

1

2
r(θ)2 dθ.

Qotd

I =

∫ 2π

0

1

2
cos2(2θ) dθ

=
1

2

∫ 2π

0

1

2
+

1

2
cos(4θ) dθ

=
1

4

[
θ +

1

4
sin(4θ)

]
|2π0

=
2π

4
=
π

2
≈ 1.570

Area between curves

• Remember integral sweeps out area from origin to curve

• Example: find the area common to circles

r = a sin(θ) and r = a cos(θ),

where a is a constant.

• First, why are these circles?

x = r cos(θ) so x = a cos(θ) cos(θ) so x = a

(
1

2
+

1

2
cos(2θ)

)
y = r sin(θ) so y = a cos(θ) sin(θ) so y = a

(
1

2
sin(2θ)

)
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• Which means as θ runs from 0 to π, we trace out a circle centered at ((1/2)a, 0).

• Similarly, r = sin(2θ) traces out a circle centered at (0, (1/2)a)

• Looking at our region, we really have two integrals!

∫ π/4

0

1

2
a2 sin2(θ) dθ +

∫ π/2

π/4

1

2
a2 cos2(θ) dθ.

The result is:

Area =

∫ π/4

0

1

2
a2
(

1

2
− 1

2
cos(2θ)

)
dθ +

∫ π/2

π/4

1

2
a2
(

1

2
+

1

2
cos(2θ)

)
dθ

=
1

2
a2

[(
1

2
θ − 1

4
sin(2θ)

)∣∣∣∣π/4
0

+

(
1

2
θ +

1

4
sin(2θ)

)∣∣∣∣π/2
π/4

]

=
1

8
a2(π − 2).

Remember for polar area:

• Scan radially outward from origin

• Start at θ = 0 (east), as θ increases move counterclockwise.

Example Find the area of the top half of a cardioid

r = 1 + cos(θ)

[A picture can help in finding the limits of θ.]

• Since θ = 0 due east, and θ = π due west, θ ∈ [0, π].
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Area =

∫ π

0

1

2
(1 + cos(θ))

2
dθ

=
1

2

∫ π

0

1 + 2 cos(θ) + cos2(θ) dθ

=
1

2

∫ π

0

1 + 2 cos(θ) +
1

2
+

1

2
cos(2θ) dθ

=
1

2

(
θ + 2 sin(θ) +

θ

2
+

1

4
sin(2θ)

)∣∣∣∣π
0

=
3π

4
≈ 2.356 .
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36 Complex Numbers

Question of the Day What is eiπ/4?

Today

• Complex Numbers

QotD

• So far, exponential defined for real numbers

• Real #’s only exist in one dimension

• Complex numbers exist in two dimensions

• Two common ways to describe points in a plane: Polar, and Rectangular

Polar

r
θ

Rectangular

x

y

Polar multiplication

• Let z1, z2 be two complex #’s

• Let z1 be r1 distance from origin, CCW angle θ1

• Let z2 be r2 distance from origin, CCW angle θ2

• Then z1 · z2 is r1 · r2 from origin, angle θ1 + θ2

Example

Polar and rectangular

• Polar rep: z has distance r and angle θ

• Rectangular rep: z = x+ iy

Raising i to powers

• i1 = i (turn 90 degrees CCW once)

• i2 = −1 (turn 90 degrees CCW twice)

• i3 = −i (turn 90 degrees CCW three times)

• i4 = 1 (turn 90 degrees CCW four times)
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Taylor series

• Recall three Taylor series:

exp(w) = 1 + w + w2/2! + w3/3! + · · ·
sin(w) = w − w3/3! + w5/4! + · · ·
cos(w) = 1− w2/2! + w4/4!− · · ·

• So let’s just plug in w = iπ/4:

exp(iπ/4) = 1 + iπ/4 + i2(π/4)2/2! + i3(π/4)3/3! + i4(π/4)4/4! + · · ·
= 1− (π/4)2/2! + (π/4)4/4!− · · ·
+ i
[
π/4− (π/4)3/3! + (π/4)5/5!− · · ·

]
= cos(π/4) + i sin(π/4).

• This gives us a way to convert back and forth between rectangular complex numbers and polar complex
numbers!

Fact 22
For any θ:

exp(iθ) = cos(θ) + i sin(θ).

Definition 77
Complex numbers of the form z = x+ i · 0 are called real, while z = 0 + iy are called imaginary.

Note: Usual rules for exponents apply:

exp(z1) exp(z2) = exp(z1 + z2), exp(z1)z2 = exp(z1 · z2).

Example: What are the solutions to x3 = 1?

Real solution: x = 1.

Want [reiθ]3 = 1 = 1 · e0.
Gives two equations (note r is always real):

r3 = 1 r = 1

3θ = 0.

Normally, 3θ = 0 only has one solution, θ = 0.

But remember θ is an angle!

So 0 = 2π = 4π = 6π = 8π = · · ·

3θ = 0⇒ θ = 0

3θ = 2π ⇒ θ = 2π/3

3θ = 4π ⇒ θ = 4π/3

3θ = 6π ⇒ θ = 2π = 0

3θ = 8π ⇒ θ = 8π/3 = 2π/3

So you get three solutions,
θ ∈ {0, 2π/3, 4π/3}.
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Hence the three solutions to x3 = 1 are:

1 = exp(0), exp(i · 2π/3), exp(i · 4π/3).

Or you could use trigonometry to say:

1,−1/2 + i
√

3/2,−1/2− i
√

3/2 .

Solutions to x7 = 1 form a regular septagon:

Fact 23 (Fundamental Theorem of Algebra)
A degree n polynomial P (x) always has at least one complex solution.
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37 Hyperbolic Functions

Question of the Day What is the shape of a wire hung between 2 poles?

Today

• Hyperbolic functions

Hanging wire or chain

• Shape not quite a parabola

• Called a catenary

• It is an example of a hyperbolic function

• Recall that several functions are defined geometrically

(cos(t), sin(t))

t

1

1 s

Area is ln(s)
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• Hyperbolic functions are a combination of these approaches

(cosh(a), sinh(a))

Area is a/2

• Notation

cosh(a) = hyperbolic cosine (pronounced kosh of a)

sinh(a) = hyperbolic sine (pronounced cinch of a)

• Pythagorean identities change a bit:

cos2(a) + sin2(a) = 1

cos2(a)− sin2(a) = 1

• Can also be defined algebraically.

Definition 78
The hyperbolic cosine and hyperbolic sine functions are

cosh(a) =
1

2

(
ea + e−a

)
.

sinh(a) =
1

2

(
ea − e−a

)
.

Fact 24
The derivative of sinh is cosh . The derivative of cosh is sinh. Hence adx(sinh(x)) = cosh(x) and
adx(cosh(x)) = sinh(x).
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Proof.

d

da
sinh(a) =

1

2
(ea − (−e−a)) = cosh(a)

d

da
cosh(a) =

1

2
(ea + (−e−a)) = sinh(a).

The graphs:

ex

e−x

cosh(x) sinh(x)

Definition 79
The hyperbolic tangent (written tanh(a)) is

tanh(a) =
sinh(a)

cosh(a)
=
ea − e−a

ea + e−a
.

tanh(x)

Hyperbolic for antidifferentiation

Fact 25
Let sinh−1(x) be the inverse hyperbolic sine function. Then

d

dx
sinh−1(x) =

1√
1 + x2

.
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Proof. Let y = sinh−1(x) so x = sinh(y). Then

dy

dx
=

1

dx/dy
= 1/ cosh(y) = 1/

√
1 + sinh2(y).

This last is just 1/
√

1 + x2.

Can write sinh in terms of exp, can write sinh−1 in terms of ln.

Fact 26
sinh−1(x) = ln(x+

√
x2 + 1).

Example ∫ 4

3

1

1 + x2
dx = sinh−1(x)|43 = sinh−1(4)− sinh−1(3)

= ln(4 +
√

17)− ln(3 +
√

10)

≈ 0.2762

Fact 27
For the inverse hyperbolic cosine:

d

dx
cosh−1(x) =

1√
x2 − 1

cosh−1(x) = ln(x+
√
x2 − 1) when x ≥ 1.

Back to the chain

Definition 80
A catenary is any function of the form

f(x) = k1 cosh(x/k1) + k2,

where k1 and k2 are constants.

Example 20 foot high poles 30 feet apart have a chain suspended between them. At the middle of the
chain the height is 15 feet. What is the equation that describes the chain?

• Collate info: f(15) = f(−15) = 20, f(0) = 15.

f(0) = 15 = k1 cosh(0/k1) + k2

f(15) = 20 = k1 cosh(15/k1) + k2

• Subtract second equation from first to get:

f(15)− f(0) = 5 = k1[cosh(15/k1)− 1].

• This is an example of a transcendental equation, no analytic solution

• Numerical methods give:
k1 = 23.28 . . . and k2 = −8.288 . . . .
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38 Probability

Question of the Day Suppose X is a continuous random variable with density 2 exp(−2s)1(s ≥
0). Find P(X ∈ [2, 3]).

Today

• Integrals for probabilities

• Integrals for normalizing constants

• Integrals for expectation and variance

Fact 28
For a continuous random variable X with density fX , a and b in R ∪ {∞} ∪ {−∞} with a < b, and
continuous function g:

P(X = a) = 0

P(−∞ < X <∞) = 1

P(a < X < b) =

∫ b

a

fX(s) ds

E(g(X)) =

∫ ∞
−∞

g(s)fX(s) ds.

38.1 Probabilities

Qotd

• In the qotd, since X is continuous, P(X = 5) = 0

• P(X = −1) = 0, P(X = 10) = 0.

• However, for nontrivial intervals:

P(2 ≤ X ≤ 3) = P(2 < X < 3)

=

∫ 3

2

fX(s) ds

=

∫ 3

2

2 exp(−2s) ds

=
2 exp(−2s)

−2

∣∣∣∣3
2

= exp(−4)− exp(−6) ≈ 0.01583 .

• Sometimes a = −∞ or b =∞. So

P(X > 4) = P(4 < X <∞) and P(X < 2) = P(−∞ < X < 2),

so the probability rule leads to improper integrals in this case.

38.2 Expectation
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Definition 81
The mean, expected value, average, or expectation of a function of a continuous random variable
with density fX(s) are all:

E(g(X)) =

∫ ∞
−∞

g(s) · fX(s) ds.

• Inside the integral, replace every instance of X with the dummy variable, and then multiply by the
density of X.

• For example, if fX(s) = 2 exp(−2s)1(s ≥ 0):

E[X] =

∫ ∞
−∞

s · 2 exp(−2s)1(s ≥ 0) ds

E[X2] =

∫
R
s22 exp(−2s)1(s ≥ 0) ds

E[eX ] =

∫
R
es2 exp(−2s)1(s ≥ 0) ds.

• Let’s tackle the first integral. First get rid of the indicator function:

E[X] =

∫ ∞
−∞

s · 2 exp(−2s)1(s ≥ 0) ds = 2

∫ ∞
0

s exp(−2s) ds.

• Now use integration by parts with f(s) = s, g′(s) = exp(−2s), so f ′(s) = 1 and g(s) = exp(−2s)/(−2):

E[X] = 2

[
s exp(−2s)/(−2)|∞0 −

∫ ∞
1

exp(−2s)/(−2) ds

]
= 2

[
lim
b→∞

b exp(−2b)/(−2)− 0 +

∫ ∞
1

exp(−2s)/2 ds

]
=

∫ ∞
1

exp(−2s) ds

=
exp(−2s)

−2

∣∣∣∣∞
1

= lim
b→∞

exp(−2b)

−2
− e0

−2

= 1/2 = 0.5000

• To solve E(X2) would need to use integration by parts twice.

• To solve E(eX), note that

E(eX) =

∫
R
es · 2e−2s ds =

∫
R

2e−s ds.

38.3 Normalizing densities

Definition 82
A function f ≥ 0 where ∫ ∞

−∞
f(s) ds = 1

is called a normalized density.
Definition 83
A function g ≥ 0 where ∫ ∞

−∞
g(s) ds <∞

is called a unnormalized density. Call
∫
R g(s) ds the normalizing constant.
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Fact 29
If g is an unnormalized density, then g/

∫
R g(s) ds is a normalized density.

Ex: Find the normalized density of g(s) = (1/s5)1(s ≥ 1).

Answer: Find the normalizing constant:∫ ∞
−∞

g(s) ds =

∫ ∞
−∞

1

s5
1(s ≥ 1) ds

=

∫ ∞
1

1

s5
ds

=
s−4

−4

∣∣∣∣∞
1

= lim
b→∞

b−4/(−4)− 1−4/(−4)

= 1/4.

Hence
s−51(s ≥ 1)

1/4
= 4s−51(s ≥ 1)

is the normalized density.
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