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Preface

Purpose This book covers a one semester course in probability for students who have had the
traditional sequence of single variable through multivariable Calculus and a course in linear algebra.
It is intended to prepare students for advanced work in probability. For example, students who
are intending to go on to take mathematical statistics, stochastic processes, or any other advanced
probability course.

The structure of the course is designed to be 2/3 traditional lecture, and 1/3 inquiry based learning,
where students complete labs primarily on their own to gain intuition about the nature of various
probability laws and concepts.

Organization Part I is the bulk of the course, containing the main ideas, concepts, and theorems
of probability. Part III collects some extra useful facts about probability and distributions, and can
be integrated into the course as needed. Part IV contains some background information about sets,
logic, functions, combinatorics, and integration and students have often forgotten before taking
their first mathematical probability course. Finally, Part IV contains worked solutions to many of
the exercises in the text found at the end of each chapter.

Summary In Part I, I present a summary of the ideas in each chapter at the beginning of the
chapter. The first time you read this this summary will probably not make much sense, but when
you understand the material of the chapter, the words and notation in the summary should be
understood completely. So a good way to check that you are understanding a chapter is to go back
and reread the summary.

My approach When I teach the course, I leave everything in Part III to be read as needed by
students, and start lecturing immediately with Part I of the text. But whether you start with Chapter
1 or a later chapter, Part III should serve as a valuable reference for students as they delve into Part
I.
The course as I teach it has three meeting sessions per week. I alternate between lectures on

Monday and Friday, followed by a lab from Part II where students generate random variables and
study their properties on Wednesday. These lab exercises are implemented using R.

The classroom I teach in has a computer available for every student, but most students prefer to
bring their own laptop. The labs are structured as a main lab followed by an extended lab. Students
who finish the main lab before the class session is up are required in my course to then complete the
extended lab, as the time to finish varies considerably between students based on their familiarity
with computers.





Formulas and Definitions

Cov(A,B) = E[AB]− E[A]E[B]

V(A) = E[A2]− E[A]2

fA|B=b(a) ∝ fA(a)fB|A=a(b)

fX(x) =
∫
y
f(X,Y )(x, y)

cdfX(a) = FX(a) = P(X ≤ a)

P(A|B) =
P(AB)

P(B)

Cor(A,B) =
Cov(A,B)

SD(A) SD(B)

mgfX(t) = E[etX ]

E[g(X)] =
∫
s
g(s)fX(s) dµ

MAD(X) = E[|X − E[X]|]

gfX(s) = E(sX)

P(A ∪B) = P(A) + P(B)− P(AB)

P(X ∈ A) =
∫
s∈A fX(s) dµ

∫
s∈A f(s) d# =

∑
s∈A f(s)





Distributions (quick guide)

Uniform random variables

X fX(s)

Unif(A) 1(s ∈ A)/µ(A)

Standard random variables

X fX(s) E[X] V(X)

Unif([0, 1]) 1(s ∈ [0, 1]) 1/2 1/12

Exp(1) exp(−s)1(s ≥ 0) 1 1

N(0, 1) τ−1/2 exp(−s2/2) 0 1

Cauchy(0) 2
τ · 1

s2+1
does not exist does not exist

Shifting and scaling the standard random variables

X From standard fX(s) E[X] V(X)

Unif([a, b]) (b− a)U + a 1(s ∈ [a, b])/(b− a) b+a
2

(b−a)2

12

Exp(λ) T/λ λ exp(−λs)1(s ≥ 0) 1/λ 1/λ2

N(µ, σ2) µ+ σZ (σ2τ)−1/2 exp
(
− (s−µ)2

2σ2

)
µ σ

More common random variables

X fX(s) E[X] V(X)

Bern(p) p1(s = 1) + (1− p)1(s = 0) p p(1− p)

Bin(n, p)
(
n
i

)
pi(1− p)n−11(i ∈ {0, . . . , n}) np np(1− p)

Geo(p) p(1− p)i−11(i ∈ {1, 2, . . .}) 1/p (1− p)/p2

NegBin(r, p)
(
i−1
r−1

)
pr(1− p)i−r1(i ∈ {1, 2, . . .}) r/p r(1− p)/p2

Gamma(n, λ) λnsn−i exp(−λs)Γ(n)−11(s ≥ 0) n/λ n/λ2

Pois(µ) exp(−µ)µi

i! 1(i ∈ {0, 1, 2, . . .} µ µ

Beta(a, b) sa−1(1− s)b−11(s ∈ [0, 1]) a/(a+ b) ab
(a+b)2(a+b+1)





Part I

Probability

1





Chapter 1

What is probability?

Question of the Day Suppose that I know that it will either rain today, snow today,
or neither. The chance of rain is 30%, the chance of snow is 15%. What is the chance
that neither happens?

Summary The mathematics of partial information is called probability, and is used
to make calculations about the chance that certain outcomes occur.

Sometimes everything is known about a mathematical model. For instance, we might know that
the length of a room is exactly 30 feet or the pressure in a tank is exactly 112 psi. In other cases,
we might only have partial information. We might know that the length of a room is somewhere
between 20 and 40 feet, or the pressure is at most 120 in the tank. Then we need a way to model
the length and pressure that handles the fact that we only have partial information about the true
value.

Consider the stock market. The value of the stock market is known today, and that gives us some
partial information about what the stock market will be tomorrow. Because tomorrow’s market
has not happened yet, we do not have complete information, and so we need a way to model the
incomplete information that we do have.

Anotherway that partial information can come about is when it is possible to get total information,
but that would be too expensive. For instance, it does not make sense for a survey team to ask
every person in the United States what their preferred candidate for president is. Instead, if a
small sample from the population is chosen randomly and then surveyed, that only gives partial
information about the preferences of everyone.

It could also be that the goal is to understand random physical processes that are too complicated
to have a complete model. Flipping a coin, throwing dice, or shuffling of cards are all examples
of physical processes that can lead to a lack of information. In fact, this type of randomness is
often the first kind that people come into contact. This leads some people to think that randomness
equals physical randomness. However, that is far from true, and physical systems are only a special
case of the notion that randomness means partial information.
The branch of mathematics that deals with partial information is called probability. This word

comes from the Latin probabilis which means plausible, and first appeared when talking about
the uncertainty of evidence in court cases. Probabilities are still used in court today, and are also
are used to model everything from how many friends will attend a party to the future state of the
planet. It is essential to be able to calculate correctly with partial information, and to combines
sources of uncertainty correctly. That is what this course is all about.

3
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Here the blackboard boldface capital letter P, written P, is used to denote the probability that an
event occurs. For instance, if I think the probability that it will rain today is 30%, I would write
P(rain) = 0.3.
Another term for probability is chance, a word that comes from the Latin cadere, which means

cases. In the example there two cases: either it rains, or it does not rain. In modern parlance, say
that the outcomes are {rain, no rain}.

A space is the name for a set that is special in some way. If you have not seen sets before, now is
a good time to check out Chapter 43. For probability, call the set of outcomes that have probabilities
associated with events the outcome space.

Definition 1
The outcome space is the set of possible outcomes when we have complete information
about something. This is also sometimes called the sample space or state space.

Notation 1
Often Ω (the capital Greek letter Omega) or S is used to denote the outcome space.

1.1 Probability as a measure

In mathematics, a measure tells us the size of a set. Lebesgue measure is one of the most commonly
used measures. In one dimension, Lebesgue measure is what we think of as length. For example,
the Lebesgue measure of the interval [3, 7] is the length of the interval, or 7− 3 = 4.
In two dimensions, Lebesgue measure is the area of a region. The Lebesgue measure of the

unit circle is the area of the unit circle, which is (1/2)τ = π. Here π = 3.141 . . . is the half circle
constant, the length halfway around a circle of radius 1, and τ = 6.283 . . . is the full circle constant,
the length all the way around a circle of radius 1.
Probabilities are also a measure, but they measure the more abstract notion of the chance that

the event occurs. For instance, with the question of the day, the outcome space is Ω = {r, s, n}
where r stands for rain, s stands for snow, and n stands for neither.

Notation 2
When writing the probability of a set of outcomes of size 1, it is common to omit the
curly braces around the set. For instance,

P(r) = P({r}).

Since probability is a measure, it shares certain properties that all measures have. The length of
a stick is an example of a measure, and has the following properties.

1. The length of a stick is nonnegative.

2. If I break a stick into two disjoint pieces, the lengths of the two pieces add to the original
length of the stick.

0 3 10

m([0, 10]) = m([0, 3) ∪ [3, 10]) = m([0, 3)) +m([3, 10]) = 3 + 7 = 10.

For probabilities, these two ideas translate as
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1. The probability that an event occurs is always nonnegative.

2. If I have two events A and B that are disjoint (so A ∩B = ∅), then the probability that at
least one of the events occurs equals the sum of the probabilities that they occur.

We can also write these ideas mathematically. For a measurem,

1. For any measurable set A,m(A) ≥ 0.

2. For any measurable sets A and B such that A ∩B = ∅, thenm(A ∪B) = m(A) +m(B).

When using counting measure, if I break up the set into two smaller sets that do not overlap,
again the overall size is the sum of the sizes of the smaller sets.

#({a, b, c, d, e}) = #({a, b} ∪ {c, d, e}) = #({a, b}) + #({c, d, e}) = 2 + 3 = 5.

For probabilities, this means

(∀A,B : AB = ∅)(P(A ∪B) = P(A) + P(B)).

In fact, this works for any finite number of sets, not just 2. Nonoverlapping sets come up often
enough that we give this property a special name.

Definition 2
Say that sets A and B are disjoint if A ∩B = ∅. A collection {Aα} of sets is disjoint
if every pair of sets in the collection are disjoint.

1.2 Total probability

Probabilities have an extra property that not all measures have. The total amount of probability that
we work with is 100% = 1. In words, the probability that something happens is 1. Mathematically,
for outcome space Ω,

P(Ω) = 1.

There is nothing special about the constant 1 here: we could have set it to any positive number
and built a theory of probability around it. Historically, using 1 as the total probability seemed most
natural to mathematicians, and so 1 is used as the total probability constant by everyone today.

Solving the question of the day With these properties, we can now solve the question of the
day:

P({r, s, n}) = P({r} ∪ {s} ∪ {n}) = 30% + 15% + P({n}) = 1,

hence P({n}) = 1− 0.3− .15 = 55% .

1.3 Zeno’s paradox

Zeno had several paradoxes, but in the most famous a line is broken in half, then the right half is
broken in half, and so on. This breaking in half is done an infinite number of times, and still the
sum of the measures of the pieces equals the overall measure of the set.

0 1/2 3/4 7/8 · · · 1
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m([0, 1]) = m([0, 1/2)) +m([1/2, 3/4)) +m([3/4, 7/8)) + · · ·

1 =
1

2
+

1

4
+

1

8
+ · · ·

In other words, for a measure we want the additivity property to hold not just for a finite
collection of disjoint sets, but even for an infinite sequence of disjoint sets.

1.4 Formal definition of probability

Now let us make the discussion of the last session precise by giving a formal definition of probability.

Definition 3
Let P have outcome spaceΩ. If P(A) is defined for a setA ⊆ Ω, then callAmeasurable
or an event.

Saying that A is measurable means that P(A) is defined. Then we want to make sure the
probability that the outcome is not in A is also defined. In other words P(AC) where AC is the
complement of A should also be defined.
Similarly, if A1, A2, . . . are a sequence of subsets of Ω, and P(Ai) is defined for each one, we

would also like the probability of the union ∪∞
i=1Ai to be defined. By this infinite union we mean

∪∞
i=1Ai = {a : (∃i)(a ∈ Ai)}.

Hence we make the following definition.

Definition 4
Let F be a collection of subsets of Ω such that

1. Closed under complements: If A ∈ F , then AC ∈ F .

2. Closed under countable unions: If A1, A2, . . . are all in F then

∪∞
i=1Ai ∈ F .

Call F a σ-algebra, and the elements of F measurable sets.

A couple notes:

1. The symbol σ is the Greek letter sigma, so the term σ-algebra is read out loud as “sigma-
algebra”.

2. A synonym for σ-algebra is σ-field.

3. We often refer to the elements of F as measurable sets because they are the sets that we
assign probabilities to.

4. Whenever Ω is a finite set, F will be the set of all subsets of Ω.

5. When Ω = R, the σ-algebra F is usually taken to be the Borel sets. In this first course in
probability we will not define the Borel sets precisely, except to note that any interval (open
or closed, finite or infinite) is a member of the Borel sets.
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Example 1
If [0, 3] and [2, 9] are measurable sets, show that [0, 9] is as well.

Answer. Measurable sets are closed under countable unions (which includes finite
unions). So because [0, 3] and [2, 9] are measurable, so is

[0, 3] ∪ [2, 9] = [0, 9].

Definition 5
A function P : F → [0, 1] is a probability distribution if the following hold.

1. Total probability: Ω ∈ F and P(Ω) = 1.

2. Countable additivity: If A1, A2, . . . are all subsets of Ω so that for all i ̸= j,
AiAj = ∅, then

P (∪∞
i=1Ai) =

∞∑
i=1

P(Ai).

Note: sometimes mathematicians will call these the axioms of probability instead of a definition.

Example 2
Suppose P(i) = (1/3)|i| for i ∈ {1, 2, . . .} ∪ {−1,−2, . . .}. What is P({1, 2, 3, . . .})?

Answer Using our rule for probability measures

P({1, 2, . . .}) = P({1} ∪ {2} ∪ {3} ∪ · · · )

=
∞∑
i=1

P({i})

=
∞∑
i=1

(
1

3

)i

=
1/3

1− 1/3
=

1

3− 1
= 0.5000 .

Note the the numerical result in this example was given to 4 significant figures, or 4 sig figs
for short. For numbers such as 0.5, the 4 sig fig version 0.5000 is identical, but for numbers like√
2, the 4 sig fig version 1.414 will be slightly different. However, the relative error between the

two versions will be at most 0.01%, which is a small enough error to fall below most needs in
practice, while increasing readability drastically. Therefore, throughout this text, 4 sig figs will be
the standard way to approximate numerical results.

Problems

1.1 For A ∈ F , find P(A ∪AC).

1.2 Find P((A ∪B ∪ C) ∪ (A ∪B ∪ C)C).

1.3 Prove that if the state space Ω is measurable, so is ∅.
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1.4 What is
[0, 1/2) ∪ [1/2, 3/4) ∪ [3/4, 7/8) ∪ · · ·?

1.5 If [0, 1− 1/n] is measurable for every n ≥ 2, show that the interval [0, 1) is measurable.

1.6 If {i} is measurable for every positive integer i, show that {2, 4, 6, . . .} is measurable.

1.7 A partition of a set Ω is a collection of sets that are disjoint whose union is Ω. Suppose A,
B, and C partition Ω. What is P(A) + P(B) + P(C)?

1.8 Show that for the Borel sets the set

[0, 1] ∪ [2, 3] ∪ [4, 5] ∪ · · ·

is measurable.

1.9 Suppose for i ∈ {0, 1, 2, . . .},

P([i, i+ 1)) = (1/3)i+1.

What is P([0,∞)?

1.10 Suppose for i ∈ {1, 2, 3 . . .}, P(i) = (1/4)i. What is

P({1, 2, 3, . . .})?



Chapter 2

Properties of probability distributions

Question of the Day Given that P(A1) = 0.2, P(A2) = 0.9 and P(A1A2) = 0.15,
what is P(A1 ∪A2)?

SummaryWe can derive several properties of probability distributions from the basic
definition.

P(∅) = 0 Empty set probability
P(AC) = 1− P(A) Complements
A ⊆ B ⇒ P(A) ≤ P(B) Monotonicity

P(A) = 1 ⇒ (∀B)(P(B) = P(AB)) Certain events

P (∪∞
i=1Ai) ≤

∞∑
i=1

P(Ai) Union bound

P(A ∪B) = P(A) + P(B)− P(AB) Inclusion/exclusion for two events

The key objects in probability are random variables. A regular variable takes on a specific value,
but we do not have any information about what that value is. For instance, say

x ∈ R,

Here x is a variable, ∈ means is an element of and R means the real numbers. Saying that x is a
real-valued variable means x is taking on some specific value, but we have no idea what that value
is.
Statements can be made about x, but the best that we can say about the statements is that they

are either true or false. For instance,

{x ∈ [10, 30]} ∈ {TRUE, FALSE}

since the statement: x is an element of the closed interval [10, 30] is either a true statement, a false
statement, but not both.

In order to turn this into numbers, we use the indicator function. This function takes as input an
expression that is either true or false. It returns 1 if the input is true, and 0 otherwise.

9
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Definition 6
Using T for a true statement and F for a false statement, the indicator function 1 :
{F, T} → {0, 1} is defined as

1(T) = 1

1(F) = 0.

Using indicator notation,
1(x ∈ [0, 30]) ∈ {0, 1}.

Still this is all or nothing: either we know the statement is true and return a 1, or we know that the
statement is false and return a 0.
So now suppose we have a random variable X that represents the height of a building that we

see in the distance. Without measuring the building exactly, we don’t know for sure what the
height is, but we can assign a probability to it.

P(X ∈ [10, 30]) ∈ [0, 1].

The probability that we assign now is not just 0 or 1, but any number from 0 up to 1 that indicates
our degree of belief that the statement is true. For a set A, if PX(A) = P(X ∈ A) is going to be a
probability measure (aka probability distribution), it is necessary to satisfy some properties.
Last time, we said that a probability distribution (probability measure) was a function P from

the set of events F to [0, 1] that satisfied two properties:

1. Total probability: P(Ω) = 1.

2. Countable additivity: If A1, A2, . . . are all subsets of Ω so that for all i ̸= j, AiAj = ∅, then

P (∪∞
i=1Ai) =

∞∑
i=1

P(Ai).

Start with these two facts about probability measures. There are many more facts about distri-
butions, but mathematicians like to try and see if they can get away with assuming only a few
things, and then proving the other properties are logical consequences of the few things that they
assumed were true.

2.1 Complements and the empty set

Recall that ∅ is the empty set where for any variable x, the statement x ∈ ∅ is always false. Given
that, what should P(X ∈ ∅) = PX(∅) be? Well, we know that X ∈ ∅ is always false, so that
should make the probability 0, but that is not one of the things that we assumed was true about a
probability measure. We can, however, derive it from definition of a distribution.

Fact 1 (The empty set has probability 0.)
P(∅) = 0.

In words, this means that the probability that the outcome is nothing is 0. Let’s do the proof!
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Proof. Let Ai = ∅ for all i. Then the Ai are disjoint and their union also equals A1, so

P(A1) = P(A1) + P(A2) + P(A3) + · · · .

Canceling P(A1) from both sides gives

0 = P(A2) + P(A3) + · · · ≥ P(A2) ≥ 0,

so P(A2) = P(∅) = 0.

This type of proof is typically in this type of definition driven mathematics. It does not add to
our intuition, what it does is to verify that we do not need to make a separate assumption that
P(∅) = 0. Instead, this fact is already logically implied from our definitions.
Now that P(∅) = 0 is a proven fact, it can be used to prove other facts. For instance, in

the definition of a distribution, we said that a countable sequence of measurable events had the
probability of the union equal to the sum of the probabilities. What if we only have a finite sequence
of events?

Fact 2
Let A1, . . . , An be disjoint and measurable. Then

P (A1 ∪A2 ∪ · · · ∪An) = P(A1) + P(A2) + · · ·+ P(An).

Proof. Extend our finite set of events A1, . . . , An out to a sequence by making everything else in
the sequence the empty set. That is, consider the sequence

A1, A2, . . . , An, ∅, ∅, . . . .

The entire sequence is disjoint since the intersection of any Ai with ∅ is ∅, the intersection of any
two empty sets is empty, and the intersection of any two nonidentical Ai is empty.
Hence

P(A1 ∪ · · · ∪An ∪ ∅ ∪ ∅ ∪ · · · ) = P(A1) + · · ·+ P(An) +
∞∑
i=1

P(∅)

P(A1 ∪ · · · ∪An) = P(A1) + · · ·+ P(An) + 0,

and that completes the proof.

This last fact immediately leads in to our next important fact.

Fact 3 (probability of complement of an event is one minus the probability of the event.)
For an event A

P(AC) = 1− P(A).

Proof. Since A and AC are disjoint

P(A) + P(AC) = P(A ∪AC) = P(Ω) = 1.

Bringing the P(A) over to the other side completes the proof.
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Example 3
Each of ten million outcomes ω1, ω2, . . . , ω107 is equally likely. What is the chance that
the outcome is not ω1.

Answer We could say that it is

P({ω1}C) = P(ω2) + P(ω3) + · · ·+ P(ω107),

or more succinctly,

P({ω1}C) = 1− P({ω1}) = 1− 1/107 = 0.9999999 .

Fact 4 (Probabilities are strictly increasing with respect to subsets.)
Suppose A ⊆ B for two events A and B. Then

P(A) ≤ P(B).

Proof. Let A ⊆ B. Then B = A ∪ACB (in words, B consists of those elements that are either in
A or in B but not in A.) Also, A and ACB ⊆ AC are disjoint. Hence

P(B) = P(A) + P(ACB) ≥ P(A).

The fact means that we need only worry about the region of probability that has probability 1.

Fact 5
Suppose P(A) = 1. Then P(B) = P(A ∩B).

Proof. Note that A ∩B and AC ∩B are disjoint and have union B. Hence

P(A ∩B) + P(AC ∩B) = P(B).

Also, sinceAC∩B ⊆ AC , P(AC∩B) ≤ P(AC) = 0, so P(AC∩B) = 0which gives the result.

2.2 The union bound

Now consider finding the probability that at least one of a sequence of events occurs. In set notation,
that means we are looking for the probability of the union of the events.

P (∪∞
i=1Ai) = P(A1) + P(A2) + P(A3) + · · · .

Because the events could overlap, our simple addition rule does not apply. To make the sets
disjoint, consider first the union of two events.

Fact 6
For any A1, A2,

A1 ∪A2 = A1 ∪AC
1 A2.
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Proof. Since AC
1 A2 ⊆ A2, both A1 ⊆ A1 ∪A2 and AC

1 A2 ⊆ A2. Taken together,

A1 ∪AC
1 A2 ⊆ A1 ∪A2.

For the other direction, let a ∈ A1 ∪A2. Then a is either in A1, in A2, or in both. Case I: a ∈ A1,
then a ∈ A1 ∪AC

1 A2. Case II: a /∈ A1, then since it is not in A1 or both in A1 and A2, it must be
in A2. Since a /∈ A1, then a ∈ AC

1 by definition, so a ∈ AC
1 A2 and a ∈ A1 ∪AC

1 A2.

Moreover, A1 and AC
1 A2 ⊆ AC

1 are disjoint. Also, AC
1 A2 ⊆ A2. So

P(A1 ∪A2) = P(A1) + P(AC
1 A2) ≤ P(A1) + P(A2).

This fact about two sets can be generalized to what is called the union bound or sometimes
Bonferroni’s inequality.

Fact 7 (The union bound.)
Let A1, A2, A3, . . . be a sequence of events. Then

P((∪∞
i=1Ai) ≤ P(A1) + P(A2) + P(A3) + · · · .

Proof. Let A1, A2, . . . be a sequence of events. Then

A1 ∪A2 ∪ · · · = A1 ∪AC
1 A2 ∪AC

1 A
C
2 A3 ∪ · · · ,

where each event in the right hand side is disjoint from the others. Hence

P((∪∞
i=1Ai) = P(A1) + P(AC

1 A2) + P(AC
1 A

C
2 A3) + · · · ≤ P(A1) + P(A2) + · · · .

2.3 Inclusion/exclusion

While the union bound can give an upper bound on a probability, it will not always give the precise
probability. To accomplish this, first look at the union of two events. Consider a Venn diagram
with two events.

A1 A2

A1A
C
2 A1A2 AC

1 A2

Notice that

A1 ∪A2 = A1A
C
2 ∪A1A2 ∪A1A

C
2

A1 = A1A2 ∪A1A
C
2

A2 = A1A2 ∪AC
1 A2.



14 CHAPTER 2. PROPERTIES OF PROBABILITY DISTRIBUTIONS

We won’t go through the formal proof here, because it is similar to that of the last few facts. Using
this breakdown of A1 ∪A2 means that P(A1) = P(A1A2) + P(A1A

2
2), or rearranging:

P(A1A
C
2 ) = P(A1)− P(A1A2).

Similarly,
P(AC

1 A2) = P(A2)− P(A1A2).

This allows us to find the probability of the union of two events exactly.

Fact 8 (Inclusion/exclusion for two events.)
For any two events A1 and A2,

P(A1 ∪A2) = P(A1) + P(A2)− P(A1A2).

Proof.

P(A1 ∪A2) = P(A1A
C
2 ) + P(A1A2) + P(A1A

C
2 )

= P(A1)− P(A1A2) + P(A1A2) + P(A2)− P(A1A2)

= P(A1) + P(A2)− P(A1A2).

The above fact is called inclusion/exlcusion because we are including A1 and A2 and then
excluding A1A2 by subtracting the probability.
What’s more, we can extend this to the union of any finite number of events. What happens is

intersections of odd numbers of events get added, while intersections of even numbers of events
get subtracted.

Fact 9 (Inclusion/exclusion principle)
For sets A1, . . . , An, let [n] = {1, 2, 3 . . . , n}.

P (∪n
i=1Ai) =

∑
i∈n and odd

∑
{a1,a2,...,ai}⊆[n]

P(Aa1Aa2 · · ·Aai)−∑
i∈n and even

∑
{a1,a2,...,ai}⊆[n]

P(Aa1Aa2 · · ·Aai)

So for three sets, we have

P(A1 ∪A2 ∪A3) = P(A1) + P(A2) + P(A3)− P(A1A2)− P(A1A3)− P(A2A3)+

P(A1A2A3).

Problems

2.1 Suppose A and B are disjoint events, P(A) = 0.1 and P(B) = 0.7. What is P(A ∪B)?

2.2 Suppose A1, A2 and A3 are disjoint sets, P(A1) = P(A2) = P(A3) = 0.3.

a) What is P(A1 ∩A2 ∩A3)?
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b) What is P(A1 ∪A2)?

2.3 Suppose P(A) = 0.4, P(B) = 0.8 and P(AB) = 0.3. What is P(A ∪B)?

2.4 Suppose P(A) = 0.7 and P(B) = 0.4. Is it possible for A and B to be disjoint? If so, give
an example, otherwise prove that this is not possible.

2.5 If P([0, 3]) = 0.3 and P([5, 9]) = 0.6, what is P([0, 3] ∪ [5, 9])?

2.6 If P({a, b, c}) = 0.2 and P({d, e}) = 0.4, what is P({a, b, c, d, e}?

2.7 Say P(A1) = P(A2) = P(A3) = 0.2. Give an upper bound for P(A1 ∪A2 ∪A3).

2.8 If P(Ai) ≤ (1/3)i for i ∈ {1, 2, 3, . . .}, give an upper bound on

P(A1 ∪A2 ∪A3 ∪ · · · ).

2.9 Suppose a fair six sided die with sides labeled {1, 2, . . . , 6} is rolled three times. There
are many possible outcomes, for instance, (2, 3, 3) is one possible outcome.

a) How many possible outcomes are there?
b) If each outcome is equally likely, what must the probability of each outcome be?
c) What is the chance of getting all 6’s on the three rolls?
d) What is the chance of not getting all 6’s on the three rolls.

2.10 A department store models every person entering the store as either no spend, mid spend,
or high spend. If the probability a person is no spend is 0.15 and mid spend is 0.4. What
is the probability a person is high spend?

2.11 P(A ∪B) = 0.3. What is P(ACBC)?

2.12 Suppose P(A ∪B) = 0.5. What is P(ACBC)?

2.13 Suppose P(A ∈ [0, 3]) = 1, P(A ∈ [1, 2]) = 0.3 and P(A ∈ [2, 3]) = 0.6. What is
P(A ∈ [2, 5])?





Chapter 3

Discrete random variables

Question of the Day Two fair six sided dice are rolled independently. What is the
chance that they add to 5?

Summary Random variables such as X represent values which are not completely
unknown, so there is some partial information. The distribution of X is the proba-
bility measure PX(A) = P(X ∈ A). When the random variable is known to lie in a
countably infinite set with probability 1, call the random variable discrete. Random
variables X that are uniformly distributed over a finite set A (write X ∼ Unif(A))
are equally likely to be any element of A. Say that (X,Y ) ∼ Unif(A×B) if and only
if X ∼ Unif(A), Y ∼ Unif(B) where X and Y are independent.

3.1 Variables and random variables

If I tell you that x1 = 3 and x2 = 2, then x1 + x2 = 5. We typically call x1 and x2 variables and
you have learned over the years many rules for dealing with variables. But now consider what
happens when x1 and x2 are not known completely. Suppose we still know something about them,
namely, that they are the outcomes of a roll of a fair six sided die, but we do not know any more
than that.
Then we typically use capital letters to denote our values. For instance, we could use X1 and

X2 for the dice rolls. (By the way, “dice” is the plural of “die”. Writing in 2022, English is trending
towards using the word “dice” for both one die and the plural form, but I will use “die” for one and
“dice” for more than one die throughout.)

So now the question of the day reads: What is the chance that X1 +X2 = 5? Because we have
only partial information about X1 and X2, we say that they are random variables.

For instance, we know thatX1 is either 1, 2, 3, 4, 5, or 6. Mathematically, we use set notation and
write

X1 ∈ {1, 2, 3, 4, 5, 6}.

The curly brackets { and } indicate that this is set. In a set, order does not matter, so
{1, 2, 3, 4, 5, 6} = {6, 5, 4, 3, 2, 1}. We often use an ellipsis . . . to indicate that the reader should
mentally complete the in between parts, so

{1, . . . , 6} = {1, 2, 3, 4, 5, 6}.

17
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3.2 The uniform distribution

Now consider the question of the day. For this problem, we have two dice. Each die is a fair six
sided die. That means that if X1 represents the first die roll, and X2 the second, then both X1 and
X2 are elements of the set {1, 2, 3, 4, 5, 6}.

We use the word fair to indicate that we initially have no knowledge about the state of each die.
That is, each of the possibilities are equally likely. This is the situation when you have the least
amount of information about the value of a random variable.

To be more precise about what we mean by fair, we can talk about the distribution of the random
variable.

Intuition 1
For a random variable X , the function PX is defined as

PX(A) = P(X ∈ A)

is called the distribution of X .

That means that a distribution is a function. Now, real valued functions that we use a lot get
special names, such as the exponential function, or the sine function. In the same way, we give
special distributions that we use often their own name.
For instance, for X a fair six sided die roll,

PX({1, 3, 5}) = P(X ∈ {1, 3, 5}) = 3/6 = 1/2.

Notice that for a single outcome,

PX({1}) = PX({2}) = · · · = PX({6}) = 1/6.

In other words, there is a single probability that X equals each of the possible outcomes. The
Latin prefix for one is uni, which is why unicycles have one wheel and unicorns have one horn.
Because each outcome has this single probability, we name this distribution uniform. Formally, it
can be defined as follows.

Definition 7
Let B be a set that satisfies #(B) > 0 and #(B) < ∞. Then X is uniform over B,
write X ∼ Unif(B), if for all measurable A ⊆ B,

P(X ∈ A) =
#(A)

#(B)
.

Note that in particular, if A = {a}, then#(A) = 1, and

P(X ∈ A) = P(X = a) = 1/#(B).

Theoretically, that definition requires that we check the probability for all sets A ⊆ B. There
are many such sets, so it is helpful to note that actually, we only have to check sets of size 1!

Fact 10
Suppose P(X = b) = 1/#(B) for all b ∈ B. Then X ∼ Unif(B).
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Proof. Let A ⊆ B. Then

P(X ∈ A) = P (∪a∈A{a}) =
∑
a∈A

P(X ∈ {a}) =
∑
a∈A

1

#(B)
=

#(A)

#(B)
,

so X ∼ Unif(B).

Example 4
Suppose Y ∼ Unif({1, . . . , 10}). What is the probability that Y ∈ {3, 4, 5}?
The answer is #({3, 4, 5})/#({1, . . . , 10}) = 3/10 = 0.3000 .

3.3 Independent uniform random variables

We say that two random variables are independent if knowing the value of one random variable
does not give us any information about the other. In the question of the day, knowing X1 does not
tell us anything about X2. Mathematically, independence can be defined as follows.

Definition 8
Events A and B are independent if

P(AB) = P(A)P(B).

Random variablesX and Y are independent if for all C andD, the events thatX ∈ C
and Y ∈ D are independent.

Definition 9
Random variables X and Y are independent if for all measurable A and B,

P(X ∈ A, Y ∈ B) = P(X ∈ A)P(Y ∈ B).

Example 5
Say X ∼ Unif({1, 2, 3}) and Y ∼ Unif({1, 2, 3, 4}) are independent. Find

P(X = 1, Y ∈ {2, 3}).

Answer Because the random variables are independent,

P(X = 1, Y ∈ {2, 3}) = P(X = 1)P(Y ∈ {2, 3})

=
1

3
· 2
4
=

1

6
= 0.1666 . . .

For uniform random variables, independence gives us the following.

Fact 11
It hold that (X,Y ) ∼ Unif(ΩX × ΩY ) if and only if X ∼ Unif(A), Y ∼ Unif(B), and
X and Y are independent random variables.
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Notation check: remember that A×B (read as A cross B) means the set of two dimensional
vectors (a, b) such that a ∈ A and b ∈ B.

Proof. Let (a, b) ∈ A×B, so a ∈ A and b ∈ B. Then by the independence of X and Y

P(X = a, Y = b) = P(X = a)P(Y = b) =
1

#(A)
· 1

#(B)
=

1

#(A×B)
.

Hence (X,Y ) ∼ Unif(A×B).

In the question of the day, X1 ∈ {1, . . . , 6} and X2 ∈ {1, . . . , 6}. Since each is uniform and
independent,

(X1, X2) ∼ Unif({(1, 1), (1, 2), . . . , (6, 5), (6, 6)}).
There are 36 elements in {1, . . . , 6} × {1, . . . , 6}, and exactly 4 of them

(1, 4)(2, 3), (3, 2), (4, 1)

have X1 +X2 = 5. Hence

P(X1 +X2 = 5) = P((X1, X2) ∈ {(1, 4), (2, 3), (3, 2), (4, 1)} =
4

36
≈ 0.1111 .

3.4 What makes a random variable discrete

A random variable that is uniform over a finite set is an example of a discrete random variable.
What makes it discrete? In mathematics, discrete refers to sets that are finite or countably infinite.

Definition 10
A set A is finite if there exists n ∈ {1, 2, 3, . . .} and an onto function f : {1, . . . , n} →
A.

So a set is finite if we can count the elements of A using numbers {1, . . . , n} for some n. For
instance, for the set {a, b, c}, I can assign element a the number 1, element b the number 2, and c
the number 3. Since 3 is a positive integer, the set is finite.

Definition 11
A set A is countably infinite (a.k.a. discrete) if there exists an onto function f :
{1, 2, 3, . . .} → A.

Definition 12
A random variable is discrete if there exists a discrete set Ω such that P(X ∈ Ω) = 1.

Example 6
Suppose P(X = i) = (1/2)i for all i ∈ {1, 2, . . .}. Prove that X is discrete.

Answer By the countable additivity property,

P(X ∈ {1, 2, 3, . . .}) =
∞∑
i=1

(
1

2

)i

= 1,

so X falls into a countably infinite set with probability 1, and so is discrete.
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Problems

3.1 Let U ∼ Unif({1, 2, 3, 4, 5, 6}). What is P(U ≤ 4)?

3.2 Let X be uniform over the positive even numbers that are at most 100. What is the
chance that X is a multiple of 4?

3.3 Let A = {a, b, c} and B = {d, e}. What is A×B?

3.4 What is {1, 2, 3} × {2, 3, 4}?

3.5 Let W ∼ Unif({a, b, c, d}). What is P(W ∈ {a, c})?

3.6 Let W ∼ Unif({a, b} × {c, d}). What is P(W = (a, c))?

3.7 Let X1 ∼ Unif({1, . . . , 6}) and X2 ∼ Unif({1, . . . , 6}) be independent. Then what is
P(X1 +X2 = 6)?

3.8 Suppose that (X,Y ) is drawn uniformly from {1, 2, 3} × {1, 2}. What is the chance of
picking X = Y = 2?

3.9 Suppose I roll three fair six sided dice so that each outcome is equally likely, and call
the result (X1, X2, X3). Let S be the smallest value showing on the dice. For i ∈
{1, 2, 3, 4, 5, 6}, find P(S = i).

3.10 Suppose I roll three fair ten sided dice where each die is marked {0, 1, 2, . . . , 9}. What is
the chance of rolling (0, 0, 7)?

3.11 Prove that {2, 3, 4, 5, . . .} is a discrete set.

3.12 Suppose that for i ∈ {1, 2, 3, . . .}, P(X = i) = (1/3)(2/3)i−1. Prove thatX is a discrete
random variable.





Chapter 4

Continuous random variables

Question of the Day Suppose U1 and U2 are independent and uniform over [0, 1].
What is the chance that U1 ≤ U2

2 ?

Summary Uniform random variables X over a set B of nonzero finite measure
have P(X ∈ A) = m(A)/m(B) for all measurable A ⊂ B. Continuous random
variables have P(X = a) = 0 for all a ∈ R. Uniform random variables over a
continuous set are continuous random variables.

4.1 Continuous Uniform random variables

Recall that for discrete random variables, and A ⊂ B, if X ∼ Unif(B), then

P(X ∈ A) =
#(A)

#(B)
.

So for X ∈ {a, b, c, d, e},

P(X ∈ {b, c}) = 2

5
= 0.4000.

This works because #(B) > 0 and#(B) < ∞, so the denominator makes sense.
For a continuous uniform random variable, instead of using counting measure, we use Lebesgue

measure.

Definition 13
Let m denote Lebesgue measure, and suppose B is a set such that m(B) ∈ (0,∞). Say
that X is uniform over B if for all measurable A ⊆ B,

P(X ∈ A) =
m(A)

m(B)
.

Note: this definition gives a probability distribution for any measure wherem(B) is a positive
finite number, not just counting or Lebesgue! However, these are usually the only two measures
for which the resulting distribution is called uniform.

23
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Example 7
Suppose Y ∼ Unif([2, 8]). What is P(Y ∈ [3, 4])?

Answer Since [3, 4] ⊆ [2, 8],

P(Y ∈ [3, 4]) =
m([3, 4])

m([2, 8])
=

4− 3

8− 2
=

1

6
≈ 0.1666 .

For variables uniform overB, the chance that the variable lands outside of the setB is 0. Formally,
we have the following.

Fact 12
For X ∼ Unif(B), if CB = ∅, then P(X ∈ C) = 0.

Proof. Let C be such that CB = ∅. Then CB and B are disjoint, so

P(X ∈ CB ∪B) = P(X ∈ CB) + P(X ∈ B).

But P(X ∈ B) = 1 and P(X ∈ CB ∪B) ≤ 1. Hence P(X ∈ CB) = 0.

Example 8
Suppose Y ∼ Unif([2, 8]). What is P(Y ∈ [0, 4])?
Since [0, 4] = [0, 2) ∪ [2, 4] and [2, 4] ⊆ [2, 8],

P(Y ∈ [0, 4]) = P(Y ∈ [0, 2)) + P(Y ∈ [2, 4]) = 0 +
4− 2

8− 2
=

2

6
≈ 0.3333 .

4.2 Independent random variables

Now let us consider two dimensions. Suppose that (U1, U2) ∼ Unif([0, 1]× [0, 1]) so that we are
drawing a point uniformly from the unit square.

1

1

(U1, U2)

The same definition applies to two, three, or higher numbers of dimensions.
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Example 9
What is the chance that U1 ≥ 2U2?

If U1 is on the horizontal axis and U2 is on the vertical, then we want

U2 ≥ (1/2)U1,

and so the region where U2 ≥ (1/2)U1 looks like this:

1

1

(U1, U2)

This is a trapezoid with area∫ 1

u1=0
1− (1/2)u1 du1 = u1 − u21/4|10 = 3/4 = 0.7500 .

The same rule (Fact 11) for independent uniform random variables that worked for the discrete
case also applies in the continuous case. That is,

(X,Y ) ∼ Unif(A×B) ⇔ X ∼ Unif(A), Y ∼ Unif(B), X and Y are independent.

Question of the Day Here U1 ∼ Unif([0, 1]) and U2 ∼ Unif([0, 1]) are independent, so
(U1, U2) ∼ Unif([0, 1] × [0, 1]). So to find P(U1 ≤ U2

2 ), we need to graph that region in U1, U2

space.

1

1

To find the area:∫ 1

y=0

∫ y2

x=0
1 dx dy =

∫ 1

y=0
y2 dy = y3/3|10 = 1/3 ≈ 0.3333 .
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Example 10
Suppose (U1, U2) ∼ Unif(A), whereA is the triangular region with vertices (0, 0), (1, 0),
and (0, 1). Then prove that U1 and U2 are not independent.

Answer Consider the events U1 > 0.5 and U2 > 0.5. Then if both these things are
true, U1 + U2 > 1, which is outside of the trianglular region A:

1

1

So P(U1 > 0.5, U2 > 0.5) = 0.
Now consider P(U1 > 0.5). This is the shaded region of the triangle.

1

1

This shaded region has area (1/2)(1/2)(1/2) = 1/8, and the overall triangle has area
(1/2)(1)(1) = 1/2, so the probability that the uniform lands in the shaded region is

P(U1 > 0.5) =
1/8

1/2
=

1

4
.

Similarly, the probability that U2 > 0.5 is the probability that the uniform lands in
the blue shaded region.

1

1

This is also 1/4. Hence

P(U1 > 0.5)P(U2 > 0.5) = (1/4)(1/4) = 1/16,

which is not P(U1 > 0.5, U2 > 0.5) = 0. So U1 and U2 are not independent.
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4.3 What makes a random variable continuous

Suppose X ∼ Unif([0, 1]). Then

P(X = 0.3) = P(X ∈ [0.3, 0.3]) =
0.3− 0.3

1− 0
= 0.

In fact, for any single point x in [0, 1], P(X = x) = 0. That turns out to be the way we define a
continuous random variable.

Definition 14
Say that X is a continuous random variable if for all x, P(X = x) = 0.

Example 11
Show that for U ∼ Unif([0, 1]), U2 is a continuous random variable.
Let x ∈ R. Suppose x ̸= 0. Then

P(U2 = x) = P(U =
√
x) + P(U = −

√
x) = 0 + 0 = 0

Now suppose x = 0. Then P(U2 = 0) = P(U = 0) = 0. Hence U2 is continuous.

From the last example, you might be tempted to think that any function of a continuous random
variable is also a continuous random variable. But that is not true!

Let f(x) = 1 when x ∈ [0, 0.5], and f(x) = 2 when x ∈ (0.5, 1]. Then for U ∼ Unif([0, 1]),

P(f(U) = 1) = P(U ∈ [0, 0.5]) = 0.5

P(f(U) = 2) = P(U ∈ (0.5, 1]) = 1− 0.5 = 0.5

So f(U) ∼ Unif({1, 2}) is a discrete random variable.

4.4 Constructing a continuous uniform random variable

So we said what a continuous uniform random variable is, but how can we build such a variable
from discrete uniforms? The answer works as follows.

Suppose thatXi ∼ Unif({0, 1, 2, 3, 4, 5, 6, 7, 8, 9}), and for every n, {X1, . . . , Xn} are indepen-
dent random variables. Then we call

X1, X2, . . .

an independent, identically distributed or iid sequence of random variables.
Given this sequence, we treat the sequence as digits of a real number in [0, 1]. Formally, we let

U =
∞∑
i=1

Xi/10
i.

So for instance, if
X1 = 6, X2 = 0, X3 = 4, X4 = 7,

then
U = 0.6047 . . .

It turns out (with a fair amount of work), that one can prove that a random variable U generated
in this way is actually uniform over the interval [0, 1]



28 CHAPTER 4. CONTINUOUS RANDOM VARIABLES

There’s another, more geometric way of thinking about this as well. Start with the interval [0, 1].
Then flip a fair coin whose sides are labeled either R for right or L for left. Then if the coin is left,
we consider the left half of the interval [0, 1/2), and if it is right we consider the right half of the
interval [1/2, 1). Then flip the coin again (independently) and select the right or left half, and so
on.
So if the first four flips were RLLR, then the interval has been reduced down to [5/16, 6/16).

Each time the length of the interval gets chopped in half. If we take the limit of the left endpoint of
the interval as the number of flips goes to infinity, it approaches a single value, and that will be our
U ∼ Unif([0, 1]).
For most values, there is one sequence that reaches that value. For instance,

RLRLRLRLRL · · ·

leads to 2/3. For some values, there are two sequences that reach that value, for instance both

RLLLLLL . . . and LRRRRRRR . . .

lead to 1/2.
Either way, the probability of having either that single or double sequence of flips is equal to 0.

And that is why the continuous uniforms have probability 0 of hitting any particular state.

4.5 The paradox of the real numbers

Recall that for a countably infinite sequence of disjoint sets, the sum of the probabilities is equal to
the probability of the union of the sets. Every set is the disjoint union of the singleton sets that
each contain a single element. That is,

A = ∪a∈A{a}.

So for [0, 1],
[0, 1] = ∪a∈[0,1]{a}.

However, for U ∼ Unif([0, 1]), P(U ∈ [0, 1]) = 1, while P(U = a) = P(U ∈ {a}) = 0. So

1 ̸=
∑

a∈[0,1]

P(U = {a}).

That means that the set of numbers in [0, 1] do not form a countable set! For this reason, we say
that the interval [0, 1] is an uncountable set.
That was a bit of a shock to the first person to discover this fact: Georg Cantor. Many mathe-

maticians refused to believe it for a time, but today it is a commonly accepted fact about the real
numbers that we just have to live with.

Problems

4.1 SupposeW ∼ Unif([−3, 3]).

a) What is P(W ∈ [−1, 2])?
b) What is P(W ∈ [−5, 0])?

4.2 Suppose Y ∼ Unif[0, 10].
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a) Find P(Y ∈ [3, 7]).
b) Find P(Y ∈ [6, 12]).

4.3 Suppose (U1, U2) is uniformly chosen over the unit circle

{(x, y) : x2 + y2 ≤ 1}.

What is the chance that |U1| ≥ U2?

4.4 Suppose that U = (U1, U2) is uniformly chosen over the region:

{(x, y) : x ≥ 2, 0 ≤ y ≤ 1/x2}.

a) What is P(U1 ≤ 5)?
b) What is P(U2 ≥ .01)?

4.5 Let U1 and U2 be independent uniform random variables over [0, 1]. What is the chance
that U2 ≥ 3U1?

4.6 Let Ω = {(x, y) : 0 ≤ x ≤ 1, 0 ≤ y ≤ x2} and suppose (X,Y ) ∼ Unif(Ω).

a) Find P(X ≤ 0.3).
b) For a ∈ R, find P(X ≤ a). Write your answer using indicator functions.
c) Suppose X1, X2, X3 are iid draws from X . Find P(min{X1, X2, X3} ≤ 0.3).

4.7 Say that R ∼ Unif([0, 1]).

a) What is P(R ≤ 0.4)?
b) What is P(R ≤ 1.4)?
c) What is P(R ≤ −0.4)?

4.8 Suppose that (U1, U2) is uniform over the quadrilateral region with vertices
(0, 0), (0, 1), (2, 2), (2, 0). Prove that U1 and U2 are not independent.





Chapter 5

Functions of random variables

Question of the Day Suppose U ∼ Unif([0, 1]). Let T = − ln(U). What is P(T ≤ a)
for a ≥ 0?

Summary The cumulative distribution function or cdf of a random variable X
is cdfX(a) = P(X ≤ a). Two random variables with the same cdf have the same
distribution. Intuitively, a random variable is any function of a uniform random
variable. Several such random variables important enough to be given names are as
follows.

• The Bernoulli distribution is a random variable that is either 0 or 1.

• The exponential distribution with rate λ is the negative the natural logarithm
of a uniform over [0, 1] divided by λ.

• The geometric distribution is the number of flips of a (possibly unfair) coin
needed to obtain the first head.

Suppose I start with a random variable X that is uniform over [−1, 1]. Now I take the absolute
value of that random variable. So Y = f(X) = |X|. Note that Y contains less information thanX .
The value of X told us both the distance from 0, and whether the value was positive or negative.
The value of Y only tells us the distance from 0.

What is the distribution of Y ? A useful fact is that the distribution of a real-valued random
variable is completely determined by the cumulative distribution function or cdf of the variable.

Definition 15
For a random variable Y , the cumulative distribution function or cdf of Y is defined
as

cdfY (a) = P(Y ≤ a).

Fact 13
Let X and Y have the same cdf. Then PX ∼ PY .

31
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That is, if X and Y have the same cdf, then they have the same distribution. The proof of this
important fact is usually given in a second course in real analysis.
As our first example, let’s find the cdf for uniform random variables over [0, 1].

Fact 14
Let U ∼ Unif([0, 1]). Then

cdfU (a) = P(U ≤ a) = a1(a ∈ [0, 1]) + 1(a > 1).

Proof. If a < 0, then P(U < a) = 0. If a ∈ [0, 1] then

P(U ≤ a) =
a− 0

1− 0
= a,

and if a > 1, then P(U ≤ a) = 1.

Let’s graph this cdf function.

0 1

1

Notation 3
Another common notation for the cdf of a random variable is to use a capital letter F , so

FY (a) = cdfY (a).

Now work out our example from earlier.

Example 12
Suppose X ∼ Unif([−1, 1]). What is the distribution of Y = |X|?

Answer Consider the cdf of Y . |X| ≥ 0 so for a < 0, P(Y < a) = 0. Also, for
X ∈ [−1, 1], |X| ≤ 1, so for a > 1, P(Y < a) = 1. Last, if a ∈ [0, 1], then

P(Y ≤ a) = P(|X| ≤ a)

= P(−a ≤ X ≤ a)

=
a− (−a)

1− (−1)

=
2a

2
= a.

Hence the cdf of Y is the same as a cdf of a uniform over [0, 1], and must have the
same distribution. That is, Y ∼ Unif([0, 1]).

Sometimes a function of a continuous random variable is a discrete random variable.
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Example 13
Suppose U ∼ Unif([0, 1]). Then consider W = 1(U ≤ 0.3) + 41(U > 0.3). What is
the distribution ofW ?

Answer Here P(W = 1) = P(U ≤ 0.3) = 0.3 and P(W = 4) = (1− 0.3) = 0.7, so
the distribution is

P(W = 1) = 0.3, P(W = 4) = 0.7 .

It turns out that every real-valued random variable can be written as a function of one or more
uniform random variables!

Intuition 2
Let U ∼ Unif([0, 1]) and X = f(U) for some function f that can be computed. Then
X is a random variable.

Some remarks on this idea of a random variable.

1. In more advanced probability, random variables are taken to be measurable functions. These
functions expand upon the notion of computable functions. For this more advanced definition,
see Chapter 32.

2. Which functions can be computed depends on the model we are using for computation. For
our purposes, all commonly used functions (squaring, multiplying, adding, et cetera) are
computable functions.

3. For computer simulation, this definition means that any stream of uniform [0, 1] random
variables can be used as the source of randomness in the simulation.

4. Note that if X = f(U1) for U1 ∼ Unif([0, 1]), and Y = g(X), then Y = g(f(U1). This
means that any computable function of a random variable is another random variable.

Given this definition, we can now look at some common distributions.

5.1 The Bernoulli distribution

Our first distribution is called the Bernoulli distribution after the Swissmathematician Jacob Bernoulli
who did pioneering work in probability. This is in some sense the simplest nontrivial distribution,
as a random variable B has a Bernoulli distribution if P(B = 1) = p and P(B = 0) = 1− p for
some p ∈ [0, 1].

Definition 16
Say that B has the Bernoulli distribution with parameter p, and write B ∼ Bern(p),
if B = 1(U ≤ p), where U ∼ Unif([0, 1]).

5.2 The exponential distribution

The random variable T = − ln(U) is an important one in probability. We say that this random
variable has an exponential distribution. More generally, this is defined as follows.
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Definition 17
Say that T has the exponential distributionwith rate λ, and write T ∼ Exp(λ), where
λ > 0 is a parameter, if

T = − 1

λ
ln(U),

where U ∼ Unif([0, 1]).

Note that since U ∈ (0, 1) with probability 1, ln(U) < 0, so T > 0 with probability 1.

5.3 The magic of a uniform over [0, 1]
One of the awesome things about a uniform over [0, 1] is that you can use it to get more than one
uniform over [0, 1]!

Remember that a uniform random variable over [0, 1] can be thought of as an infinite stream of
uniformly random digits over {0, 1, . . . , 9}. For instance,

U = 0.661133560833984572979351 . . .

Gives the stream of digits 6, 6, 1, 1, 3, 3, 5, 6, 0, 8, 3, 9, 8, . . ..
Now suppose that we wanted two uniforms over [0, 1]. Then we could just use the odd digits for

the first uniform, and the even for the second. That is,

U1 = 0.613503947995 . . .

U2 = 0.613683852731 . . . .

So X = f(U) = U1 − U2 is also a random variable!
We can go further! Split U2 into U2 and U3, split U3 into U3 and U4, and so on. In the end, the

result is an infinite sequence of uniform random variables that are uniform over [0, 1].

U1, U2, U3, U4, . . . .

Since each uniform is composed of independent digits, each one will also be independent of the
others. Such a sequence of independent, identically distributed random variables are called iid.

Definition 18
Suppose X1, X2, . . . all have the same distribution, and for all n, (X1, . . . , Xn) are
independent random variables. Say that the {Xi} form an independent, identically
distributed or iid sequence of random variables.

Then the following holds.

Fact 15
Let U1, U2, . . . be iid Unif([0, 1]). Then any f(U1, U2, . . .) that can be computed gives a
random variable.

This can be used to give the geometric distribution. Suppose that G is the smallest value of i such
that Ui ≤ p. Then we say that G has the geometric distribution with parameter i.
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Mathematically, the smallest value of a nonempty set A is called the infimum (write inf(A)) of
the set. For instance,

inf{1, 2, 3} = 1

inf{4, 6, 8, . . .} = 4

inf{} = ∞.

That last equation is by convention: inf(∅) = ∞.
Now if U1, U2, . . . is a sequence of iid uniforms over [0, 1], then 1(U1 ≤ p),1(U2 ≤ p),1(U3 ≤

p), . . . give a sequence of 0’s and 1’s. For instance, the sequence might be

0, 0, 1, 0, 1, 1, . . . .

Then the locations with 1’s would be {3, 5, 6, . . .}. Taking the infimum of this set gives 3, which is
the first position of a 1. This motivates the definition of a geometric distributed random variable,
which is the number of flips of a coin with probability p of heads needed to get the first head.

Definition 19
Let G = inf{i : Ui ≤ p}. Then write G ∼ Geo(p), and say that G is a geometric
random variable with parameter p where U1, U2, U3 are iid.

You can think of a geometric random variable as the number of flips of a coin needed to see the
first head, where the probability that the coin is heads is p.

Example 14
Let G ∼ Geo(0.3). What is the chance that G = 3?

Answer For G to equal 3, we must have U1 > 0.3, U2 > 0.3 and U3 ≤ 0.3. Hence

P(G = 3) = (1− 0.3)(1− 0.3)(0.3) = 0.1470 .

Problems

5.1 Suppose U ∼ Unif([0, 1]) and A = − ln(U)/2.

a) Find P(A ≥ 2).
b) Find P(A ≥ −2).
c) For a ≥ 0, find P(A ≥ a).
d) For a < 0, find P(A ≥ a).

5.2 Suppose U ∼ Unif([0, 1]) andW = 1/U .

a) Find P(W ≥ 2).
b) Find P(W ≥ −2).

5.3 Let U ∼ Unif([−1, 1]). Find the cdf of 1− U2.

5.4 Let U ∼ Unif([−1, 1]). Find the cdf of U3.
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5.5 Let ω be uniform over [0, 1], and suppose X(ω) = 2ω + 3. Find

a) P(X ∈ [3.5, 4.7]).
b) P(X ∈ [0, 1]).
c) P(X2 ≤ 10).

5.6 Suppose U ∼ Unif([−1, 0]). Prove that −U ∼ Unif([0, 1]) by showing that cdf−U (a) =
a1(a ∈ [0, 1]) + 1(a > 1).

5.7 Suppose U ∼ Unif([−1, 0]).

a) Let X = U2. Find the cdf of X .
b) Find the cdf of U .

5.8 Suppose U ∼ Unif([0, 1]) and X = U2. Find cdfU .

5.9 Let G ∼ Geo(p). For i a value in {1, 2, 3 . . .}, what is P(G = i)?

5.10 Suppose that (U1, U2) is uniform over the quadrilateral region with vertices
(0, 0), (0, 1), (2, 2), and (2, 0). Find the cdf of U1.

5.11 Let U ∈ [−1, 1]. What is P(U2 ≥ 0.6)?

5.12 Suppose T ∼ Exp(2). Find and graph cdfT .

5.13 Consider the probability that for Exp(1) and Unif([0, 1]) random variables drawn in-
dependently, that the second is bigger than the first. To find this, let U1 and U2 be iid
Unif([0, 1]). Then set T = − ln(U2). Then find P(U1 ≥ T ).

5.14 Let T1 ∼ Exp(1) and T2 ∼ Exp(2) be independent. Find P(T1 ≥ T2).

5.15 Let B ∼ Bern(p) and T ∼ Exp(1) be independent random variables. Find P(T ≥ B).

5.16 Suppose P(X = 1) = 0.2, P(X = 2) = 0.3, and P(X = 3) = 0.5. For T ∼ Exp(1)
independent of X , find P(T ≥ X).

5.17 The time until radioactive decay of a single atom is exponentially distributed with
rate λ. If T is the time until the particle decays, the half-life thl is the time such that
P(T ≥ thl) = 1/2. The half-life for an atom of uranium 238 is 4.5 billion years.

a) What is λ?
b) If the Earth is 4.2 billion years old, what is the chance that an atom of U-238 present

at the birth of the planet is still intact?

5.18 Plutonium 241 has a half life of 14.4 years. What is the chance that a single atom of
Pu-241 survives at least 20 years?
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Conditioning

Question of the Day Suppose T ∼ Exp(2). What is the probability that T is at least
4 given that it is at least 1?

Summary Conditioning is a way of saying what extra information about a random
variable we are given. We use a vertical | to separate the random variable (to the left
of the bar), and the information (to the right of the bar.) So P(X ∈ A|Y ∈ B) means
the probability that the random variableX falls into A given the information that the
random variable Y falls into B. As long as P(Y ∈ B) > 0, then

P(X ∈ A|Y ∈ B) =
P(X ∈ A, Y ∈ B)

P(Y ∈ B)
.

When we have extra knowledge about a random variable, we typically use a vertical bar | to
separate the event we want the probability of (on the left) and the event that we know happened
(on the right).

So for the question of the day, want we want to find is

P(T ≥ 4|T ≥ 1).

To the right of the bar goes {T ≥ 1}, the event that we are told (given) happened. To the left of the
bar goes the event {T ≥ 4} that we are trying to find the probability of. We say we are trying to
find the probability T ≥ 4 conditioned on T ≥ 1.

To understand what this probability is, it helps to first step back and consider a simple example.
Suppose that U ∼ Unif({1, 2, 3, 4, 5, 6}, and then further information is obtained that U ≤ 4.
What should the distribution of U given that U ≤ 4, written [U |U ≤ 4], be?

Well, saying U ∼ Unif({1, 2, 3, 4, 5, 6} means that we have no information about which pos-
sibility is more likely. The extra information that U ≤ 4 eliminates 5 and 6 as possible values,
but does not tell us anything about whether or not (say) 3 is more likely than 1. This leads to the
following intuition.

Intuition 3
Suppose A ⊆ B where A has positive measure. Then for U ∼ Unif(B),

[U |U ∈ A] ∼ Unif(A).

37
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In particular, suppose C ⊆ A ⊆ B, and U ∼ Unif(B). Then

P(U ∈ C|U ∈ A) = P(W ∈ C),

whereW ∼ Unif(A). Hence

P(U ∈ C|U ∈ A) =
m(C)

m(A)
=

m(C)/m(B)

m(A)/m(B)
=

P(U ∈ C)

P(U ∈ A)
.

Now consider conditioning when C is not a subset of A. So the Venn diagram might look
something like

B

A C

Remember that U ∼ Unif(B), we are told that we fall into A, and now are asking what is the
chance that we also fell into C? Well, of course, most of C does not happen. The only way for U
to fall into C at this point is if U falls into A ∩ C . So

P(U ∈ C|U ∈ A) = P(U ∈ A ∩ C|U ∈ A) =
m(A ∩ C)

m(A)
.

Now divide top and bottom bym(B) to get

P(U ∈ C|U ∈ A) =
m(AC)/m(B)

m(A)/m(B)
=

P(U ∈ A ∩ C)

P(U ∈ A)
.

At this point remember that all probability distributions are based on the uniform distribution
over [0, 1]. That means for any two events E1 and E1, there exists C and A such that

E1 = {U ∈ C}, E2 = {U ∈ A}.

Hence
P(E1|E2) = P(U ∈ C|U ∈ A) =

P(U ∈ A,U ∈ C)

P(U ∈ A)
=

P(E1, E2)

P(E2)
.

This argument motivates the following definition of conditional probability.

Definition 20
For events A and B where P(B) > 0, the conditional probability of event A given
event B is

P(A|B) =
P(AB)

P(B)
.

In particular, if there are random variablesX and Y so that the events of interest are A = {X ∈
C} and B = {Y ∈ D}, then

P(X ∈ C|Y ∈ D) =
X ∈ C, Y ∈ D

P(Y ∈ D)
.
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Question of the Day With this in mind, we can now tackle the question of the day. In this
problem, we are given that T ∼ Exp(2). Recall that this means that T = −(1/2) ln(U), where U
is uniform over [0, 1].
Now to solve the Question of the Day, we need only apply the conditional probability formula.

P(T ≥ 4|T ≥ 1) =
P(T ≥ 4, T ≥ 1)

P(T ≥ 1)

=
P(T ≥ 4)

P(T ≥ 1)

=
P(−(1/2) ln(U) ≥ 4)

P(−(1/2) ln(U) ≥ 1)

=
P(ln(U) ≤ −8)

P(ln(U) ≤ −2)

=
P(U ≤ exp(−8))

P(U ≤ exp(−2))

=
exp(−8)

exp(−2)
= exp(−6) ≈ 0.002478 .

Independence can be viewed in terms of conditional probabilities.

Fact 16
Two random variables X and Y are independent if and only if for all A and B with
P(Y ∈ B) > 0,

P(X ∈ A|Y ∈ B) = P(X ∈ A). (6.1)

Proof. Suppose X and Y are independent. Let A and B be such that P(Y ∈ B) > 0. Then

P(X ∈ A|Y ∈ B) =
P(X ∈ A, Y ∈ B)

P(Y ∈ B)
=

P(X ∈ A)P(Y ∈ B)

P(Y ∈ B)
= P(X ∈ A).

On the other hand, suppose (6.1) holds for all A and B such that P(Y ∈ B) > 0. Let A be any
measurable set.
Let B be any measurable set with P(Y ∈ B) = 0. Then {X ∈ A, Y ∈ B} ⊆ {Y ∈ B}.

P(X ∈ A, Y ∈ B) ≤ P(Y ∈ B) = 0 = P(X ∈ A)P(Y ∈ B).

Now let B be any measurable set with P(Y ∈ B) > 0. Then

P(X ∈ A, Y ∈ B) = P(X ∈ A|Y ∈ B)P(Y ∈ B) = P(X ∈ A)P(Y ∈ B).

In either case, the probability of the intersection is the product of the probabilities, and so X and
Y are independent.

In other words,X and Y are independent if knowing some information about Y does not change
the distribution of X .
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6.1 Other ways of viewing conditioning

As long as P(A > 0),

P(B|A) =
P(A,B)

P(A)
.

A different way of viewing this formula is to say that given the information that A occurred, we
are no longer working in outcome space Ω, we are instead working within A. So that becomes
our new probability outcome space. But remember that one of our rules of probability is that
the probability of the event that the outcome is in the space is 1. So we need to renormalize our
probabilities to make that happen. That is why we divide P(A,B) by P(A). That way,

P(A|A) =
P(A,A)
P(A)

= 1.

A third way of looking at conditional probability is as a two-stage experiment. Suppose that we
have a product that might have property A, and might have property B. What is the chance that
the product has both properties?
Well, suppose we send the product to two rooms for testing. The first room tests to see if

the product has property A. If it does have property A, then the product goes on to the second
room, which tests to see if it has property B. If the product does not have property A, then it is
immediately destroyed by throwing it into the nearest volcano.
The chance that the first room passes the product along is P(A). The chance that the second

room passes the product along is P(B|A) (since room two only tests for property B if the product
passed the first test.) The chance that the product passes both rooms is P(A)P(B|A). This must
equal the chance that the product has both properties, so

P(A,B) = P(A)P(B|A).

6.2 Reminder: the difference between disjoint and independent

There are two important properties that a pair of events can have. The first is that they are disjoint.
This means that both events cannot occur at the same time. For instance, it cannot both rain and
not rain on a particular day.
Disjoint events with positive probability can never be independent, since

P(AB) = P(∅) = 0,

while P(A) > 0 and P(B) > 0 imply that P(A)P(B) > 0.
If two events A and B are disjoint

P(A ∪B) = P(A) + P(B).

Independent means that knowing that one event occurred does not change the probability that
the other event occurred. So

P(AB) = P(A)P(B|A) = P(A)P(B).

Our shorthand is that the probability function turns the union of disjoint sets into a sum. It turns
the intersection of independent sets into a product. Note that this is similar (but not exactly the
same) as how unions and intersections work with indicator functions:

1(A ∪B) = 1(1(A) + 1(B) > 0), 1(AB) = 1(A)1(B).
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Problems

6.1 Suppose P(A|B) = 0.3 and P(B) = 0.8. What is P(AB)?

6.2 The chance of rain on Tuesday is 40%. Given that it rains on Tuesday, the chance of rain
onWednesday is 50%. What is the chance that it rains on both Tuesday andWednesday?

6.3 Suppose P(A) = 0.3 and P(B) = 0.5, and we know thatA andB are independent. What
is P(A|B)?

6.4 SupposeA andB are independent with P(A) = 0.35 and P(B) = 0.21. What is P(A|B)?

6.5 Let X ∼ Unif({1, 2, 3, 4, 5, 6}).

a) What is P(X = 5|X ≥ 3)?
b) What is P(X = 5|X ≥ 6)?

6.6 The chance of being diagnosed with non-Hodgkin lymphoma in a year is approximately
0.000194. What is the chance that two friends (assuming independence) being diagnosed
with lymphoma in the same year?

6.7 Let X ∼ Unif(Ω), where Ω is a finite set. Let A ⊆ Ω. Let Y have the same distribution
as X conditioned on X ∈ A. Prove that Y ∼ Unif(A).

6.8 Suppose that (U1, U2) is uniform over [0, 1]× [0, 1]. Find

P(U1 ≥ 0.5|U1 ≥ 3U2).

6.9 A lab occasionally has small leaks of chemicals in the experimental space. Each leak is
independent of the others and has a 90% chance of being benign, and a 10% chance of
being toxic. The lab director has two drones at her disposal. The first drone can detect
whether or not any toxic leaks are in the lab. The second drone can count the number of
leaks present in the lab.
The drones are sent in: the first reports that yes, there is at least one toxic leak in the lab.
The second drone reports there are exactly three leaks in the lab.
Conditioned on this information, what is the chance that there is exactly one toxic leak,
and two benign leaks?

6.10 Suppose P(X ∈ A) = 0.2, P(X ∈ B) = 0.7, P(X ∈ C) = 0.4, and P(X ∈ AC) = 0.15.
What is P(X ∈ A|X ∈ C)?

6.11 For U ∼ Unif([2, 10], what is P(U ≤ 3|U ≤ 5)?

6.12 Let X1, X2, X3 be iid Unif({1, 2, . . . , 6}). Let R = min{X1, X2, X3}. What is P(R =
6|R ≥ 3)?
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Binomials and Bayes’ Rule

Question of the Day Let p denote a chance that an experiment is a success. Initially,
say that p ∼ Unif({0, 0.1, 0.2, . . . , 0.8, 0.9, 1}. The experiment is conducted indepen-
dently six times, with the result that there were two successes and four failures. What
is the new distribution of p given this information?

Summary The binomial distribution (write N ∼ Bin(n, p)) is the number of
successful experiments when n independent experiments with probability of success
p are conducted. For i ∈ {0, 1, . . . , n},

P(N = i) =

(
n

i

)
pi(1− p)n−i,

where
(
n
i

)
(read n choose i) is n!/[i!(n− i)!].

Bayes’ Rule is a way of turning around conditional probabilities. It says that as long
as A and B are events with probability greater than 0,

P(A|B) =
P(B|A)P(A)

P(B)
.

In the question of the day, an experiment is being run independently multiple times. The number
of successes N in such a situation is said to have a binomial distribution. Once we understand the
binomial distribution, we will understand what [N |p] is, that is, the distribution of N given p.
But in the qotd, we want the reverse, we want to know [p|N ]. Bayes’ Rule uses the conditional

probability formula to accomplish this turnaround, and gives us a methodical way of handling such
problems.

7.1 The Binomial distribution

To understand the binomial distribution, start with a concrete example.

43
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Example 15
Suppose p = 0.4, and N is the number of times that an experiment that is run indepen-
dently 6 times is a success. What is P(N = 4)?.

Answer Consider a sequence of experiments with 4 successes. For example, SSFSFS is
such a sequence. This particular sequence (by independence) has chance

p · p · (1− p) · p · (1− p) · p = p4(1− p)2

chance of happening. Note that we put a factor of p every time there is a success, and a
factor of 1− p every time there is a failure.

Every sequence with 4 S’s and 2 F’s will have chance p4(1− p)2 chance of occurring.
How many such sequences are there? Well, the first F could appear in the first spot,
which leaves 5 places for the second F. Or it could be in the second spot, leaving 4 places
for the second F. Adding up all the possibilities gives 5 + 4 + 3 + 2 + 1 = 15 places.
Hence the total probability is

15(0.4)4(0.6)2 = 0.13824 ≈ 0.1382 .

We can generalize this to obtain the binomial distribution.

Definition 21
Suppose that an experiment with probability p of success is repeated independently n
times. If N is the number of successes, say that N has the binomial distribution with
parameters n and p. Write N ∼ Bin(n, p).

The term binomial comes from the binomial coefficients
(
n
i

)
.

Definition 22
The binomial coefficient

(
n
i

)
(read n choose i) is the number of sequences in {S, F}n

that have exactly i components labeled S.

Fact 17
The formula for the binomial coefficient is(

n

i

)
=

n!

i!(n− i)!
.

In Example 15 earlier, we needed
(
6
4

)
= 6!/[4!2!] = 6 · 5/[1 · 2] = 15 which we found directly,

so at least the formula works in that case!

Proof. Consider the number of permutations of {1, 2, . . . , n}. This is a sequence in {1, . . . , n}n
where each component has a different label. A permutation can be found by first choosing which
of n elements is first, leaving n− 1 elements, and so on down to 1. So the number of permutations
is n · (n− 1) · (n− 2) · · · 1 = n!.

Or we could have chosenwhich spots the elements {1, . . . , i} go in, then permuted these elements
in i! ways, and then permuted the remaining elements in (n− i)! ways. These both count the same
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thing, so they are equal, and

n! =

(
n

i

)
· i! · (n− i)!.

Rearranging the terms completes the proof.

Fact 18
For N ∼ Bin(n, p) and i ∈ {0, 1, . . . , n}

P(N = i) =

(
n

i

)
pi(1− p)n−i

where
(
n
i

)
is the number of sequences in {S, F}n with i components labeled S.

Proof. Let i ∈ {0, 1, . . . , n}. Then every sequence with i S’s will have n− i F ’s, and so will have
probability pi(1− p)n−i by independence. The number of such sequences is

(
n
i

)
by definition.

So for the question of the day, we now know how to calculate the distribution of N given p. But
can we do the reverse? Can we calculate p given N? That’s what Bayes’ Rule is all about

7.2 Bayes’ Rule

Bayes’ Rule (or Bayes’ Theorem or Bayes’ formula) tells us how to “flip” conditional probabilities
around.

Theorem 1 (Bayes’ Rule)
Suppose A and B are events where P(A) and P(B) are both greater than 0. Then

P(A|B) = P(B|A) · P(A)

P(B)
.

Proof. Note that
P(AB) = P(A)P(B|A) = P(B)P(A|B).

Dividing both sides by P(B) gives the result.

Armed with Bayes’ Rule, we are now ready to take on the qotd.

Qotd We are given that [N |p] ∼ Bin(6, p), and want to find [p|N = 2]. Let Ω =
n{0, 0.1, . . . , 0.9, 1}. Then since p ∈ Ω with probability 1, even conditioned on N = 2, p will still
be in Ω. So want we want to find is

P(p = α|N = 2)

for all α ∈ Ω

Using Bayes’ Rule gives

P(p = α|N = 2) =
P(N = 2|p = α)P(p = α)

P(N = 2)
=

(
6
2

)
α2(1− α)4(1/11)1(α ∈ Ω)

P(N = 2)

= Cα4(1− α)21(α ∈ Ω).
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So now all we need to do is find C . To do this, note that from the total probability rule,∑
a∈Ω

P(p = α|N = 2) =
∑
a∈Ω

Cα2(1− α)4 = 1

so solving for C gives

C =

[∑
a∈Ω

α2(1− α)4

]−1

.

If the size of Ω is small, this can be done by hand. Here #(Ω) = 11, so the following R code
does the work for us.

alpha <- seq(0, 1, by = 0.1)
print(alpha^2 * (1 - alpha)^4)
C = 1 / sum(alpha^2 * (1 - alpha)^4)
print(C * alpha^2 * (1 - alpha)^4)

The result is given in the following table. The second column is the unnormalized probabilities
for p given N = 2. The third column is the second column divided by the sum of the entries in
the second column to make sure that the entries sum to 1. The third column is the answer to the
question.

α α2(1− α)4 P(p = α|N = 2)

0 0 0
0.1 0.006561 0.06891
0.2 0.016384 0.1720
0.3 0.21609 0.2269
0.4 0.020736 0.2178
0.5 0.015625 0.1641
0.6 0.009216 0.09680
0.7 0.003969 0.04168
0.8 0.001024 0.01075
0.9 .000081 0.0.0008507
1 0 0

sum 0.0925 1

7.3 Variants of Bayes’ Rule

In using P(X ∈ A|Y ∈ B) = P(Y ∈ B,X ∈ A)P(X ∈ A)/P(Y ∈ B), it is often helpful to
break B into two disjoint sets, B = ACB + AB. Then we get the following variant of Bayes’
Rule:

Fact 19
Suppose A and B are events with P(A), P(AC), and P(B) all positive. Then

P(A|B) =
P(B|A)P(A)

P(B|A)P(A) + P(B|AC)P(AC)
.
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Example 16
Students who study for an exam (which they do with probability 30%) are 95% likely to
pass. Students who do not study are only 80% likely to pass. Given that a student passes,
what is the chance that they studied?

Answer Let S be the event that they study, and P be the event that they pass. Then

P(S|P ) =
P(P |S)P(S)

P(P |S)P(S) + P(P |SC)P(SC)

=
(0.95)(0.3)

(0.95)(0.3) + (0.8)(0.7)
≈ 33.72% .

Because the studying does not change the passing rate much in a relative sense, it does not affect
the conditional probability much. Now suppose that we consider not just passing, but who gets an
A on the exam.

Example 17
Students who study for an exam (which they do with probability 30%) are 60% likely to
get an A. Students who do not study are are only 10% likely to get an A. Given that a
student gets an A, what is the chance that they studied?

Answer Let S be the event that they study, and A the event that they get an A on the
exam. Then

P(S|A) =
P(A|S)P(S)

P(A|S)P(S) + P(A|SC)P(SC)

=
(0.6)(0.3)

(0.6)(0.3) + (0.1)(0.7)
≈ 72% .

The set {A,AC} form what is called a partition of the set Ω.

Definition 23
Sets A1, . . . , An partition Ω if they are disjoint and their union is Ω.

Fact 20
For a partition A1, . . . , An of Ω and any event B,

P(B) =
n∑

i=1

P(B|Ai)P(Ai).

Proof. Note that

B = B ∩ Ω = B ∩ (A1 ∪A2 ∪ · · · ∪An) = (B ∩A1) ∪ · · · ∪ (B ∩An).

Since the Ai are disjoint, the events B ∩Ai are also disjoint. Hence

P(B) = P(B ∩A1) + · · ·+ P(B ∩An).
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Now we can use the conditional probability formula on each of these to say

P(B ∩Ai) = P(Ai)P(B|Ai).

The result follows.

Problems

7.1 Suppose X ∼ Bin(10, 0.2). What is P(X ≥ 2)?

7.2 Suppose X ∼ Bin(10, 0.23). What is P(X ≤ 2)?

7.3 a) What is 5 choose 2?
b) How many ways are there to arrange the letters AABBB?

7.4 Each letter in a DNA sequence is equally likely to be from {A,G,C, T}. What is the
chance that exactly 10 out of 40 letters in a sequence are A?

7.5 How many sequences using letters F and S are of length 10 and have exactly 8 S letters?

7.6 Consider the number of sequences of 10 letters using F and S that have exactly 8 S
letters. The sequence must start with either an F or an S.

a) If it starts with an F , then the remaining 9 letters must have exactly 8 S letters.
How many ways can this happen?

b) If the sequence starts with an S, then the remaining 9 letters must have exactly 7 S
letters. How many ways can this happen?

c) Add the results from the last two parts to find the total number of 10 letter sequences
with exactly 8 S letters.

7.7 Suppose N ∼ Bin(10, 0.3). What is P(N = 8)?

7.8 A drug trial has 18 participants, each of which is expected (independently) to be a success
with probability 0.2. What is that chance that one or zero participants achieves success?

7.9 Suppose that [X|N ] ∼ Unif({1, 2, 3, . . . , N}) and N ∼ Unif({1, 2, 3, 4, 5, 6}). What is

P(N = 3|X = 2)?

7.10 Dimer Pharmaceuticals creates 3 types of drugs for a particular illness. The first is
effective in 50% of patients, the second in 37%, and the third in 5%.

a) If a patient is equally likely to receive any of the three drugs, what is the probability
that the drug is effective on their illness?

b) If the drug is effective for the patient, what is the probability that the drug was of
the third type.

c) If the first drug is given to 300 people, approximate the probability that it is effective
for exactly 145 people using Stirling’s formula.
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7.11 Autotomic Industries produces two types of pain relievers that here we will call A and
B for simplicity. Type A relieves pain in 40% of patients, while type B relieves pain in
20% of patients.
A patient takes one of the painkillers (they do not know which type) and relieves their
pain. What is the chance that they used type A?

7.12 Archytas Manufacturing has four factories for their new laptops. Each laptop manufac-
tured has a small chance of failure. Factory 1 has a 0.03% chance of failure, Factory 2
has a 0.02% chance, Factory 3 has a 0.07% chance, and Factory 4 has a 0.01% chance.

a) If a laptop is equally likely to come from each of the four factories, what is the
overall chance that it is defective?

b) In a laptop is defective, what is the chance that it came from Factory 1?
c) Investigation reveals that the defective laptop came from Factory 1 or 2. Now what

is the probability that it came from Factory 1?

7.13 Bets on red and black on a roulette table pay even odds, which means if you bet x dollars
and win, you get back your x dollar bet plus x more dollars. If you lose, then you lose
your x dollar bet.
Suppose you repeatedly bet the same amount of money on red at a roulette table for
twenty spins of the wheel. On an American Roulette wheel there are 18 out of 38 spaces
that are red, and the ball is equally likely to land in any of the spaces.

a) Find the probability that at the end of the twenty games you are ahead (so you have
more money than when you started.)

b) Find the probability that at the end of the twenty games you are behind (so you
have less money than when you started.)

c) Find the probability that at the end of the twenty games you have broken even.

7.14 The Happy Eyes LASIK medical center owns three machines for performing surgery. Use
of the first machine in surgery results in a successful operation with 95% of patients, the
second is successful 97% of the time, and the third machine results in successful surgery
99% of the time.
Incoming patients are randomly assigned a machine for surgery: 50% have their surgery
done on the first machine, while 20% have it done on the second, and 30% on the third.

a) Given that the surgery is not a success for a patient, what is the chance that it was
done using the first machine?

b) Given that the surgery is not a success, and either the first or second machine was
used, what is the chance that it was the second machine that was used?

7.15 A psychology experiment is trying to determine if soothing music played before an
exam increases test scores by 10% or more. They believe that there is a 40% chance that
playing the music will improve the score. If their hypothesis is valid, and they run the
experiment on 20 students, what is the chance that at least 10 show improvement?
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Densities for continuous random variables

Question of the Day Suppose T ∼ Exp(3). Find the density (pdf) and cumulative
distribution function (cdf) of T .

Summary Some random variables have a probability density function, also known as
the density or the pdf. A discrete random variable X has density f with respect to
counting measure if for all countable sets A

P(X ∈ A) =
∑
a∈A

f(a).

A continuous random variable X has density with respect to Lebesgue measure f if
for all measurable A,

P(X ∈ A) =

∫
a∈A

f(a) dA.

For both discrete and continuous random variables, the cumulative density function,
or cdf is defined as

FX(a) = P(X ≤ a).

8.1 Differentials

When dealing with continuous random variables, it will be helpful to have the notion of a differential.
Intuitively, given a random variable t, the differential of t, written dt, is an infinitesimally small
change in the value of the variable t.

Differentials can be used both for setting up derivatives and setting up integrals. The derivative
of a function f that maps the variable x to the variable y is often written

f ′(x) =
dy

dx
,

indicating that the derivative is the small chance in y resulting from a small change in x. We can
write the small change in y is

dy = f(x+ dx)− f(x),

making

f ′(x) =
f(x+ dx)− f(x)

dx
.

51



52 CHAPTER 8. DENSITIES FOR CONTINUOUS RANDOM VARIABLES

This type of equation above is an informal way of thinking about derivatives. There are several
ways to make this thinking precise, one way is to use limits, in which case

f ′(x) = lim
h→0

f(x+ h)− f(x)

h
.

Here h which is approaching zero is a stand in for dx, the infinitesimally small change in x.
For the integral application, the differential will also mean a small interval or set that surrounds

t. That is, use dt to refer to an interval around the variable t that is infinitesimally small.

t

dt

With this, we can create the notion of a differential rectangle that measures the area under a
curve g(t) that lies in the differential interval dt about t.

t

g(t)

The area of the differential rectangle will be g(t) dt since the height is g(t) and the width is dt.
To find the total area under the curve from a to b, we have to sum up the area under all the

differential rectangles. This is called integration (integral means whole, and we want the whole
area) and is represented by a stretched out S for sum:

area =
∫ b

t=a
g(t) dt.

a b

g(t)

8.2 Differentials and probability

Write P(X ∈ dt) to indicate the probability that the random variableX falls into this infinitesimally
small set dt around t.
Then to find P(X ∈ A), integrate P(X ∈ dt) for t ∈ A.

Example 18
Suppose P(X ∈ dx) = 3x21(x ∈ [0, 1]) dx. Find P(X ∈ [0.4, 0.6]).

Answer This gives rise to the integral

P(X ∈ [0.4, 0.6]) =

∫ 0.6

x=0.4
3x21(x ∈ [0, 1]) dx = x3|0.60.4 = 0.1520 .
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In the example, note that
P(X ∈ dt)

dt
= 3x21(x ∈ [0, 1])

forms a type of derivative. This is a generalization of the derivative called a Radon-Nikodym
derivative, or as it is more commonly known, a density.

Of course, the total probability rule must still be true, so integrating a density overR = (−∞,∞)
should give you 1.

Example 19
Suppose P(X ∈ dx) = C exp(−2x)1(x ≥ 0) dx. What is C?

Answer Here

P(X ∈ R) =
∫
R
C exp(−2x)1(x ≥ 0) dx

=

∫ ∞

x=0
C exp(−2x) dx

= C exp(−2x)/(−2)|∞0
= C/2.

So C/2 = 1, and C = 2 .

Definition 24
Say that fX is the density (a.k.a. probability density function or pdf) of continuous
random variable X if for all measurable events A,

P(X ∈ A) =

∫
s∈A

f(s) ds.

Remark Perhaps the most common confusion in probability is between the terms density and
distribution. The distribution of a random variable is a function PX that maps an event A into
P(X ∈ A). That is to say, PX(A) = P(X ∈ A). The density of X is a different function f that
can be used to calculate the distribution using integration, but they are definitely not the same
function!

Confusing the density and the distribution is like confusing the integrand, which is the function
f(s) being integrated, and the integral, which is

∫
A f(s) ds. This distinction becomes important

later on in statistics, where the distribution is the statistical model while the density is the likelihood.

8.3 The cdf and densities

Recall that the cumulative distribution function, or cdf, of a random variable Y is

cdfY (a) = FY (a) = P(Y ≤ a).
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Fact 21
IfX is a continuous random variable, then the cdf ofX , FX , is differentiable at all but a
countable number of places. Furthermore, if

fX(x) = F ′
X(x)

everywhere FX(x) is differentiable, then fX(x) is a density for the random variable X .

The fact that FX(x) is differentiable in all but a countable number of places is an advanced fact
from real analysis. Another advanced fact is that if P(X ∈ A) = P(Y ∈ A) for all sets A of the
form (−∞, a], thenX and Y have the same distribution. This is known as Caratheodory’s Theorem.
With these two ideas, the fact can be shown.

Proof. Let A = (−∞, a]. Then

P(X ∈ A) = FX(x) =

∫ a

−∞
F ′
X(x) dx =

∫
−∞

fX(x) dx.

Hence fX(x) is a density for a random variable whose probabilities on closed infinite intervals
matches that of X . Hence fX(x) is a density for X .

With this fact in hand, the question of the day can be answered! Recall that a random variable
X has the exponential distribution with parameter 3 if

X = −1

3
ln(U),

where U is uniform over [0, 1]. Since U ∈ (0, 1) with probability 1, ln(U) is negative, and so with
probability 1 X ≥ 0.
Hence cdfX(a) = P(X ≤ a) = 0 for all a ≤ 0. Now assume a > 0. Then

cdfX(a) = P(X ≤ a)

= P(−(1/3) ln(U) ≤ a)

= P(ln(U) ≥ −3a)

= P(U ≥ exp(−3a)),

which is 1− exp(−3a) since for a > 0 exp(−3a) ∈ (0, 1). That means that

cdfX(a) = [1− exp(−3a)]1(a ≥ 0) .

The graph of the cdf looks like

cdfX

1-1 0

1

Differentiating then gives the density

fX(a) = 3 exp(−3a)1(a ≥ 0).
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fX1-1 0

3

Remarks

• Since the cdf is P(X ∈ (−∞, a]) increases as a increases, the density (slope) of the cdf is
always nonnegative.

• The cdf is a probability is always lies between 0 and 1. However, the pdf is the derivative of
this function, and so might be larger than 1, as in our example.

• For a and b, statements like P(X ≤ a) and P(X ≥ b) are called tails of the distribution. The
probability of these tails has to go to 0 as a → −∞ and b → ∞. In terms of the cdf, this
means

lim
a→−∞

cdfX(a) = 0, lim
a→∞

cdfX(a) = 1.

• When you differentiate a function that has an indicator function as a function, the indicator
function can be brought outside of the derivative. That is because the derivative of the
constant 0 function is 0, and the derivative of the constant 1 function is 1 times the derivative
of the rest of the factors in the function.

• The function cdfX(a) = 3 exp(−3a)1(a ≥ 0) does not have a derivative at 0, as there is a
sharp bend in the function. That is okay: you can redefine (or define arbitrarily) the density
of a continuous random variable at a countable number of places without changing the
distribution of the function it represents. That is because∫ a

a
f(s) ds = 0

for any value of a.

• That means that the density of continuous random variables is not unique, there are an
infinite number of functions f that could be the density.

8.4 Normalizing densities

Suppose we only know a density up to a normalizing constant. For instance, suppose

fX(s) = Cs21(s ∈ [0, 1]).

Can we figure out what the constant C must be?
Yes! We use the following fact.
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Fact 22
For a continuous random variable X with density fX ,∫ ∞

−∞
fX(s) ds = 1.

Proof. Note ∫ ∞

−∞
fX(s) ds = P(X ∈ (−∞,∞) = 1.

Example 20
Suppose X has density fX(s) = Cs21(s ∈ [0, 1]). Find C .

Answer. Note

1 =

∫ ∞

−∞
Cs21(s ∈ [0, 1]) ds

= C

∫ 1

0
s2 ds

= C · s
3

3

∣∣∣∣1
0

= C/3.

Solving then gives C = 3 .

8.5 Scaling and shifting random variables

Often we need to move (shift) random variables and stretch (scale) them out to better model our
needs

Definition 25
For a random variable A, say that B = a+ bA has been shifted by a and scaled by b.

How does that affect the density? In a pretty straightforward fashion.

Fact 23
Let X have density fX(s) with respect to Lebesgue measure. Then for all a ̸= 0 and
b ∈ R,

faX+b(s) = |1/a|fX((s− b)/a).

Proof. Find the cdf of aX + b. First consider when a > 0.

cdfaX+b(s) = P(aX + b ≤ s) = P(X ≤ (s− b)/a) = cdfX((s− b)/a).

Differentiating then gives the result.
The case when a < 0 is similar.
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Problems

8.1 Suppose X =
√
U where U ∼ Unif([0, 1]). Find the density of X .

8.2 Suppose that X has density fX(s) = (x2/9)1(x ∈ [0, 3]).

a) Find P(X ∈ [0, 1]).
b) Find a valuem such that P(X ≤ m) = 0.5. (For continuous random variables, such

a valuem is called a median of the distribution of X or more simply a median of
X .)

8.3 Suppose fX(s) = exp(−s)[1− exp(−2)]−11(s ∈ [0, 2]).

a) What is P(X ≥ 1.1)?
b) What is P(X ≤ −0.5)?
c) Graph FX , the cdf of X .

8.4 The average weight of chickens (in kg) on a poultry farm is modeled as having density

f(s) = 25(x− 1.8)1(x ∈ [1.8, 2]) + 25(2.2− x)1(x ∈ [2, 2.2])

a) What is the probability that a chicken weighs more than 2.1 kilos?
b) What is the probability that a chicken weighs more than 2.5 kilos?

8.5 SupposeW has density fW (x) = 3x21[x ∈ [0, 1]). What is the density of Y = 3W +2?

8.6 Suppose U has distribution Unif([−1, 1]).

a) Find the density of U .
b) Find the density of −2U + 1.

8.7 Suppose X has density fX(x) = C/(1 + x2). What is C?

8.8 Suppose P(Y ∈ dy) = Cy exp(−2y)1(y ≥ 0) dy. What is C?

8.9 Suppose fT (t) = 2 exp(−2t)1(t ≥ 0). Find the density of 2T + 1.

8.10 Suppose fZ(z) = τ−1/2 exp(−z2/2). For σ > 0 and µ ∈ R, find the density of

µ+ σZ.

8.11 Let U ∼ Unif([−2, 2]).

a) Let T = U3. What is the density of T ?
b) Let V = U4. What is the density of V ?

8.12 Suppose U ∼ Unif([−τ/2, τ/2]) and X = arctan(U). Find the density of X .

8.13 Show that if T has an exponential distribution with rate λ, then ⌊T ⌋+ 1 has a geometric
distribution and find the parameter p of the geometric as a function of λ.

8.14 Show that if T has an exponential distribution with rate λ, and α > 0, then αT ∼
Exp(λ/α).
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Densities for discrete random variables

Question of the Day Suppose U ∼ Unif({1, 2, 3, 4}). Find the density and cumula-
tive distribution function of U .

Summary For a discrete random variable X , the density of X is fX(i) = P(X = i).
The density is given with respect to counting measure. However, while the density
of continuous random variables is called the probability density function or pdf, the
density of discrete random variable is often called the probability mass function or
pmf instead.
The cdf of X is defined in the same way as for continuous random variables:

cdfX(a) = FX(a) = P(X ≤ a).

The last section introduced the notion of a density that was a derivative of probability with
respect to Lebesgue measure. This applied to continuous random variables.

P(X ∈ ds)

ds
= fX(s).

What is the situation when the random variable is discrete?
Consider a concrete example. Suppose

P(X = 0) = 0.2, P(X = 1) = 0.3, P(X = 2) = 0.5. (9.1)

Now suppose we put a tiny infinitesimal interval around a point 2. Then no matter how small the
interval is, the chance that X falls in the interval is 0.5. So P(X ∈ ds) = 0.5 for s = 2.

Similarly, if s = 2.4, then for an infinitesimally small interval around 2.4, there is 0 chance that
X falls into the interval. In general, we have

P(X ∈ ds) = P(X = s).

What about ds? Well, ds only contains the point s in a discrete measure, and the counting
measure of {s} is exactly 1. Hence

P(X ∈ ds)

ds
=

P(X = s)

1
= P(X = s)

when we are working with discrete random variables.
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Definition 26
ForX a discrete random variable, the density (a.k.a. pdf or probability mass function
or pmf) is

fX(i) = P(X = i).

Note that for continuous random variables we only have the term probability density function,
or pdf for the density, but for discrete distributions it is also sometimes called the probability mass
function or pmf. This goes back to the view of 1 unit of probability as 1 unit of mass, say a kilogram
of clay. This mass is then broken up and spread out over the possible values attained by the random
variable.

For the random variable X defined in (9.1), the density will be

fX(i) = 0.21(X = 0) + 0.31(X = 1) + 0.51(X = 2).

In the Question of the Day, we can write the density of U ∼ Unif({1, 2, 3, 4}) as

fU (i) = (1/4)1(i ∈ {1, 2, 3, 4})

since all the probabilities are the same.

9.1 CDF for discrete random variables

The cdf for discrete random variables is defined in exactly the same way as for continuous ones:

cdfX(a) = FX(a) = P(X ≤ a).

The difference is that while the cdf of a continuous random variable is continuous, the cdf for a
discrete random variable has jumps.
Consider again U ∼ Unif({1, 2, 3, 4}). For a < 1, P(U ≤ a < 1) = 0, so the cdf stays flat at 0.

But when a = 1, P(U ≤ 1) = 1/4. There is a jump of size 1/4 at a = 0.
Then P(U ≤ 1.1) = P(U ≤ 1.5) = P(U ≤ 1.9999) = 1/4: the cdf stays flat until we hit a = 2,

at which point P(U ≤ 2) = (1/4) + (1/4) = 1/2. There is again a jump of size 1/4.
The graph looks as follows.

1

-1 0 1 2 3 4 5 6

The filled circle indicates what the function value is at a jump. So at 2, the filled circle is at height
0.5 and the empty circle is at height 0.25. Hence the function value at that point is 0.5.
If we have the cdf, how can we determine P(X = a)? Well, that is just the size of the jump in

the function at a. For continuous random variables, the cdf is continuous and so all the “jumps”
have size 0. In general, we can calculate this as follows.

Fact 24
For a random variable X with cdf FX ,

P(X = s) = FX(s)− lim
h→0

FX(s− |h|).
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Shifting and scaling work slightly differently for densities of discrete random vari-
ables.

Fact 25
Let X have density fX(s) with respect to counting measure. Then for all a ̸= 0 and
b ∈ R,

faX+b(s) = fX((s− b)/a).

Proof. Here

faX+b(s) = P(aX + b = s) = P(X = (s− b)/a) = fX((s− b)/a).

Note that there is no |1/a| factor as in the Lebesgue measure case.

9.2 The maximum function and cdf’s

Consider independent random variables X and Y with cdf functions FX and FY . What is the cdf
ofmax{X,Y }?
Consider a special case: for max{X,Y } ≤ 3, then both X and Y have to be at most 3. That

happens with probability equal to cdfX(3) cdfY (3). In other words, for the maximum operator,
the cdf is the product of the cdf’s of the individual random variables.

Fact 26
Suppose that X and Y are independent random variables. Then

cdfmax{X,Y }(a) = cdfX(a) cdfY (a).

What if we want to get a handle on minimums? In this case we use that

P(min{X,Y } > a) = P(X > a)P(Y > b).

Definition 27
The function SX(t) = P(X > t) is called the survival function for X .

It is called the survival function because if X measures the amount of time an object survives
before breaking down, SX(t) measures the probability the item lives longer than t time.

Fact 27
For independent random variables X and Y ,

Smin{X,Y }(t) = SX(t)SY (t).

9.3 Medians and Modes

Whether dealing with a continuous or discrete density, there are several places of interest in the
density.

For a random variableX , the median is a valuem such that P(X ≤ m) and P(X ≥ m) are both
at least 1/2.
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Definition 28
A random variableX has amedianm if P(X ≤ m) ≥ 1/2 and P(X ≥ m) ≥ 1/2. The
set ofm that are medians is themedian set.

Fact 28
If X has a continuous cdf function then the median set consists of solutions to
cdfX(m) = 1/2.

This leads to the following relationship to densities.

Fact 29
If X has density fX(s) with respect to µ, then any solution to∫ m

−∞
fX(s) dµ =

1

2
.

is a median.

Example 21
LetX ∼ Unif({1, 2, 3, 4, 5}. then 3 is the unique median ofX (here P(X ≥ 3) = 0.6 =
P(X ≤ 3).)
Let Y ∼ Unif({1, 2, 3, 4}) then any m ∈ [2, 3] is a median of Y .

Another place of interest for a density is the place where the density is as large as possible. This
is called a mode of the density.

Definition 29
The mode set of a density f(x) is argmax(f(x)). Elements of the mode set are called
modes.

In other words, the set of modes is the set of arguments x that make the function f(x) as large
as possible.

Example 22
Suppose X ∈ {1, 2, . . .} has density f(i) = (24/τ2)i−2. Find the mode.

Answer Since (24/τ2)i−2 is strictly decreasing for i ∈ {1, 2, . . .}, to find the mode
we must look for i as small as possible, which in this case makes the mode set {1} .

Now for a continuous example.
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Example 23
Find the mode(s) of f(x) = x exp(−x)1(x ≥ 0).

Answer When x < 0, f(x) = 0, so there are no modes there.

[x exp(−x)]′ = x′ exp(−x) + x[exp(−x)]′ = (1− x) exp(−x),

which has a unique solution at x = 1. Since f ′(x) < 0 for x > 1 and f ′(x) > 0 for
x < 1, this critical point is a global maximum over (0,∞), and the mode set is {1} .

Unfortunately, not all densities are differentiable everywhere. In fact, not all densities are
continuous everywhere!

Example 24
Find the mode of X where X ∼ Exp(λ).

Answer The density of X is λ exp(−λs)1(s ≥ 0). When s < 0, fX(s) = 0. For
s > 0, [fX(x)]′ = −λ2 exp(−λs) < 0. Hence fX(x) is decreasing on [0,∞), and
argmax fX(x) = {0} , and that is the only mode.

Note that if we change the density slightly to g(x) = λ exp(−λs)1(s > 0), the distribution is
unchanged. However, this density does not have a mode! At x = 0 we have g(0) = 0, but g(x)
gets larger and larger the closer we approach 0 from the right. So technically g does not have a
maximizing value, and so there is no mode for this density.

So unlike the mean or median of a random variable, the mode is not a function of the distribution,
but is a function of the density.

Problems

9.1 For X with density fX(i) = 0.31(i = 1) + 0.71(i = 4), what is P(X ≤ 2)?

9.2 Suppose fX(i) = 0.31(i = 2) + 0.21(i = 4) + 0.51(i = 5).

a) What is P(X ≥ 2.5)?
b) Graph the cdf of X .

9.3 Let U1 and U2 be iid Unif({1, 2, 3, 4}). Find the density of U1 + U2.

9.4 Let U1, U2, U3 be iid Unif({1, 2, 3, 4, 5, 6}), and X = max{U1, U2, U3}.

a) Find cdfF (a).
b) What is P(X = 4)?

9.5 Suppose X ∼ Unif({1, . . . , 10}. What is the mode set of X?

9.6 Suppose X has density

fX(i) = 0.31(i = 1) + 0.41(i = 7) + 0.31(i = 10).

Find the mode set of X .
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9.7 Suppose X has density x2 exp(−x)1(x ≥ 0). Find the mode(s) of X .

9.8 Suppose Y has density 105x2(1− x)41(x ∈ [0, 1]). Find the mode(s) of Y .

9.9 Suppose X ∼ Exp(1) and Y ∼ Exp(2) are independent.

a) Find the survival function of X .
b) Find the survival function of Y .
c) Find P(min(X,Y ) ≥ 2).

9.10 Let U1, U2, U3 be iid Unif([0, 1]). Find the cdf ofmin(U1, U2, U3).



Chapter 10

Mean of a random variable

Question of the DayWhat is the average value of a random variable that equals 2
with probability 0.3, 3 with probability 0.5, and 6 with probability 0.2?

Summary For some random variables, when you take the sample average of many
independent draws from the same distribution, it converges towards a real number
called the mean, average, expectation, or expected value of the random variable.
When X is discrete with density fX , the mean is defined to be

E[X] =
∑
a∈A

afX(a).

The Strong Law of Large Numbers states that for a random variable X where
E[|X|] < ∞,

P
(

lim
n→∞

X1 + · · ·+Xn

n
= E[X]

)
= 1.

Consider a random variable B that is Bern(p), so it equals 1 with probability p, and 0 otherwise.
Now let B1, B2, . . . be an iid stream of draws from B. Then consider the sample average of the

first n draws:
Sn =

B1 +B2 +B3 + · · ·+Bn

n
.

The sum B1 +B2 + · · ·+Bn counts the total number of 1’s in the first n draws. For instance,
1 + 0 + 0 + 1 + 0 = 2, since there are 2 ones in (1, 0, 0, 1, 0).

From our intuitive understanding of probability, it seems reasonable that this sample average
should converge to the value of p. One of the great breakthroughs in probability was when Jacob
Bernoulli proved in 1713 that this intuition is correct: Sn converges in some sense to p. This result
was so important that Bernoulli random variables are named in his honor. Today, we have an even
stronger version of his result.

Fact 30
For B1, B2, . . . an iid stream of Bern(p) random variables,

P
(

lim
n→∞

B1 +B2 + · · ·+Bn

n
= p

)
= 1.
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This idea can be used to define the expected value of a Bernoulli random variable.

Definition 30
The expected value (aka expectation aka mean aka average of B ∼ Bern(p) is
E[B] = p.

Mathematically, a limit is an example of a linear operator.

Definition 31
For a vector space V with scalars S, say that L is a linear operator if for all v, w ∈ V
and s, t ∈ S,

L(sv + tw) = sL(v) + tL(w).

Examples of linear operators include:

• Matrix-point multiplication Here vectors are points v ∈ Rn, and L(v) = Av for some
matrix A. Then for real values s, t and vectors v and w,

L(sv + tw) = A(sv + tw) = s(Av) + t(Aw) = sL(v) + tL(w).

• Differentiation Here the vectors are differentiable functions, the scalars are real numbers,
and

[sf + tg]′ = sf ′ + tg′.

• Integration Here vectors are integrable functions, scalars are real numbers, and∫
x∈A

[sf + tg](x) dx = s

∫
x∈A

f(x) dx+ t

∫
x∈A

g(x) dx.

• Limits of Sequences Here vectors are sequences, scalars are real numbers, and provided
{an} and {bn} are sequences with limits,

lim
n→∞

(san + tbn) = s lim
n→∞

an + t lim
n→∞

bn.

So suppose thatA ∼ Bern(p) andB ∼ Bern(q). SayA1, A2, . . . ∼ A are iid andB1, B2, . . . ∼ B
are iid. But for each i, Ai and Bi might not be independent of each other.
For instance, suppose U1, U2, . . . are iid Unif([0, 1]). Then if Ai = 1(Ui ≤ 0.2) then Ai ∼

Bern(0.2). If Bi = 1(Ui ≤ 0.3) then Bi ∼ Bern(0.3). However, Ai and Bi are not independent,
since if Ai = 1 then Bi must equal 1 as well.
Let Ci = Ai +Bi, and consider the limit of the sample averages of the Ci. Then

C1 + · · ·+ Cn

n
=

A1 +B1 +A2 +B2 + · · ·+An +Bn

n

=
A1 + · · ·+An

n
+

B1 + · · ·+Bn

n
.

Then if we take the limit as n approaches infinity,

limn → ∞C1 + · · ·+ Cn

n
= p+ q

with probability 1.
This establishes a useful fact about expected value that we will use over and over again: expected

value is also also a linear operator.
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Definition 32
Say that a random variable is integrable if it has a finite expected value.

Fact 31
Consider as vectors the set of integrable random variables, and let real numbers be
scalars. Then expected value is a linear operator.
Hence for any two random variables X and Y and scalars a and b,

E[aX + bY ] = aE[X] + bE[Y ].

For instance, this allows us to find the expected value of a binomial random variable.

Fact 32
For X ∼ Bin(n, p), E[X] = np.

Proof. Note for B1, . . . , Bn iid Bern(p),

B = B1 + · · ·+Bn ∼ Bin(n, p).

Taking the expectation of both sides gives

E[B] = E[B1] + · · ·+ E[Bn] = p+ · · ·+ p = np.

For the question of the day, to use our rule about Bernoulli random variables, we must write X
as the sum of indicator random variables. That is very easy to do!
For X ∈ {2, 3, 6},

X = 21(X = 2) + 31(X = 3) + 61(X = 6).

For instance, whenX = 3, we get 3 on the left hand side, and (2)(0) + (3)(1) + (6)(0) = 3 on the
right hand side. The X = 2 and X = 6 cases are similar.
Now take the expected value of both sides:

E[X] = 2E[1(X = 2)] + 3E[1(X = 3)] + 6E[1(X = 6)].

The mean of an indicator function is the probability that the indicator function equals 1. So for
instance, E[1(X = 2)] = P(X = 2) = 0.3.
Hence

E[X] = 2P(X = 2) + 3P(X = 3) + 6P(X = 6) = 2(0.3) + 3(0.5) + 6(0.2) = 3.3.

This procedure could be followed every time it is necessary to calculate an expected value. But
this idea can be easily generalized, and inspires our definition of expected value.

Definition 33
Suppose Ω satisfies

∑
x∈Ω P(X = x) = 1. Then the expected value (aka mean,

average, expectation) of X is

E[X] =
∑
x∈Ω

xP(X = x)

provided this limit exists.
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Notation 4
We can also write this as an integral with respect to counting measure.∑

x∈Ω
xP(X = x) =

∫
x∈Ω

xP(X ∈ x) d# =

∫
x∈Ω

xP(X ∈ dx).

The fact that the limit of the sample averages equals the expected value of the random variable
is called the Strong Law of Large Numbers.

Theorem 2 (Strong Law of Large Numbers)
Let X have finite expectation, and X1, X2, . . . ∼ X be an iid sequence. Then

P
(
X1 + · · ·+Xn

n
= E[X]

)
= 1.

Remarks:

• Nothing is said about how quickly the sample average converges to the expected value. It
could be very slow or very fast. We will learn more about this later when we study the
variance of a random variable.

• The convergence only happens with probability 1. This means that there do exist sequences
where the convergence does not happen. But the probability of any of these unusual sequences
happening is zero.

• For example, suppose we have a random variable X ∼ Unif({1, 2, 3, 4, 5, 6}). Consider an
iid sequence of die rolls X1, X2, . . . where Xi ∼ X for all i. One possible sequence of die
rolls is 1, 3, 1, 3, 1, 3, 1, 3, . . .. For this sequence, the sample average converges to 2 rather
than 3.5. But the chance of getting this particular sequence is 0. The SLLN says that when
you sum over all sequences where the sample average does not converge to 3.5, the total
probability of all those bad sequences is still 0.

10.1 Symmetry

Another useful property of means is that if the density is symmetric around a number, the mean of
the random variable equals that number.

Definition 34
A function f is symmetric aroundm if

(∀δ ∈ R)(f(m+ δ) = f(m− δ)).

For example, f(x) = (b− a+1)−11(x ∈ {a, a+1, . . . , b} is symmetric around (a+ b)/2. Note
that if (a+ b)/2 is an integer, then f(m+ δ) and f(m− δ) are both 1 if and only if δ is an integer
at most (b − a)/2. If (a + b)/2 is not an integer, then f(m + δ) and f(m − δ) are both 1 if and
only if δ = k/2 where k is an integer at most b− a.

Definition 35
A random variable is symmetric aroundm ifX and 2m−X (which is alsom−(X−m))
have the same distribution.
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Fact 33
If a random variableX has a density which is symmetric aroundm thenX is symmetric
aroundm.

Proof. We will show that they have the same cdf. Let a ∈ R. Then

P(X ≤ a) =
∑
s≤a

fX(s)

=
∑
s≤a

fX(s+m−m)

=
∑
s≤a

fX(m+ (s−m))

=
∑
s≤a

fX(m− (s−m)) by symmetry

=
∑
s≤a

fX(2m− s)

= P(2m−X ≤ a).

Now we can use linearity to show that an integrable symmetric random variable has mean equal
to the point of symmetry.

Fact 34
Let X be an integrable random variable symmetric aboutm. Then

E[X] = m.

Proof. By linearity

2m = E[2m] = E[X + 2m−X] = E[X] + E[2m−X].

Since X is symmetric, E[X] = E[2m−X]. Hence 2m = E[X] + E[X] ⇒ E[X] = m.

In particular, this gives the expected value for discrete uniforms.

Fact 35
For U ∼ Unif({a, a+ 1, . . . , b}), E[U ] = (a+ b)/2.

Note that this symmetry rule only works if the random variable is integrable. Consider R ∈
{. . . ,−2,−1} ∪ {1, 2, 3, . . .} where

P(R = i) = (3/π2)|i|−2.

Then the mean of R does not exist, even though R is symmetric about 0.

Problems

10.1 Given that P(Y = 2) = 0.4 and P(Y = −1) = 0.6, what is E[Y ]?
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10.2 Say that P(R = 0) = 0.3, P(R = 2) = 0.45 and P(R = 3) = 0.25. What is E[R]?

10.3 Suppose P(X = 2) = 0.3, P(X = 4) = 0.2 and P(X = 5) = 0.5. What is E[X]?

10.4 Let W have density

W = (1/10)1(i ∈ {1, 2, 3, 4}) + (2/10)1(i ∈ {5, 6, 7}).

What is E[W ]?

10.5 Suppose E[X] = 34. What is E[2X − 5]?

10.6 Let E[X] = 2. What is E[15− 5X]?

10.7 Say X ∼ Unif({−2,−1, 0, 1, 2}). What is E[X]?

10.8 Suppose P(X = 0) = 0.15, and P(X = 2) = 0.65, P(X = 7) = 0.2. What is E[X]?

10.9 Say E[R] = 3 and E[S] = 6. What is E[R− S]?

10.10 If E[Z1] = µ1 and E[Z2] = µ2, what is E[2Z1 + 4Z2]?

10.11 Suppose U1, U2, . . . ∼ Unif({1, 2, 3, 4}). Show that limn→∞(U1 + · · · + Un)/n = 2.5
with probability 1.

10.12 Suppose P(X = i) = (6/π2)i−2 for all i ∈ {1, 2, . . .}. Show that X is not integrable.



Chapter 11

Expected value of general random variables

Question of the Day Let T ∼ Exp(4.5). What is the average value of T , denoted
E[T ]?

Summary The expected value of a real valued function g of a real valued random
variable X is

E[g(X)] =

∫
a∈R

g(a)P(X ∈ da).

For X with density fX(s) with respect to Lebesgue measure, this means

E[g(X)] =

∫
a∈R

g(a)fX(a) da,

and if the density is with respect to counting measure,

E[g(X)] =
∑
a

g(a)fX(a).

Basic Monte Carlo algorithms operate by constructing a random variable whose
mean is the quantity of interest, then simulating that random variable multiple times
and averaging the result.

11.1 Integrals with respect to Lebesgue and counting measure

For a random variable X and event A,

P(X ∈ A) = E[1(X ∈ A)] =

∫
a∈Ω

1(a ∈ A)P(X ∈ da).

Note that in the E operator is a function of the random variable, namely, 1(X ∈ A). In the
integral, the function of the variable of integration a is the same function. This gives 1(a ∈ A)
inside the integral.

It turns out that this method of turning a mean into an integral applies to any other function as
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well! For instance,

E[X2] =

∫
a∈R

a2P(X ∈ da)

E[X] =

∫
a∈R

aP(X ∈ da)

E[sin(X)] =

∫
a∈R

sin(a)P(X ∈ da).

When X has density fX(a) with respect to counting measure, the integral turns into a sum:

E[g(X)] =

∫
a∈R

g(a)P(X ∈ da) =
∑
a

g(a)fX(a)

When X has density fX(a) with respect to Lebesgue measure, the integral acts like a regular
Riemann integral:

E[g(X)] =

∫
a∈R

g(a)P(X ∈ da) =

∫
a∈R

g(a)fX(a) da.

These rules are sometimes called The Law of the Unconscious Statistician because in creating the
integral, just replace the random variable X in the expectation by the variable of integration a in
the integral. So easy, it can be done while unconscious!

Theorem 3
Suppose X has density fX(s) with respect to Lebesgue measure. Then

E[g(X)] =

∫
s∈R

g(s)fX(s) ds.

If X is a discrete random variable with density fX(s) with respect to counting measure,

E[g(X)] =
∑
s

g(s)fX(s).

Definition 36
When E[g(X)] exists and is finite, call g(X) integrable.

Note that we always apply the function g to the dummy variable s, and not to the density
function. That always stays the same. Let’s look at some examples.
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Example 25
Suppose fX(s) = 12s2(1− s)1(s ∈ [0, 1]). Find E[X2].

Answer This is

E[X2] =

∫ ∞

−∞
s2 · 12s2(1− s)1(s ∈ [0, 1]) ds

=

∫ 1

0
12s4(1− s) ds

= 12[s5/5− s6/6]|10
= 12[1/5− 1/6] = 12/30 = 4/10 = 0.4000

This distribution comes from the Beta family. The specific parameters for this distribution are
parameters 3 and 2. The 3 is one more than the power of s, and the 2 is one more than the power
of 1− s in the density. Therefore, we can test the result in R using

results <- rbeta(10^6,3,2)
mean(results^2)

which returned 0.3997603 when I ran the code.

For discrete random variables, the same rule holds: just square the values, the density stays the
same.

Example 26
Suppose Y ∼ Unif({1, 2, 3, 4, 5, 6}). Find E[Y 2].

Answer This will be

E[Y ] = 12P(Y = 1) + 22P(Y = 2) + · · ·+ 62P(Y = 6)

= (1/6)[1 + 4 + 9 + 16 + 25 + 36]

= 91/6 = 15.16 .

We can test this in R with

results <- sample(1:6, 10^6, replace = TRUE)
mean(results^2)

which returned 15.1608 when I ran it.
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Example 27
Question of the day Let X ∼ Exp(4.5). Then X has density

fX(s) = 4.5 exp(−4.5s)1(s ≥ 0).

Hence the expected value of X is

E[X] =

∫
s∈R

s · 4.5 exp(−4.5s)1(s ≥ 0) ds

=

∫ ∞

s=0
s · 4.5 exp(−4.5s) ds

At this point we need to manufacture a derivative to slide over to get rid of the s:

E[X] =

∫
s∈R

s · [− exp(−4.5s)]′1(s ≥ 0) ds

=

∫ ∞

s=0
[−s exp(−4.5s)]′ − [s]′[− exp(−4.5s)] ds

= [−s exp(−4.5s)]|∞0 −
∫ ∞

s=0
− exp(−4.5s) ds

= lim
s→∞

−s exp(−4.5s)− 0− exp(−4.5s)/4.5|s0

Remember the general rule:

logarithms << polynomials << exponentials << factorials.

Here s is growing polynomially, and exp(−4.5s) = 1/ exp(4.5s) is decreasing expo-
nentially, so s exp(−4.5s) goes to 0 as s goes to infinity. L’Hopital’s Rule can also be
used to verify this fact.]
Hence

E[X] = 0− 0− (0− 1/4.5) = 0.2222 . . . .

11.2 Properties of continuous means

In Chapter 10, we noted the two most important properties of expected value.

• Linearity. For any random variables X and Y and real numbers a and b,

E[aX + bY ] = aE[X] + bE[Y ].

• Strong Law of Large Numbers. If X is integrable, and X1, X2, . . . are iid X , then

P
(
X1 + · · ·+Xn

n
→ E[X]

)
= 1.

Both of these properties hold for the expectation of g(X) as well.
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Example 28
Let X ∼ Exp(4.5) and Y ∼ Unif({1, 2, 3}). What is E[X + Y ]?

Answer Here E[X] = 2/9 and E[Y ] = (1/3)(1) + (1/3)(2) + (1/3)(3) = 6/3 = 2.
Hence

E[X + Y ] = E[X] + E[Y ] = 2/9 + 2 = 20/9 = 2.222 . . .

by linearity.

11.3 Applications of the SLLN

Consistent estimators in statistics Suppose that I have a stream of incoming data X1, X2, . . .
that I model as iid X where E[X] = θ. The value of θ is a parameter that I am trying to find. For
instance, I might have a model where

X1, X2, . . . ∼ Unif[0, 2θ].

The sample average

θ̂n =
X1 + · · ·+Xn

n

gives us a sequence of estimators of the parameter value θ.

Then we know by the SLLN that the sample average satisfies

lim
n→∞

θ̂n = θ

with probability 1.

When we have a sequence of estimators θ̂n that converge to the true value θ as the number of
data points goes to infinity, we say that the estimate is consistent, and this is a very good property
to have.

Monte Carlo In Monte Carlo simulation, to evaluate an integral, first it is necessary to build a
random variable X such that E[X] equals the value of the integral.
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Example 29
Construct a random variable such that E[X] = I , where

I =

∫ 1

0

√
x2.5 − ln(x) dx.

(Note that this function does not have an elementary antiderivative.)

Answer Since the region of integration is [0, 1], we can base our random variable off
of a uniform U ∼ Unif([0, 1]). Let

X = g(U) =
√

U2.5 − ln(U).

By the formula for expectation of a function of a random variable, this gives

E[X] = E[g(U)]

=

∫ ∞

−∞

√
u2.5 − ln(u)1(u ∈ [0, 1])

= I.

With this formula created, the following code gives an estimate of the value of I .
u <- runif(10^6)
> mean(sqrt(u^2.5 - log(u)))

This gave 1.095166 when I ran it, which is pretty close to the true answer of 1.0954.

Problems

11.1 For X with density 12s2(1− s)1(s ∈ [0, 1]), find E[X].

11.2 Let X ∼ Unif([3, 6]). Find E[X].

11.3 Suppose U1, U2, . . . ∼ Unif([0, 4]). Show that limn→∞(U1 + · · · + Un)/n = 2 with
probability 1.

11.4 Suppose T1, T2, . . . ∼ Exp(2). Show that

lim
n→∞

T1 + · · ·+ Tn

n
= 1/2

with probability 1.

11.5 For Z with density
fZ(z) = τ−1/2 exp(−z2/2),

verify using the integral that E[Z] = 0.

11.6 Let U = Unif([0, 1]). Then 1− U ∼ Unif([0, 1]) as well. Note that

E[U ] + E[1− U ] = E[U + 1− U ] = E[1] = 1.

Given that E[U ] = E[1− U ] (since they have the same distribution), what is E[U ]?
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11.7 Suppose P(X = −1) = 0.3 and P(X = 1) = 0.7. What is E[X2]?

11.8 Suppose Y = 1/U where U ∼ Unif([0, 1]). Show that Y is not integrable.

11.9 Let X have density s exp(−s2/2)1(s ≥ 0). Find E[X2].

11.10 Let U ∼ Unif([0, 1]). Find the expected value of
√
U .

11.11 Build a random variable W such that E[W ] = I , where

I =

∫ 1

−1
2x2 dx.

11.12 Build a random variable Y such that E[Y ] = I , where

I =

∫ 3

0
exp(−x2.5) dx.

11.13 For a random variable A, the mean absolute deviation of A is defined as

MAD(A) = E [|A− E[A]|] .

Let A ∼ Exp(λ). FindMAD(A).

11.14 For U ∼ Unif([0, 1]), findMAD(U).

11.15 Three zombies are chasing you. Each runs at a speed that is independent of the other,
and a continuous uniform between 6.0 and 11.0 miles per hour.

a) If you can run at 10.0 miles per hour, what is the chance that you will get away
from the zombies?

b) What is the expected speed of the fastest zombie?

11.16 Two birds are flying with speed (independently of each other) uniform between 21.1 and
32.3 mph. What is the expected speed of the faster bird?

11.17 Let U ∼ Unif([0, 2]).

a) Find the cdf of X = U3.
b) Find the density of X .
c) Find E[X].

11.18 For A ∼ Exp(2), find E[A3].

11.19 Suppose A ∼ Exp(3), so A has density

fA(s) = 3 exp(−3s)1(s ≥ 0).

The density of an exponential is the multiplicative inverse of the rate, so E[A] = 1/3.

a) What is E[2A− 1]?
b) What is E[exp(1.5A)]?
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c) What is the density of 2A− 1?

11.20 A random variable X has the Beta distribution with parameters a and b if it has density

fX(s) = sa−1(1− s)b−11(s ∈ [0, 1]).

a) For X Beta with parameters 3 and 1, find E[X].
b) Find E[3X + 6].
c) Find E[X2].
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Conditional Expectation

Question of the Day Suppose we have two random variables N and X such that
the distribution of X depends on the value of N . Specifically, N ∼ Unif({1, 2, 3, 4})
and [X|N ] ∼ Unif({1, 2, . . . , N}). That means E[X|N ] = (N + 1)/2. So then what
is E[X]?

Summary The conditional probability E[X|Y ] is the average of the random variable
X given the value of another random variable Y . The result is a function of Y .
If you then take the average of this function of Y over values of Y , we get back the
overall average value of X . This result, that

E[E[X|Y ]] = E[X],

is the Fundamental Theorem of Probability.
The Fundamental Theorem of Probability can be used to give us probability trees,
expectation trees, and the mean and variance of a geometric random variable.

12.1 Conditioning on a random variable

In the question of the day, we are not directly told the distribution of X . Instead, we are told that
the distribution of X given the value of another random variable N is uniform over the number 1
through N .

This information is enough to calculate the density of X . For example, consider the chance that
X equals 2. Since 1 ≤ X ≤ N , N must equal either 2, 3, or 4 for this to happen.
So we can break up the event:

P(X = 2) = P(X = 2, N = 2) + P(X = 2, N = 3) + P(X = 2, N = 4).

Each of these we can break down using conditional probability, so for example,

P(X = 2, N = 3) = P(N = 3)P(X = 2|N = 3) = (1/4)(1/3) = 1/12.

Combining gives

P(X = 2) =

(
1

4

)(
1

2

)
+

(
1

4

)(
1

3

)
+

(
1

4

)(
1

4

)
=

1

4

[
1

2
+

1

3
+

1

4

]
=

13

48
.
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Repeating for i ∈ {1, 2, 3, 4} gives the following density for X :

fX(i) =
25

48
1(i = 1) +

13

48
1(i = 2) +

7

48
1(i = 3) +

3

48
1(i = 4).

Now that we have a density, we can find the expected value:

E[X] = (1)
25

48
+ (2)

13

48
+ (3)

7

48
+ (4)

3

48
=

84

48
= 1.750 .

Okay, so we were able to handle this problem by direct computation, but this quickly becomes
very cumbersome. For instance, even if N is just Unif({1, 2, . . . , 6}), the amount of work almost
doubles.
For a faster method, consider finding E[X|N ]. What does this mean? This is the average value

of X given the value of N is fixed rather than a random variable. Normally N would be a random
variable, but here we are saying that the value of N is somehow known to us. In this case, we
can treat N as though it was just a regular variable. Then we know that E[X|N ] = (1 +N)/2,
because [X|N ] is a uniform draw from 1 up to N .
Note that for f(n) = (1 + n)/2, this says, that

E[X|N ] = f(N).

That is, the conditional expectation E[X|N ] is itself a function of N . And functions of random
variables are themselves random variables.

Intuition 4
The conditional expectation E[X|Y ] is a new random variable that equals g(Y ) for
some function g.

12.2 The Fundamental Theorem of Probability

Okay, so we can calculate E[X|N ] = (1 +N)/2, but how does that get us closer to what we want,
which is E[X]? Well, once we know how the average value of X depends on N , we can get rid of
the dependence on N by averaging over the different values of N . That is,

E[E[X|N ]] = E[X],

and in our problem

E[X] = E[(1 +N)/2] = (1 + E[N ])/2 = (1 + (1 + 4)/2)/2 = 1.75,

exactly as we found earlier!
This important result goes by several names, such as the law of total expectation. Since it is

fundamental to so much of probability, and includes the conditional probability formula as a special
case, we will refer to it here as the Fundamental Theorem of Probability or FTP.

Theorem 4 (Fundamental Theorem of Probability)
For random variables X and Y where E[X] and E[X|Y ] are always finite,

E[E[X|Y ]] = E[X].
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12.3 Expectation and Probability Trees

In the FTP, E[X] = E[E[X|Y ]]. The right hand side has an inner mean, E[X|Y ], and then an outer
mean that surrounds it. In the question of the day, it made sense to evaluate the inner mean first,
but sometimes it makes more sense to evaluate the outer mean first, then the inner mean. Consider
the following example.

Example 30
Suppose that when the economy does well (which happens with probability 0.3), the
average increase in a stock price is 20%. When the economy does moderately (chance
0.5), the average increase in stock prices is 5%, and when the economy does poorly
(chance 0.2), the average increase in stock prices is -10%. What is the average increase
in stock prices?

Answer From the FTP, we do not need to know the distribution of stock prices to
answer this question, the average change is enough! Let S ∈ {1, 2, 3} denote the state
of the economy (1=poor, 2=moderate, 3=well) and T the change in the stock. Then

E[T ] = E[E[T |S]] = E[T |S = 1]P(S = 1) + E[T |S = 2]P(S = 2)+

E[T |S = 3]P(S = 3)

= (0.2)(0.3) + (0.05)(0.5) + (−0.10)(0.2) = 0.065 = 6.500% .

This type of calculation can be represented graphically by using an expectation tree.

E[T ]

20%

5%

−10%

0.3

0.5

0.2

Along the three possible branches we put the probability of each branch. The sum of the weights
of the branches should always equal 1. At the end of each branch we put the expected value should
that branch occur.
Then to calculate the value of the expectation tree, multiply the weight of the branches times

the expectation at the end of the branch, and sum up the result (in this case 6.5%.)
Remember that E(1(X ∈ A)) = P(X ∈ A), that is, probabilities are a special case of ex-

pectations. When the FTP is applied to probabilities it often goes by the name the law of total
probability.

Fact 36 (Law of total probability)
Suppose A1, A2, . . . are disjoint events such that one is true with probability 1. Then

P(B) =
∞∑
i=1

P(B|Ai)P(Ai).
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Proof. Let T be a random variable that takes on values in {1, 2, . . .}. Specifically, let T = i if Ai is
true. Then by the FTP,

E[1(B)] = E[E[1(B)|T ]]

=
∞∑
i=1

E[1(B)|T = i]P(T = i)

=
∞∑
i=1

P(B|Ai)P(Ai).

Example 31
Continuing our earlier example, if the probability of event A depends on the value of S,
then

P(A) = P(A|S = 1)P(S = 1) + P(A|S = 2)P(S = 2) + P(A|S = 3)P(S = 3).

The graphical representation then becomes a probability tree.

P(A)

P(A|S = 1)

P(A|S = 2)

P(A|S = 3)

0.3

0.5

0.2

12.4 Mean of a geometric random variable

Recall that if U1, U2, . . . are iid Unif([0, 1]), then Bi = 1(Ui ≤ p) gives rise to an iid sequence
B1, B2, . . . of Bern(p) random variables.

Furthermore, if we letG be the smallest value of i such that Bi =, then we sayG has a geometric
distribution with parameter p.
Consider using the FTP to find E[G] by conditioning on B1.

Fact 37
For G ∼ Geo(p), E[G] = 1/p.

Proof. Consider the first Bernoulli random variable B1. If B1 = 1, then G = 1, but if B1 = 0, then
the distribution of G is the same as the one wasted draw plus a new geometric random variable.
That is,

[G|B1 = 0] ∼ 1 +G.

This statement can be checked directly:

P(G = i|B1 = 0) = P(G = i, B1 = 0)/P(B1 = 0)

= p(1− p)i−11(i > 1)/(1− p)

= p(1− p)i−21(i > 1)
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and

P(1 +G = i) = P(G = i− 1) = p(1− p)i−11(i− 1 > 0)

which are the same function.
Hence

E(G|B1 = 0) = E(1 +G) = 1 + E(G).

Putting that into the FTP gives:

E(G) = E(E(G|B1))

= E(G|B1 = 0)P(B1 = 0) + E(G|B1 = 1)P(B1 = 1)

= (1 + E(G))(1− p) + (1)(p).

Solving for E(G) then gives E(G) = 1/p.

12.5 Conditional probability formula

At the start of this chapter I said that the FTP generalizes the conditional probability formula. To
see that this is true, first note that

P(AB) = E(1(AB)) = E(1(A)1(B)).

Then by the FTP

P(AB) = E[E(1(A)1(B))|1(B))]

= E[1(A)1(B)|1(B) = 1]P(1(B) = 1) + E[1(A)1(B)|1(B) = 0]P(1(B) = 0)

= E[1(A)|1(B) = 1]P(B) + E[0|1(B) = 0]P(1(B) = 0)

= P(A|B)P(B),

which is the conditional probability formula!
Of course, the proof of the FTP utilizes the conditional probability formula, so this is just an

exercise to show that the FTP is a more general form.

Problems

12.1 Suppose that B1, B2 are iid Bern(0.3). Say P(N = 1) = 0.6 and P(N = 2) = 0.4.

a) Find the density of

S =
N∑
i=1

Bi.

b) Find E[S] using the density.
c) Find E[S] using the Fundamental Theorem of Probability.

12.2 Suppose I roll N ∼ Unif({1, 2}). Then I roll N dice independently and identically
distributed as Unif({1, 2, 3, 4, 5, 6}) and sum them to get S. That is

[S|N = 1] = X1, [S|N = 2] = X1 +X2.

Or more compactly,

[S|N ] =

N∑
i=1

Xi.

Here Xi ∼ Unif({1, 2, 3, 4, 5, 6})
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a) What is the probability S = 4?
b) What is the probability S = 7?
c) Find the density of S, fS(i) for i ∈ {1, 2, . . . , 12}.
d) Find E[S] from fS(i).
e) Find E[S] from the Fundamental Theorem of Probability.

12.3 A party has either low attendance (20% chance), medium attendance (40% chance) or
high attendance (40% chance). With low attendance the average revenue for the party is
−$300, with medium $500, and with high $1000.
Draw an expectation tree to calculate the average revenue from the party.

12.4 Lisa and Bart go spelunking in a cave, and unfortunately, soon get lost. Each time they
try to find the exit, they have a 20% chance of finding the exit in an hour, a 45% of
returning back to where they started after an hour, and a 35% of returning back to where
they started after three hours.

a) What is the chance that they find their way out after exactly four hours?
b) What is the chance that they find their way out after exactly eight hours?
c) What is the expected amount of time they spend in the cave?

12.5 Suppose the time until arrival of a customer (call it T ) is an exponential random variable
with rate parameter A (so [T |A] ∼ Exp(A).) A is a random variable that is uniform over
the interval [5, 10]. What is E[T ]?

12.6 The probability p of success for an experiment is modeled as uniform over [0.4, 0.5].
Then 27 independent trials of the experiment are run. What is the expected number of
successes?
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Joint densities

Question of the Day Suppose (X1, X2) has the joint density

f(X1,X2)(x1, x2) = exp(−x1 − x2)1(x1, x2 ≥ 0).

What is P((X1, X2) ∈ [0, 1]× [0, 2])?

Summary The word joint is used with densities that are two dimensional or higher.
Two dimensional densities are called bivariate. You find probabilities for bivariate
densities by using a two dimensional integral. So for A ⊆ R2:

P((X,Y ) ∈ A) =

∫
(x,y)∈A

fX,Y (x, y) dR2.

If f(x1, . . . , xn) is the density of X1, . . . , Xn, For (X,Y ) with a joint density, the
density of a particular Xi can be found by integrating out the other variables. For
bivariate random variables, this means

fX(x) =

∫
y∈R

f(X,Y )(x, y) dy, fY (y) =

∫
x∈R

f(X,Y )(x, y) dx.

For a measurable function g : R2 → R,

E[g(X1, X2)] =

∫
(s1,s2)∈R2

g(s1, s2)f(X1,X2)(s1, s2) dµ

Recall that fX is the density of X with respect to µ if we find probabilities by integrating with
respect to µ. That is,

P(X ∈ A) =

∫
x∈A

fX(x) dµ.

When µ is Lebesgue measure ℓ, we say that we have a continuous random variable and∫
x∈A

fX(x) dℓ =

∫
x∈A

fX(x) dx

85
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When µ is counting measure#, we say X is a discrete random variable, and

∫
x∈A

fX(x) d# =
∑
x∈A

fX(x).

Random variables in more than one (but still finite) dimension operate the same way. When you
integrate the density, though, you are doing it over a higher dimensional space.

In this chapter, we will concentrate on what happens when you have two random variables. We
call this situation bivariate.

Definition 37
A random variable that is a point in R2 is called bivariate.

Example 32
In the question of the day, (X1, X2) is a bivariate random variable.
If (U1, U2) ∼ Unif([0, 1]2), then U1 and U2 form a bivariate random variable.

Definition 38
For (X,Y ), say that fX,Y is the density of (X,Y ) with respect to µ if for all A ⊆ R2,

P((X,Y ) ∈ A) =

∫
(x,y)∈A

fX,Y (x, y) dµ.

Qotd For the question of the day, this works out as

P((X1, X2) ∈ [0, 1]× [0, 2]) =

∫
(x1,x2)∈[0,1]×[0,2]

fX1,X2(x1, x2) dR2.

Since the integrand is nonnegative, we can use Tonelli’s theorem to write it as an iterated integral.

P((X1, X2) ∈ [0, 1]× [0, 2]) =

∫
x1∈[0,1]

∫
x2∈[0,2]

exp(−x1 − x2)1(x1, x2 ≥ 0) dx2 dx1

=

∫
x1∈[0,1]

− exp(−x1 − x2)|20 dx1

=

∫
x1∈[0,1]

− exp(−x1 − 2)− (− exp(−x1)) dx1

= exp(−x1 − 2)− exp(−x1)|10
= exp(−3)− exp(−1)− (exp(−2)− exp(0)) ≈ 0.5465 .

When dealing with discrete random variables, this turns into a sum.
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Example 33
Let (X,Y ) have density fX,Y (x, y) = (1/37)(x2 + y) for x ∈ {1, 2, 3} and y ∈ {1, 2}.
What is P(Y = 1)?

Answer This is

P(Y = 1) = P((X,Y ) ∈ {(1, 1), (2, 1), (3, 1)}
= (1/37)[(1 + 1) + (4 + 1) + (9 + 1)] = 17/37 ≈ 0.4594 .

Note that this means (by complements) that P(Y = 2) = 20/37. Since these are the only two
options,

P(Y = 1) =
17

37
, P(Y = 2) =

20

37

completely describes the distribution of Y . When we calculate the distribution of one component
of jointly distributed random variables, that is called a marginal distribution.

Definition 39
For a random vector (X1, X2), the distribution of X1 or X2 is called a marginal distri-
bution.

You can find the marginal density for a particular variable by integrating out the dummy variable
for the other random variable.

Fact 38
Let (X,Y ) have density fX,Y with respect to µ× ν. Then

fX(x) =

∫
y∈R

fX,Y (x, y) dν, fy(y) =

∫
x∈R

fX,Y (x, y) dµ.

Proof. For fX to be a density of X , it must be true that for all measurable A,

P(X ∈ A) =

∫
A
fX(a) dµ.

Since P(Y ∈ R) = 1,

P(X ∈ A) = P(X ∈ A, Y ∈ R)

=

∫
x∈A

[∫
y∈R

fX,Y (x, y) dν

]
dµ

and so the piece inside the brackets satisfies the definition of a density of X . The argument for fY
is similar.
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Example 34
Let (X,Y ) have density fX,Y (x, y) = (1/37)(x2 + y) for x ∈ {1, 2, 3} and y ∈ {1, 2}.
What is the marginal distribution of X?

Answer For x ∈ {1, 2, 3},

fX(x) =
∑

y∈{1,2}

(1/37)(x2 + y) = (1/37)[(x2 + 1) + (x2 + 2)] =
2x2 + 3

37
.

13.1 Independence and joint densities

Independence means that the probability of multiple events factors into the product of each event.
In the same way, random variables have a joint density that is independent means that the density
factors into densities for each of the marginals.

Recall, that µ×ν is a product measure if for allA that is µmeasurable andB that is ν measurable,

(µ× ν)(A×B) = µ(A)× ν(B).

Our two most commonly used measures, counting measure and Lebesgue measure, use product
measure in higher dimensions. That is why the area of a rectangle is the product of the lengths of
the sides. For instance,

ℓ([0, 4]× [3, 5]) = ℓ([0, 4]) · ℓ([3, 5]) = 4 · 2 = 8.

If I pick a ball from a bag which contains one red, one green, and one blue balls, and then roll a
six sided die, the number of possible outcomes is

#({red, green, blue} × {1, 2, 3, 4, 5, 6}) = 3 · 6 = 18.

Fact 39
Suppose random variablesX and Y have a joint density with respect to product measure
µ× ν that factors into a piece that only involves one input and another piece that only
involves the other input. That is, it has the form

fX,Y (x, y) = fX(x)fY (y)

where fX is a density with respect to µ and fY is a density with respect to ν. Then fX
is a density of X , fY is a density of Y , and X and Y are independent random variables.

Proof. Let fX,Y = fX(x)fY (y). Then P(Y ∈ R) = 1, so for any µ measurable set A,

P(X ∈ A) = P(X ∈ A, Y ∈ R)

=

∫
x∈A

∫
y∈R

fX(x)fY (y) dν dµ

=

∫
x∈A

fX(x)

[∫
y∈R

fY (y) dν

]
dµ

=

∫
x∈A

fX(x) dµ.
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This is the definition of what it means for X to have density fX . The proof that fY must be the
density of Y is similar.
Now for independence. Let A be µ measurable and B be ν measurable. Then

P(X ∈ A, Y ∈ B) =

∫
x∈A

∫
y∈B

fX(x)fY (y) dν dµ

=

∫
x∈A

fX(x)

[∫
y∈B

fY (y) dν

]
dµ

=

∫
x∈A

fX(x)P(Y ∈ B) dµ

= P(Y ∈ B)

∫
x∈A

fX(x) dµ

= P(Y ∈ B)P(X ∈ A),

so X and Y are independent.

Note that there are usually multiple choices of joint density for continuous random variables.
All that is needed is one joint density that factors for the variables to be independent.

The other direction holds as well.

Fact 40
Say X has density fX with respect to µ and Y has density fY with respect to ν are
independent random variables. Then (X,Y ) has as a joint density f(X,Y )(x, y) =
fX(x) · fY (y) with respect to µ× ν.

13.2 Means for joint densities

The expected value of a bivariate random vector is similar to that of a single valued random variable.

Definition 40
For (X,Y ) with density fX,Y with respect to µ, and a computable function g : R2 → R,

E[g(X,Y )] =

∫
x,y

g(x, y)fX,Y (x, y) dµ.

First a discrete example.

Example 35
Let (X,Y ) have density fX,Y (x, y) = (1/37)(x2 + y) for x ∈ {1, 2, 3} and y ∈ {1, 2}.
What is E[XY ]?

Answer Since these are discrete random variables, this will be a sum

3∑
x=1

2∑
y=1

xy[(1/37)(x2 + y)] =
138

37
= 3.729 . . . .

Let’s try a continuous example.
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Example 36
Suppose (X1, X2) has joint density

f(X1,X2)(x1, x2) = exp(−x1 − x2)1(x1, x2 ≥ 0).

Find E[X1X2].

Answer This integral will be

E[X1X2] =

∫
(x1,x2)∈R2

x1x2 exp(−x1 − x2)1(x1, x2 ≥ 0) dR2

=

∫
x1≥0,x2≥0

x1x2 exp(−x1 − x2) dR2

Over the limits of integration, the integrand is nonnegative, so iterated integrals can be
used to obtain

E[X1X2] =

∫
x1≥0

∫
x2≥0

x1x2 exp(−x1 − x2) dx2 dx1 = 1 .

Problems

13.1 Suppose (X,Y ) has density (1/60)(x+ 2y)1(x ∈ [0, 2], y ∈ [0, 5]).

a) Find the marginal density of X .
b) Find the marginal density of Y .
c) Find E[XY ].

13.2 Suppose (X,Y ) has density (x3 + y2)/150 for X ∈ {1, 2, 3} and Y ∈ {1, 2, 3}.

a) Find the marginal distribution of X .
b) Find E[XY ].

13.3 Suppose (X,Y ) has density

fX,Y (x, y) = (1/1260)x3y21(x ∈ {1, 2, 3})1(y ∈ {1, 3, 5}.

a) Prove that X and Y are independent.
b) What is P(X = 2)?

13.4 Suppose (X,Y ) has density

2
√
2

τ
exp(−x2 − 2y2).

Prove thatX and Y are independent. A fact about integrals that is useful for this problem
is that ∫ ∞

s=−∞
exp(−s2/2) ds =

√
τ .
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13.5 Suppose (X1, X2) = (7.314, 2.103). What are the order statistics?

13.6 For (Y1, Y2) = (2.3,−0.4, 1.6), what are the order statistics of the {Yi}?

13.7 Suppose (X1, X2) = (5.623, 5.623). What are the order statistics?

13.8 For (U1, U2) ∼ Unif([0, 1]2), what is P(U1 = U(1))?

13.9 Suppose the order statistics X(1) = 1.3 and X(2) = 3.4. What possible states could the
original vector (X1, X2) take on?





Chapter 14

Random variables as vectors

Question of the Day Let T ∼ Unif({1, 2, 3}. What is the standard deviation of T ?

Summary Vector spaces consist of vectors and scalars. Vectors add together to give a
new vector, and scalars multiply vectors to give a scaled vector. Inner products can be
used to give a norm on the vector space.
For an integrable random variable X , the centered version is Xc = X − E[X]. An
important vector space comes from the set of centered random variables. For this
vector space, the inner product is the mean of the product of the centered random
variables. This is called the covariance. The covariance of a random variable with
itself is the variance, the square root of that is the standard deviation.

Cov(X,Y ) = E[(X − E[X])(Y − E[Y ])] = E[XY ]− E[X]E[Y ]

V(X) = E[(X − E[X])2] = E[X2]− E[X]2

SD(X) =
√

V(X).

14.1 Vector spaces

A vector space consists of two types of objects: vectors and scalars. If I add two vectors together, I
get a new vector. If I multiply a scalar times a vector, I get a new vector as well.
The type of vectors that most people see first are vectors that measure displacement. These

spatial vectors consist of two points, a tail and a head. For instance, if the tail is (3, 2), and the head
is (6, 5), then the vector looks like this.

(3, 2)

(6, 5)

93
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We call (3, 2) the tail of the vector and (6, 5) the head of the vector. To add two spatial vectors,
just place the tail of one vector at the head of the second vector.

v

w

v + w

To scale a vector, we just change its length, and if the scale is negative, also reverse its direction.

v (1/2)v −v

Notice that it doesn’t matter where we draw the tail of the spatial vector. Because we are only
concerned with the difference between the head and the tail, it is as if the tail was always placed at
the origin (0, 0).
To turn random variables into vectors, we will do something similar. To center the random

variables, we will subtract the mean of the random variable.

Definition 41
For an integrable random variable X ,

Xc = X − E[X]

is the centered version of X .

The mean of a centered random variable is 0.

Fact 41
The centered version of an integrable random variable has mean 0.

Proof. Note E[X] is a constant, so

E[X − E[X]] = E[X]− E[X] = 0.

Note that if A and B are random variables with mean 0, then E[A + B] = E[A] + E[B] =
0 + 0 = 0. That means adding two vectors (centered random variables) gives a new vector.

Similarly, for any constant c, E[cA] = cE[A] = 0, so multiplying by a scalar also returns a vector.
Now to actually make sure that centered random variables form a vector space, we need to verify

all the rules of a vector space.
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Definition 42
A vector space is a set of vectors V together with a set of scalars S, and two operations
with the following properties.

1. There is vector addition, +, such that (∀v, w ∈ V )(v + w ∈ V ). This addition is
associative and commutative. There is a zero vector 0 such that (∀v ∈ V )(v+0 =
v). There exist inverses, so that (∀v ∈ V )(∃w ∈ V )(v + w = 0).

2. There is scalar multiplication, ·, such that (∀s ∈ S)(∀v ∈ V )(sv ∈ V ). This
multiplication has an identity element 1 ∈ S so that (∀v)(1v = v). Also (∀a, b ∈
S)(∀v ∈ V )((ab)v = a(bv)). It is distributive in two ways:

(∀a ∈ S)(∀v, w ∈ V )(a(v + w) = av + aw)

and
(∀a, b ∈ S)(∀v ∈ V )((a+ b)v = av + bv).

It is straightforward to verify that these rules do apply to our centered random variables.

14.2 Norms and Inner products

The norm of a vector measures the size of the vector. For spatial vectors, a commonly used norm is
the length of the vector. For centered random variable vectors, the norm is measuring the spread, a
numerical measure of uncertainty, in the variables. In general, a norm has to satisfy the following
rules.

Definition 43
A norm of a vector space takes as input a vector and returns a nonnegative real number.
Write the norm of v as ∥v∥. Then a norm must obey the following rules.

1. For any c ∈ R and vector v, ∥cv∥ = |c| ∥v∥ .

2. For any vectors v and w,

∥v + w∥ ≤ ∥v∥+ ∥w∥ .

3. For any vector v, ∥v∥ ≥ 0, and ∥v∥ only equals 0 if v is the zero vector.

For spatial vectors, the second property means that the length of a side of a triangle must be less
than the sum of the lengths of the other two sides, so this is also known as the triangle inequality.

The inner product between two vectors measures how “lined up” the two vectors are. It has the
usual properties that we associate with a product such as commutativity and distribution. Because
we are only using real numbers in this course, we will stick to the real definition. It is slightly
different for complex numbers.
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Definition 44
An inner product ⟨x, y⟩ maps vectors x, y to a real number while satisfying four
properties. (In these properties u, v and w are vectors, and α is a scalar.)

1. ⟨u+ v, w⟩ = ⟨u,w⟩+ ⟨v, w⟩.

2. ⟨αv,w⟩ = α⟨v, w⟩

3. ⟨v, w⟩ = ⟨w, v⟩

4. ⟨v, v⟩ ≥ 0 where equality holds if and only if v = 0.

When V = Rn, S = R, the usual inner product is the dot product defined for v = (v1, . . . , vn)
and w = (w1, . . . , wn) as

⟨v, w⟩ = v · w =
n∑

i=1

viwi.

For instance, (3, 2, 5) · (−1, 0, 2) = −3 + 0 + 10 = 7.
We can use any inner product to form a norm.

Fact 42
For an inner product, ⟨·, ·⟩, the function ∥v∥ = ⟨v, v⟩ is a norm.

Proof. The fourth property of inner products immediately gives the third property of norms.
To show the first property of norms, note

⟨cv, cv⟩ = c⟨v, cv⟩ = c⟨cv, v⟩ = c2⟨v, v⟩,

and taking the square root of both sides and using
√
c2 = |c| finishes the proof.

The second property of norms (the triangle inequality) is equivalent to a fact that we will discuss
later called the Cauchy-Schwartz inequality.

Definition 45
Call ∥v∥ =

√
⟨v, v⟩ an inner product norm.

For the dot product,

∥v∥ = (v · v)1/2 =

(∑
i=1

v2i

)1/2

.

This is the same as the Euclidean length or L2 norm of the vector.

14.3 Covariance, Variance, and Standard Deviation

So for our vector space of centered random variables, what should our inner product be? We use
something very simple, the mean of the product of the two random variables. We call this the
covariance. That is, the covariance (inner product) between two centered random variables is

Cov(Xc, Yc) = E[XcYc].

If the variables are not already centered, then center them before taking the inner product.
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Definition 46
The covariance of two integrable random variables X and Y is

Cov(X,Y ) = E[(X − E[X])(Y − E[Y ])].

when this mean exists.

Linearity of expectation gives a simplification of this expression.

Fact 43
For integrable random variables X and Y with XY integrable,

Cov(X,Y ) = E[XY ]− E[X]E[Y ].

So another way to view covariance is it measures how far away the mean of the product is from
the product of the means.

Proof. Note that

Cov(X,Y ) = E[(X − E[X])(Y − E[Y ])] = E[XY −XE[Y ]− E[X]Y + E[X]E[Y ].

Taking out the constants and using linearity gives

Cov(X,Y ) = E[XY ]− E[X]E[Y ]− E[X]E[Y ] + E[X]E[Y ]

and simplifying gives the result.

Fact 44
Covariance is an inner product.

Proof. Let Xc, Yc, and Wc be three centered random variables, and a ∈ R. Then the properties
tend to follow from linearity of expectations.

1. Distribution:

Cov(Xc + Yc,Wc) = E[(Xc + Yc)Wc] = E[XcWc + YcWc]

= E[XcWc] + E[YcWc] = Cov(Xc,Wc) + Cov(Yc,Wc).

2. Scaling:
Cov(aXc, Yc) = E[aXcYc] = aE[XcYc] = aCov(Xc, Yc).

3. Commutativity:

Cov(Xc, Yc) = E[XcYc] = E[YcXc] = Cov(Yc, Xc).

4. Self inner product
Cov(Xc, Xc) = E[X2

c ] ≥ 0

since X2
c ≥ 0.

Now assume E[X2
c ] = 0. For any ϵ > 0,

E[X2
c ] ≥ E[X2

c1(Xc > ϵ] ≥ E[ϵ21(|Xc| > ϵ)] = ϵ2P(|Xc| > ϵ)],

therefore for all ϵ > 0, P(|Xc| > ϵ) = 0, and P(Xc = 0) = 1.
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Because covariance is an inner product, that means that it gives us an inner product norm. This
norm is called the standard deviation. Recall the norm is the square root of the inner product of the
random variable with itself. In probability Cov(X,X) is called the variance of the random variable.

Definition 47
The variance of an integrable random variable X is V(X) = E[(X − E[X])2]. If
V(X) = ∞, then we can say that the random variable has infinite variance, or that the
variance does not exist.

Plugging X = Y into Cov(X,Y ) = E[XY ] − E[X]E[Y ] immediately gives the following
characterization of variance.

Fact 45
The variance of a random variable is E[X2]− E[X]2 when these expectations exist.

Then the inner product norm itself (the square root of the variance) is called the standard deviation

Definition 48
The standard deviation of a random variable with finite variance is the nonnegative
square root of the variance.

Fact 46
For a random variable X with finite variance and c ∈ R,

V(cX) = c2V(X).

Proof. V(cX) = Cov(cX, cX) = c · cCov(X,X) = c2V(X).

Because the standard deviation a norm, it is always nonnegative, and we have the following
scaling fact.

Fact 47
For X a random variable with finite variance and c ∈ R,

SD(cX) = |c|SD(X).

Proof. SD(cX) =
√
V(cX) =

√
c2V(X) = |c|

√
V(X) = |c| SD(X).
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Example 37
For the Question of the Day,

E[X2] = (1/3)(1)2 + (1/3)22 + (1/3)32 = 14/3,

and E[X] = (1 + 3)/2 = 2. Hence

V(X) = 14/3− 22 = 2/3 = 0.6666 . . . ,

and
SD(X) =

√
2/3 = 0.8164 . . . .

Problems

14.1 Let v = (−1,−1, 2) and w = (5, 2,−3).

a) What is v · w?
b) What is ∥v∥?

14.2 Suppose v · w = 4, v · y = 6, and v · v = 10.

a) What is v · (w + y)?
b) What is 3v · (−2w)?
c) What is

√
(3v) · (3v))?

14.3 Say X is discrete with density fX(1) = 0.7, fX(5) = 0.2, fX(10) = 0.1.

a) Find E[X].
b) Find SD[X].

14.4 Let Y have density

fY (i) = (1/4)1(i ∈ {3, 5}) + (1/6)1(i ∈ {7, 9, 11}).

a) Find E[Y ].
b) Find SD(Y ).

14.5 Suppose U ∼ Unif([0, 10]).

a) What is the centered random variable Uc as a function of U?
b) What is the variance of Uc?

14.6 Let T ∼ Exp(3.1). What is the standard deviation of T ?

14.7 Let (X,Y ) be uniform over

A = {(x, y) : x ≥ 0, y ≥ 0, x+ y ≤ 1}.

Find Cov(X,Y ).
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14.8 Suppose (X1, X2) have joint density f(X1,X2)(x1, x2) = (2/3)(x + 2y)1((x, y) ∈
[0, 1]2). What is Cov(X1, X2)?

14.9 True or false: a random variable with finite mean always has a finite standard deviation.

14.10 Let X1, X2, X3 be iid Unif({1, 2, . . . , 6}). Let S = inf{Xi}.

a) What is the expected value of S?
b) What is the variance of S?

14.11 For a random variable with finite mean µ, finite standard deviation σ, and finite third
moment E[X3], the skewness of the random variable is defined as

skew(X) = E
[
(X − µ)3

σ3

]
.

a) If X has skewness 3, what is the skewness of 2X?
b) What is the skewness of −2X?

14.12 For T ∼ Exp(1), find the skewness of T .

14.13 Find the skewness of U ∼ Unif([0, 1]).

14.14 Let Z ∼ N(0, 1). Find the skewness of Z .

14.15 Topper Building Co. suffers a number of delays that is uniform over {0, 1, 2, 3, 4}. Each
delay costs the builder an amount of time that is exponential with parameter 0.3 per
month. Find the expectation and variance of the total delay time.

14.16 SupposeX1, X2, X3 are iid uniform over {1, 2, . . . , 6} and S ∼ Unif({1, 2, 3}). Find the
variance of

S∑
i=1

Xi.
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Correlation

Question of the Day Suppose (X,Y ) is uniformly drawn from

Ω = {(0, 0), (0, 1), (0, 2), (1, 0), (1, 1)}.

What is the correlation between X and Y ?

Summary
The Cauchy-Schwarz inequality says that for any inner product and vectors x and y,

⟨x, y⟩2 ≤ ⟨x, x⟩ · ⟨y, y⟩.

For random variables X and Y such that XY , X2, and Y 2 are integrable, the corre-
lation between X and Y is

Cor(X,Y ) =
Cov(X,Y )

SD(X) SD(Y )
.

In the qotd, X and Y are not independent: if I condition on X = 0 then Y ∼ Unif({0, 1, 2}),
while if X = 1, then Y ∼ Unif({0, 1}). Or as another proof:

P(X = 1, Y = 1) = 1/5,

but
P(X = 1)P(Y = 1) = (2/5)(2/5) = 4/25 ̸= 1/5.

On the other hand, they are not completely dependent on each other. Knowing the value of X
does not completely determine Y , and knowing Y does not completely determine X . So we want
a way of describing in some sense just how dependent the random variables are on each other.

15.1 The Cauchy-Schwarz inequality

A very important fact about inner products and the inner product norm is the Cauchy-Schwartz
inequality.
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Theorem 5 (The Cauchy-Schwarz inequality)
For any inner product and vectors x and y:

⟨x, y⟩2 ≤ ⟨x, x⟩ · ⟨y, y⟩.

or expressed using the inner product norm:

|⟨x, y⟩| ≤ ∥x∥ · ∥y∥ .

Moreover, you only get inequality when there exists a scalar α such that x = αy or
y = αx.

The Cauchy-Schwarz inequality means that the value of the fraction

⟨v, w⟩
∥v∥ · ∥w∥

,

lies between −1 and 1. You may recall the following interesting geometric fact. If θ is the angle
between v, w ∈ Rn, then

cos(θ) =
⟨v, w⟩

∥v∥ · ∥w∥
,

So if this ratio on the right hand side is 1, then θ = 0 and the vectors are pointing in the same
direction. If the ratio is −1, then θ = τ/2, and the vectors are pointing in opposite directions. If
the ratio is 0, then θ = τ/4 or θ = −τ/4, and the vectors are perpendicular (orthogonal) to one
another.

15.2 Angles and correlation

It does not really make sense to talk about the angle between two random variables. However, we
still know from Cauchy-Schwartz that the ratio

Cov(X,Y )

SD(X) SD(Y )
∈ [−1, 1].

So we give this quantity a name, we call it the correlation between the two random variables.

Definition 49
ForX and Y such thatXY ,X2 and Y 2 are integrable, the correlation betweenX and
Y is

Cor(X,Y ) =
Cov(X,Y )

SD(X) SD(Y )
.

Fact 48
The correlation lies between −1 and 1.

Proof. From Fact 44, we know that covariance is an inner product. So it follows directly from the
Cauchy-Schwarz inequality.

Now let us answer the Question of the Day. To make the calculation, it is necessary to find the
values of E[X], E[Y ], E[XY ], E[X2], and E[Y 2]. Because these are discrete random variables, the
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expectations can be found using a sum.

E[X] =
1

5
[0 + 0 + 0 + 1 + 1] =

2

5

E[Y ] =
1

5
[0 + 1 + 2 + 0 + 1] =

4

5

E[XY ] =
1

5
[0 + 0 + 0 + 0 + 1] =

1

5

E[X2] =
1

5
[0 + 0 + 0 + 1 + 1] =

2

5

E[Y 2] =
1

5
[0 + 1 + 4 + 0 + 1] =

6

5

So

Cov(X,Y ) = E[XY ]− E[X]E[Y ] = (1/5)− (2/5)(4/5) = −3/25

V(X) = E[X2]− E[X]2 = (2/5)− (2/5)2 = 6/25

V(Y ) = E[Y 2]− E[Y ]2 = (6/5)− (4/5)2 = 14/25

Putting this together,

Cor(X,Y ) =
−3/25√

(6/25)(14/25)
=

−3√
84

≈ −0.3273

So X and Y are negatively correlated. That means that on average when one is large, the other
will be smaller than its average value.

15.3 Independence and correlation

When two random variables have correlation 0, we say that they are uncorrelated.

Definition 50
Two random variables X and Y are uncorrelated if their correlation exists and is 0.

If the correlation between two random variables X and Y is 0, that means that knowledge of
X does not change the average value of Y . However, that does not means that X and Y are
independent!
To see why, consider

(X,Y ) ∼ Unif({(1, 1), (1,−1), (−1, 2), (−1,−2)}).

Note that if X = 1 then E[Y |X = 1] = 0, and if X = −1 then E[Y |X = −1] = 0. So
knowledge of X does not change the average value of Y .
More directly:

Cov(X,Y ) = E[XY ]− E[X]E[Y ] = (1/4)[1− 1− 2 + 2]− (0)(0) = 0.

However, knowing that X = 1 means that Y ∈ {1,−1}, while if X = −1 then Y ∈ {2,−2},
so X and Y are not independent. Put another way

P(X = 1, Y = 1) = 1/4, but P(X = 1)P(Y = 1) = (1/2)(1/4) = 1/8.

So while is is not always true that uncorrelated random variables are independent, it is true is
that independent random variables are uncorrelated.
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Fact 49
If X and Y are independent and their correlation exists, then they are uncorrelated.

Proof. Suppose that X and Y with finite covariance have joint density fX,Y . Then

E[XY ] =

∫
fX,Y (x, y) dµ(x, y)

=

∫
x

∫
y
fX(x)fY (y) dµ(y) dµ(x) by Tonelli

=

∫
x
fX(x)

∫
y
fY (y) dµ(y) dµ(x)

=

∫
x
fX(x)E[Y ] dµ(x)

= E[X]E[Y ],

Hence Cov(X,Y ) = 0 are they are uncorrelated.

Problems

15.1 For (X,Y ) ∼ Unif({(0, 0), (0, 2), (1, 2)}), find the correlation between X and Y .

15.2 For (W,Z) uniform over {(0, 1), (1, 0), (2, 2)}, find the correlation betweenW and Z

15.3 For (A,B) with density

f(A,B)(a, b) = (2/3)(a+ 2b)1(a ∈ [0, 1])1(b ∈ [0, 1]),

find Cor(A,B).

15.4 For (X,Y ) with density fX,Y (x, y) = 2 exp(−x− 2y)1(x, y ≥ 0), Find Cor(X,Y ).

15.5 Consider random variables X and Y with joint density

f(X,Y )(x, y) = C exp(−x− xy − y)1(x ≥ 0, y ≥ 0).

a) Numerically find the covariance of X and Y ?
b) Numerically find is the correlation of X and Y ?

15.6 Let
f(X,Y )(r, s) =

1

C
· r + s

r
1(r ∈ [1, 2], s ∈ [0, 1]).

a) Find the value of C .
b) Find the density of Y .
c) Find Cor(X,Y ).
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Adding random variables together

Question of the Day Suppose X ∼ Unif([0, 1]) and Y ∼ Exp(4) are independent.
What is V[X + Y ]?

Summary For any random variable X and Y with finite variance and covariances,

V[X + Y ] = V[X] + V[Y ] + 2Cov(X,Y ).

For a finite set of random variables,

V

(
n∑

i=1

V(Xi)

)
=

n∑
i=1

V(Xi) + 2
∑
i<j

Cov(Xi, Xj).

In general, if X and Y have densities fX and fY with respect to µ, then fX+Y =
fX ∗ fY , where the ∗ is the convolution operator defined as

[f ∗ g](s) =
∫
x
f(x)g(s− x) dµ.

16.1 Variance of sums

Recall that
(a+ b)2 = a2 + b2 + 2ab.

This follows from distributive laws.
Because variance is just the inner product of a vector with itself (like the square of a number),

the same formula applies to two random variables.

Fact 50
Let X and Y have finite variance and covariance. Then

V(X + Y ) = V(X) + V(Y ) + 2Cov(X,Y ).
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Proof. Recall thatCov(X,Y ) is an inner product betweenX and Y . Inner products are distributive
and commutative, and variance is the covariance of a random variable with itself, so

V(X + Y ) = Cov(X + Y,X + Y )

= Cov(X,X) + Cov(X,Y ) + Cov(Y,X) + Cov(Y, Y )

= V(X) + V(Y ) + 2Cov(X,Y ).

This same argument can be extended to the sum of n random variables.

Fact 51
Let X1, . . . , Xn have finite variances and all pairs have finite covariances. Then

V

(
n∑

i=1

Xi

)
=

n∑
i=1

V(Xi) + 2
∑
i<j

Cov(Xi, Xj).

In particular, if X1, . . . , Xn are independent, then the variance of the sum is the sum of the
variances.

This is also known as the Pythagorean Theorem, because if two displacement vectors a and b
are at right angles, then a · b = 0, and

∥a+ b∥2 = (a+ b) · (a+ b) = a · a+ b · b+ 2 · 0 = ∥a∥2 + ∥b∥2 .

So the fact that for a right triangle, the length of the hypotenuse squared equals the sum of the
squares of the lengths of the other sides, is exactly the same as the fact that the variance of the
sum of uncorrelated random variables is the sum of the variances!

16.2 Standard deviation of sample averages

This property gives rise to the following result about sample averages of iid random vari-
ables.

Fact 52
Let X1, . . . , Xn ∼ X be iid random variables where X has finite variance, and

S =
X1 + · · ·+Xn

n
.

Then
SD(S) =

SD(X)√
n

.

Proof. Since each Xi ∼ X , SD(Xi) = SD(X) for all i. That means

V(S) =
1

n2
[V(X1) + · · ·+ V(Xn)] =

nV(X)

n2
=

V(X)

n
,

and taking the square root of both sides finishes the proof.
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16.3 Convolutions

Suppose X ∼ Unif({1, 2, 3}) and Y ∼ Unif({1, 2, 3, 4, 5, 6}). What is the distribution of X + Y ?
Well, we know that X + Y ∈ {2, 3, . . . , 9}, but how do we calculate the probabilities? We sum
over the states that lead to that chance.

For instance,

P(X + Y = 7) =
∑

i∈{1,2,3}

P(X = i)P(X + Y = 7|X = i)

=
∑

i∈{1,2,3}

P(X = i)P(Y = 7− i)

= (1/3)(1/6) + (1/3)(1/6) + (1/3)(1/6)

= 1/6 = 0.1666 . . . .

More generally, the following holds.

Fact 53
Let X and Y be independent and have density fX and fY with respect to µ. Then

fX+Y (s) =

∫
x
fX(x)fY (s− x) dµ(x) =

∫
y
fY (y)fX(s− y) dµ(y).

This integration operation is called the convolution of the densities.

Definition 51
The convolution of real valued functions f and g with respect to measure µ is

[f ∗ g](s) =
∫
x
f(x)g(s− x) dµ.
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Example 38
Suppose X ∼ Exp(2) and Y ∼ Exp(1) are independent. What is the density of X + Y ?

Answer The densities of X and Y are

fX(x) = 2 exp(−2x)1(x ≥ 0)

fY (y) = exp(−y)1(y ≥ 0)

So convolve to get the density of the sum:

fX+Y (s) =

∫
x
fX(x)fY (s− x) dx

=

∫
x
2 exp(−2x)1(x ≥ 0) exp(−(s− x))1(s− x ≥ 0) dx

If s < 0, then 1(x ≥ 0)1(x ≤ s) = 0, so assume s ≥ 0. Then

fX+Y (s) =

∫ s

x=0
2 exp(−s− x) dx

=
2

−1
exp(−s− x)|sx=0

= −2[exp(−2s)− exp(−s)].

Putting both cases for s together gives

fX+Y (s) = 2[exp(−s)− exp(−2s)]1(s ≥ 0).

More generally, if X and Y are not independent then to find the density of X + Y , we need the
joint density of X and Y .

Fact 54
Let X and Y have joint density fX,Y with respect to a product measure µ. Then

fX+Y (s) =

∫
x
fX,Y (x, s− x) dµ(x) =

∫
y
fX,Y (s− y, y) dµ(y).

Problems

16.1 Let A ∼ Unif([0, 1]) and B ∼ Unif([0, 2]) be independent. Find the density of A+B.

16.2 Suppose X ∼ Unif([0, 1]) and Y ∼ Exp(2). Find the density of X + Y .

16.3 SupposeX ∼ Unif({1, 2, 3}) and Y ∼ Unif({3, 5}) are independent. What is the density
of X + Y ?

16.4 Suppose X1 and X2 are iid Unif({1, 2, 3, 4}). Find the density of X + Y .
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16.5 SupposeR andG are discrete random variables whereR ∼ Bern(0.3) andG ∼ Geo(0.6).
So

fR(i) = (0.3)1(i = 1) + (0.7)1(i = 0), fG(i) = (0.6)(0.4)i−11(i ∈ {1, 2, . . .}.

Find the density of R+G.

16.6 SupposeX and Y are independent, discrete random variables with fX(1) = 0.2, fX(2) =
0.3 and fx(3) = 0.5, while fY (1) = 0.5, fy(2) = 0.1, fY (3) = 0.4. Find the density of
X + Y .





Chapter 17

The moment generating function

Question of the Day Suppose A1, . . . , A10 are iid uniform over {1, 2, 3}. What is
P(A1 + · · ·+A10 = 20)?

Summary
The generating function of a random variable X is

gfX(s) = E[sX ].

Themoment generating function of a random variable X is a function such that

mgfX(t) = E[exp(tX)].

The moment generating function of X suffices to define the distribution of X . For
X1, . . . , Xn independent,

mgfX1+···+Xn
(t) = mgfX1

(t)mgfX2
(t) · · ·mgfXn

(t).

In this chapter, we will learn about a new way to encode probability distributions. This method
does not use probabilities, but instead uses expected value in a particular way. The advantage of
this encoding is that if you know the encoding for a finite set of independent random variables, it
is easy to find the encoding for their sum.

17.1 Generating functions

Let’s start with a simple example. Suppose X and Y are independent random variables with
densities

fX(i) = 0.31(i = 1) + 0.31(i = 2) + 0.41(i = 3)

fY (i) = 0.51(i = 1) + 0.51(i = −1).

This means P(X ∈ {1, 2, 3}) = P(Y ∈ {−1, 1}) = 1. Consider the problem of finding
P(X + Y = 2). There are two ways that X and Y can sum to 2. Either X = 1 and Y = 1, or

111



112 CHAPTER 17. THE MOMENT GENERATING FUNCTION

X = 3 and Y = −1. So

P(X + Y = 2) = P(X = 1, Y = 1) + P(X = 3, Y = −1)

= P(X = 1)P(Y = 1) + P(X = 3)P(Y = −1)

= (0.3)(0.5) + (0.4)(0.5) = 0.35.

Now we consider an encoding for X and Y that tells us everything about the values they take
on and the probabilities that they take on those values. Make a polynomial expression in s. The
coefficient c of a term csi in the polynomial will be the probability that X = i. Then add all the
terms together.

SinceX = 1 with probability 0.3, I start with a term that reads 0.3s. The P(X = 2) = 0.3 gives
a 0.3s2 term, and the P(X = 3) = 0.4 gives a 0.4s3 term. Adding gives a polynomial function:

f(s) = 0.3s+ 0.3s2 + 0.4s3.

Note that this function completely describes the distribution of X .
We can do something similar for Y .

g(s) = 0.5s1 + 0.5s−1.

We restrict ourselves to s > 0 just to make sure everything is defined.
Now look at what happens when we multiply these two polynomials together:

f(s)g(s) = (0.3s+ 0.3s2 + 0.4s3)(0.5s+ 0.5s−1)

= (0.3)(0.5)s2 + (0.3)(0.5)s3 + (0.4)(0.5)s4 + (0.3)(0.5)s0 + (0.3)(0.5)s1 + (0.3)(0.5)s2

= 0.15s0 + 0.15s+ 0.35s1 + 0.15s2 + 0.15s3 + 0.2s4.

Now look at the coefficient of s2. That coefficient came from (0.3)(0.5) + (0.4)(0.5), since the
s1s1 term combined to give s2 and the s3s−1 term combined to give s2.

In other words, the multiplication of the encodings resulted in an s2 term that exactly replicated
how we found P(X + Y = 2). This is not a coincidence!
There is another way to describe how this polynomial was formed. If you sum the probability

that X = i times si for each i, this is just

E[sX ]

by our rule for the expectation of a function of X . The X is the exponent here because the value i
is in the exponent of s.

Definition 52
The generating function of a random variable X is gfX(s) = E[sX ].

First a simple fact.

Fact 55
For any random variable gfX(1) = 1.

Note in our example from earlier,

f(1) = 0.3 · 11 + 0.3 · 12 + 0.4 · 13 = 0.3 + 0.3 + 0.4,

so gfX(1) = 1 is just another way of stating that the sum of probabilities of a random variable
must add to 1.
Second, we have why generating functions are useful.
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Fact 56
Let X and Y be independent random variables. Then gfX+Y (s) = gfX(s) gfY (s).

Proof. SupposeX and Y are independent. Then for any s > 0, sX and sY are independent as well.
Hence

E[sX+Y ] = E[sXsY ]

= E[sX ]E[sY ],

and we are done!

Example 39
For the question of the day, since we are adding 10 iid copies of the random variable
together, we must multiply the generating function by itself ten times. That is

gfA1+···+A10
(s) = gfA1

(s) · · · gfA10
(s) = gfA(s)

10.

Using Wolfram Alpha to expand [(1/3)s+(1/3)s2+(1/3)s3)]10, we get something like

1

310
s30 +

10

310
s29 + · · ·+ 8953

310
s20 + · · ·+ 1

310
s10,

therefore the answer is 8953/310 = 0.1516 . . . .

17.2 Moment generating function

Since s > 0, we can say that s = et for some t. If we write the generating function as a function of
t instead of s, we have the moment generating function.

Definition 53
The moment generating function of a random variable X is mgfX(t) = E[exp(tX)]
for all values of t where this expected value exists.

Example 40
Suppose X has density

fX(i) = 0.21(i = 3) + 0.71(i = 6) + 0.11(i = 8).

What is the moment generating function of X?

Answer Here X ∈ {3, 6, 8}, so the moment generating function is

mgfX(t) = E[exp(tX)] =
∑

i∈{3,6,8}

exp(ti)fX(i)

= 0.2 exp(3t) + 0.7 exp(6t) + 0.1 exp(8t).

Note that outcomes now appear as coefficients of t inside the exponential functions, while the
probabilities remain as the coefficients outside of the exponential functions.
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Example 41
Suppose X has moment generating function

0.6 exp(−2t) + 0.4 exp(4t).

What is the density of X?

Answer To get this moment generating function, it must be that

fX(i) = 0.61(i = −2) + 0.41(i = 4).

Moment generating functions inherit the nice multiplicative property from generating func-
tions.

Fact 57
Suppose X and Y are independent with moment generating functions at t. Then

mgfX+Y (t) = mgfX(t)mgfY (t).

17.3 Moment generating functions for continuous random variables

The procedure for finding the moment generating function for a continuous random variable is
similar, although we will be using an integral rather than a sum.

Example 42
Find the moment generating function of U ∼ Unif([0, 1]).

Answer Since U is continuous, if t ̸= 0 this is

E[exp(tU)] =

∫
R
exp(ts)1(s ∈ [0, 1]) ds =

∫ 1

0
exp(ts) ds

=
1

t
exp(ts)|10 =

exp(t)− 1

t
.

if t = 0 the result is 1, making the overall answer

mgfU (t) =

{
t−1(et − 1) t ̸= 0

1 t = 0
.

Remark We had to write our answer differently for t ̸= 0 and t = 0. If we wanted to, we could
write this for both cases at the same time by using a Taylor series expansion. Recall

exp(t)− 1 = t+ t2/2! + · · · ,

so
exp(t)− 1

t
= 1 + t/2! + t2/3! + · · ·

which is defined for all t, including t = 0 (where it now clearly evaluates to 1).
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17.4 How to generate moments

So why is it called the moment generating function? Recall that the ith moment of a random
variable X is E[Xi]. The name moment comes from its use in physics.

Consider the case where

mgfX(t) = 0.2 exp(3t) + 0.7 exp(6t) + 0.1 exp(8t),

and we take the derivative with respect to t. For any constant k,

[exp(kt)]′ = k exp(kt),

so for themgf ,

[mgfX(t)]′ = (0.2)(3) exp(3t) + (0.7)(6) exp(6t) + (0.1)(8) exp(8t).

Now let’s plug in t = 0 so that exp(k(0)) = 1 for all k.
Then

[mgfX(t)]′|t=0 = (0.2)(3) + (0.7)(6) + (0.1)(8).

This is just how we find the expected value of X! We multiply the probability that it takes on
values times those values. So

[mgfX(t)]′|t=0 = E[X].

Suppose we took the derivative of [mgfX(t)]′. This gives

[mgfX(t)]′′ = (0.2)(3)2 exp(3t) + (0.7)(6)2 exp(6t) + (0.1)(8)2 exp(8t).

Again evaluating at t = 0 turns all the exponential factors to 1, so

[mgfX(t)]′′|t=0 = (0.2)(3)2 + (0.7)(6)2 + (0.1)(8)2 = E[X2].

Why is this happening? Well, suppose that we could bring a derivative inside of an expectation
operator. That would mean that

dE[exp(tX)]

dt
= E

[
d exp(tX)

dt

]
= E[X exp(tX)].

If we then plug in t = 0, we get E[X]. If we differentiate twice (and again assuming that we can
bring the derivative inside the expectation operator) we get

d2E[exp(tX)]

dt2
= E

[
d2 exp(tX)

dt2

]
= E[X2 exp(tX)].

This time if we plug in t = 0 we get E[X2], the second moment. This pattern continues.

Fact 58
SupposeX has a moment generating function defined for a nontrivial interval containing
t = 0. Then the ith derivative of the moment generating function of X evaluated at
t = 0 is E[Xi].

Our earlier illustration used a discrete random variable, but this also works perfectly well for
continuous distributions.
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Example 43
Use the moment generating function of U ∼ Unif([0, 1]) to find the mean and variance
of U .

Answer Recall that the Taylor series for the moment generating function is

mgfU (t) = 1 +
t

2!
+

t2

3!
+

t3

4!
+ · · · .

So if we differentiate once we get

[mgfU (t)]
′ =

1

2
+

2t

6
+

3t2

24
+ · · · .

Hence [mgfU (t)]
′|t=0 = 1/2 = E[U ] = 0.5000 .

Differentiating again gives

[mgfU (t)]
′′ =

2

6
+

6t

24
+ · · ·

so [mgfU (t)]
′′|t=0 = 1/3.

Hence the variance of U is (1/3)− (1/2)2 = 1/12 = V(U) = 0.08333 .

Note that if we use mgfU (t) = (exp(t)− 1)/t, then this is not defined at t = 0, but we can still
differentiate nearby and take the limit as t approaches 0. The derivative is

[mgfU (t)]
′ = [exp(t)− 1]′t−1 + (exp(t)− 1)[t−1]′

= t−1 exp(t)− t−2(exp(t)− 1)

=
t exp(t)− exp(t) + 1

t2
,

which has limit 1/2 as t → 0. (This can be checked by using L’Hopital’s rule twice.)

Problems

17.1 Suppose P(X = 1) = P(X = 2) = 0.5. What ismgfX(t)?

17.2 Find the moment generating function of X which has density

fX(i) = 0.251(i = 1) + 0.61(i = 2) + 0.151(i = 3).

17.3 Suppose X has moment generating function

mgfX(t) = 0.1 exp(10t) + 0.9 exp(−5t).

What is the density of X?

17.4 Prove using moment generating functions that if X ∼ Unif({0, 1, 2, . . . , n − 1}) and
Y ∼ Unif([0, 1]), then X + Y ∼ Unif([0, n]).

17.5 Let Z1, Z2, . . . , Zn be iid N(0, 1). Recall for Z ∼ N(0, 1), mgfZ(t) = exp(t2/2).
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a) What is the the moment generating function of Z1 + Z2?

b) What is the moment generating function of:

Z1 + · · ·+ Zn

n
.

c) What is the moment generating function of:

Z1 + · · ·+ Zn√
n

.

17.6 Let U1, U2, . . . , Un be iid Unif([0, 1]). Find the moment generating function of

U1 + · · ·+ Un√
n

.

17.7 Suppose that X has the following density:

fX(r) =
3

8
(r3 − 8r2 + 19r − 12)1(r ∈ [1, 3]).

a) Find the mode(s) of X .
b) Find the median(s) of X .
c) Find the mean of X .
d) Find E[etX ].

17.8 Suppose X is uniform over [5, 10]. What is the moment generating function of X?





Chapter 18

Normal random variables

Question of the Day Suppose Z1 and Z2 are iid standard normal random variables.
What is P(Z2 > (1/2)Z1)?

Summary The standard normal distribution has density with respect to Lebesgue
measure

fZ(x) =
1√
τ
exp(−x2/2).

Write Z ∼ N(0, 1), as this random variable has mean 0 and standard deviation 1.
For constants µ ∈ R and σ > 0, say µ+ σZ is a normal random variable with mean
µ and variance σ2, write µ+ σZ ∼ N(µ, σ2).

18.1 The normal distribution

The normal distribution was introduced by Gauss as a way of fitting errors in calculations. (His-
torically he used it in helping astronomers find the dwarf planet Ceres in the asteroid belt.) In its
modern form, the distribution is defined as follows.

Definition 54
Let Z have density

f(z) =
1√
τ
exp(−z2/2).

Then say Z has a standard normal distribution, write Z ∼ N(0, 1).
LetW = µ+σZ . Then sayW has a normal distribution orGaussian distribution

with parameters µ and σ. WriteW ∼ N(µ, σ2).

Fact 59
ForW ∼ N(µ, σ2), E[W ] = µ and SD(W ) = σ.

Some authors (particularly in the social sciences) have also dubbed this distribution the “bell-
shaped curve”. This is a truly terrible name for this distribution, as it applies equally (if not more)
to symmetric beta distributions and the Cauchy distribution. It pretty much betrays the user as
someone who only knows about normal distributions and not the other rich variety of densities
that exist in probability theory.

119
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Upon first glance at the density, one might wonder what the full circle constant τ = 6.2831 . . .
is doing there? Recall that τ = 2π, where π is the half circle constant. And why is τ inside a square
root sign?
To answer this mystery, we need to think about drawing two independent normals. Let

Z1, Z2 ∼ N(0, 1) be independent. Now consider transforming these Cartesian coordinates to
polar coordinates.
Recall that polar coordinates for a point (x, y) ∈ R2 use the distance from the origin r and the

angle counterclockwise from the horizontal axis in the right hand direction θ. This is one of those
things more easily seen with a picture:

r

(x, y)

θ

So how do we transform from rectangular to polar coordinates? We use the distance formula
and trigonometric rules to get

r = x2 + y2, θ = arctan(y/x).

For our random variables, we get

R = Z2
1 + Z2

2 , θ = arctan(Z2/Z1).

The next question to ask is what is the distribution of R and θ. Are they independent like Z1

and Z2? To answer this, we need one more key fact about the polar coordinate transform that you
learned when doing multivariate integrals.

dx dy = r dr dθ.
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Because Z1 and Z2 are independent,

P(Z1 ∈ dx, Z2 ∈ dy) = fZ1,Z2(x, y) dx dy =
1

τ
exp(−x2/2) exp(−y2/2) dx dy

=
1

τ
exp(−[x2 + y2]/2) dx dy

=
1

τ
exp(−r2/2) dx dy

=
1

τ
r exp(−r2/2) dr dθ

= P(R ∈ dr, θ ∈ dθ).

Notice that this factors into a piece that only depends on R, and a piece that only depends on θ.

P(R ∈ dr, θ ∈ dθ) =

[
1

τ
dθ

] [
r exp(−r2/2) dr

]
.

Because θ ∈ [0, τ ], this first factor is the density of a uniform over [0, τ ]. The second factor is a
bit weirder, with density fR(r) = r exp(−r2/2). The distribution which has this density is called
the Rayleigh distribution or a chi distribution with two degrees of freedom. A third way to think
about R is that R ∼

√
A where A ∼ Exp(1/2).

When the distribution of θ is uniform and independent of R, we call the distribution rotationally
symmetric.

Definition 55
A pair of random variables (X,Y ) is rotationally symmetric if when converted to
polar coordinates (R, θ), θ is Unif([0, τ ]) and is independent of R.

Note that if we add a fixed angle to θ, then it will still be uniform over [0, τ ] (recognizing that
angle s and s+ τ are the same angle.) In practice, this means that we can rotate the region as much
as we want in solving the problem.
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Example 44
Question of the Day: For Z1, Z2 ∼ N(0, 1) iid, what is the probability that Z2 >
(1/2)Z1?

Answer The region looks like

But by rotating it slightly, the region looks like

So
P(Z2 > (1/2)Z1) = P(Z2 > 0) = 1/2 = 0.5000 .

18.2 Scaling and shifting normals

Suppose N ∼ N(3, 22), and then we consider 3N . Well, we know that N = 3 + 2Z , where Z is a
standard normal. Hence

3N = 3(3 + 2Z) = 9 + 6Z.

Therefore,
3N ∼ N(9, 62).

Fact 60
Suppose N ∼ N(µ, σ2). Then a+ bN ∼ N(a+ bµ, (bσ)2).

Proof. Since N = µ+ σZ where Z is standard normal,

a+ bN = a+ b(µ+ σZ) = a+ bµ+ (bσ)Z,

and the result follows.

In other words, a shifted and scaled normal random variable is another shifted and scaled normal
random variable!
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18.3 Adding independent normal random variables

To understand what happens when we add normal random variables, it helps to know their moment
generating function.

Fact 61
The moment generating function of a standard normal random variable is exp(t2/2).

Proof. Recall thatmgfZ(t) = E[exp(tZ)], so

mgfZ(t) =

∫
z
exp(tz)τ−1/2 exp(−z2/2) dz

=

∫
z
exp(tz − z2/2)τ−1/2 dz

=

∫
z
exp(−(z2 − 2tz)/2)τ−1/2 dz

=

∫
z
exp(−(z2 − 2tz + t2 − t2)/2)τ−1/2 dz

=

∫
z
exp(−(z − t)2/2)τ−1/2 exp(−(−t2)/2) dz

= exp(t2/2)

∫
z
exp(−(t− z)2/2)τ−1/2 exp(t2/2) dz

= exp(t2/2).

Note that the last integral is 1 because it is just the integral over all z of a density of a N(−t, 1)
random variable, and densities always integrate to 1.

Fact 62
The moment generating function of N ∼ N(µ, σ2) is

mgfN (t) = exp[µt+ (σ2/2)t2].

Proof. Recall that for Z ∼ N(0, 1), µ+ σZ ∼ N ∼ N(µ, σ2). Hence

mgfN (t) = mgfµ+σZ(t)

= E[exp((µ+ σZ)t)]

= E[exp(µt) exp((σt)Z)]

= exp(µt)E[exp((σt)Z)]

= exp(µt) exp((σt)2/2)

= exp(µt+ (σ2/2)t2)

Fact 63
If Z1 and Z2 are iid normal random variables (N(0, 1)), then Z1 + Z2 ∼ N(0, 2).
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Proof. The moment generating function of Z1 + Z2 is just the product of the moment generating
functions. So

mgfZ1+Z2
(t) = exp(t2/2) exp(t2/2) = exp(2t2/2) = exp((

√
2t)2/2).

This is E[exp(
√
2Z1)]. In other words, it is the moment generating function of Z3 =

√
2Z1. By

the previous fact, this has distribution N(0, 2).

We can extend this to adding an arbitrary number of normal random variables.

Fact 64
For i ∈ {1, . . . , n}, suppose Xi ∼ N(µi, σ

2
i ) are independent. Then

n∑
i=1

Xi ∼ N

(
n∑

i=1

µi,

n∑
i=1

σ2
i

)
.

Problems

18.1 For Z a standard normal, find
P(Z ∈ [−2, 2]).

18.2 For Z1, Z2 iid N(0, 1), find P(Z1 ≤ −Z2).

18.3 The Digital Life conference draws a number of attendees each year that is normally
distributed with mean 59 000 and standard deviation 10 000. Independently, E3 draws a
number of attendees that is normally distributed with mean 75 000 and standard deviation
5 000.

a) Suppose I average the two numbers. What is the distribution of the average?
b) What is the chance that the average of the two conferences is greater than 70 000?
c) What is the distribution of the number attending Digital Life minus the number

attending E3?
d) What is the chance that more people attend Digital Life than E3?

18.4 Suppose A ∼ N(10, 9), B ∼ N(−5, 5), C ∼ N(7, 2) are independent. What is the
distributon of the average of the three random variables?

18.5 Suppose thatW1, . . . ,Wn are iid standard normal random variables. What is the distri-
bution ofW1 + · · ·+Wn?

18.6 Continuing the last problem, what is

P(W1 + · · ·+Wn ≥ 2
√
n)?
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The Central Limit Theorem

Question of the Day Let U1, . . . , U10 ∼ Unif([0, 1]) be iid. Approximate P(U1 +
· · ·+ U10 ≥ 6) using an normal approximation.

Summary Suppose that X1, X2, . . . are an iid sequence of random variables with
finite mean µ and variance σ2. Then the Central Limit Theorem says that

(∀a ∈ R)
(

lim
n→∞

P
(
X1 + · · ·+Xn − nµ

σ
√
n

≤ a

)
= P(Z ≤ a)

)
,

where Z ∼ N(0, 1).

As noted earlier, Gauss used the normal distribution to model errors in experiments. Why does
the normal distribution do so well? The answer lies in our additive property of moment generating
functions.

19.1 Standardizing a sum

Recall that if E[Xi] = µ and SD(Xi) = σ, then

S =
X1 − µ+X2 − µ+ · · ·+Xn − µ

σ
√
n

=
X1 + · · ·+Xn − nµ

σ
√
n

is a random variable with mean 0 and standard deviation 1.
Suppose that the Xi ∼ N(µ, σ2). Then from the previous chapter, we know that

X1 + · · ·+Xn ∼ N(nµ, nσ2),

so by the scaling properties of expectation and variance

X1 + · · ·+Xn − nµ

σ
√
n

∼ N(0, 1).

Consider the following process for a random variable X . Suppose that X1, . . . , Xn are iid with
the same distribution as X , and the Xi are totaled, their mean is subtracted, and then they are
divided by their standard deviation. The resulting random variable has a (possibly new) distribution.
So this process takes a distribution and returns a (possibly new) distribution. What the above

125
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calculation says that if a standard normal distribution is fed into this process, the output is still a
standard normal distribution. Mathematicians call this a fixed point.

Here is a simpler example of a fixed point for a process. Suppose that I consider that has input a
number x, and returns

f(x) = x− x2

2
+ 1.

Note that f(
√
2) =

√
2− 2

2 + 1 =
√
2. In other words,

√
2 is a fixed point for this process.

Now suppose I start with a value other than
√
2, like 1. Then f(1) = 1− 1/2 + 1 = 3/2. Then

f(3/2) = 3/2− 9/8 + 1 = 11/8, and f(11/8) = 183/128, and so on.

Then (183/128)2 = 33489/16384 = 2.044 . . ., so 183/128 must be very close to
√
2. In other

words, as we apply the function to x values over and over again, the result converges to the fixed
point, which is the square root of two.

You see this type of behavior in many places in mathematics, including attractors in differential
equation systems and the ergodic theorem in Markov chain theory. In many cases, applying a
process to a mathematical object causes the object to move closer to the fixed point of the process.

19.2 The CLT

This fixed point behavior for normals manifests itself in the following way. Start with a random
variable X with mean 0 and standard deviation 1. Then for X1, X2, . . . iid X ,

X1 +X2 + · · ·+Xn√
n

begins to look more and more like a standard normal the larger n gets.

What if X does not have mean 0 and standard deviation 1? Well, then standardize the random
variables by substracting off their mean and dividing by their standard deviation. This leads to an
important result in probability called the Central Limit Theorem or CLT.

Theorem 6 (Central Limit Theorem)
Let X be a random variable with finite mean µ and standard deviation σ. Then for any
a ∈ R,

lim
n→∞

P
(
X1 + · · ·+Xn − nµ

σ
√
n

≤ a

)
= P(Z ≤ a),

where Z is a standard normal random variable.

We can use this fact to approximate the probability that the sum of random variables is smaller
or larger than some number.
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Example 45
SupposeU1, . . . , U10 ∼ Unif([0, 1]). Approximate the probability thatU1+· · ·+U10 ≥ 7
using the CLT.

Answer In order to use the CLT, we first need to find µ = E[U ] and σ = SD(U). A
straightforward calculation gives us µ = 1/2 and σ = 1/

√
12. Remember that anything

you do to one side of an inequality you also have to do to the other side, so

P(U1 + · · ·+ U10 ≥ 7) = P

(
U1 + · · ·+ U10 − 10(1/2)√

1/12 ·
√
10

≥ 7− 10(1/2)√
1/12

√
10

)

≈ P

(
Z ≥ 7− 10(1/2)√

1/12
√
10

)

Using the pnorm command in R gives this last probability as 0.01422. . . .

How good is this approximation? That can be difficult to figure out. There is a result called the
Berry-Esseen Theorem, but despite years of improvements, it still is not very useful in practice.

Today the Central Limit Theorem is primarily used as a theoretical tool rather than a practical
method of estimating probabilities. There are much better ways using Monte Carlo methods to
get an estimate of the probabilities associated with sums. In the example above, a simple Monte
Carlo estimate of the true answer is 0.01364± 0.00004, so the normal approximation is not too
bad here. But for more complex problems, the CLT can give approximate values that are off by
orders of magnitude, so it really should only be used as a last resort.

Sometimes the normal distribution does show up in actual data, but it is pretty rare. Oustide of
very simple problems, most data sets look nothing like the normal distribution, and overreliance on
its use can be a serious problem in some discliplines. An example of this comes from mathematical
finance, where an over use of modeling using Gaussians is considered to have helped contribute to
the 2008 financial crisis.

19.3 Using the CLT with discrete random variables

As a theorem, The CLT applies equally well to discrete and continuous random variables.
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Example 46
Suppose D1, . . . , D20 have density

fD(i) = 0.71(i = −1) + 0.31(i = 1).

Estimate P(D1 + · · ·+D20 ≥ 0) using the CLT.

Answer Here the mean is

E[D] = 0.7(−1) + 0.3(1) = −0.4

and second moment is

E[D2] = 0.7(−1)2 + 0.3(1)2 = 1,

so SD(D) =
√

1− (−0.4)2 =
√
0.84. Hence

P(D1 + · · ·+D20 ≥ 0) = P
(
D1 + · · ·+D20 − 20(−0.4)√

20
√
0.84

≥ (0.4)(20)√
20 · 0.84

)
The probability a standard normal is least 0.4

√
20/0.84 can be found with

1 - pnorm(0.4 * sqrt(20 / 0.8)), which gives 0.02275 . . . .

If the above problem needed an exact solution, let N be the number of times that the Di = 1.
Then the number of times the Di are −1 is 20−N . Hence

D1 + · · ·+D20 = N(1) + (20−N)(−1)

and this is at least 0 when 2N − 20 ≥ 0 or N ≥ 10. Therfore this is the chance that a binomial
random variable with parameters 20 and 0.3 is at least 10, and 1 - pbinom(9, 20, 0.3)
returns a value of about 0.04796.
Next consider the following example:

P(X = 1) = 0.3,P(X = 2) = 0.2,P(X = 5) = 0.5.

Could the CLT be used to estimate the probability the sum of 10 iid copies of these random
variables are at least 25?

First find the mean
0.3(1) + 0.2(2) + 0.5(3) = 2.2,

and standard deviation

sqrt(0.3(1)2 + 0.2(2)2 + 0.5(3)2 − 2.22) = sqrt(0.76).

So the basic CLT estimate would be

P (X1 + · · ·+X10 ≥ 25) = P
(
X1 + · · ·+X10 − 10(2.2)

sqrt(10 · 5.6)
≥ 25− 10(2.2)

sqrt(10 · 0.76)

)
≈ P

(
Z ≥ 25− 10(2.2)

sqrt(10 · 5.6)
≥ 25− 10(2.2)

sqrt(10 · 0.76)

)
≈ 0.1382
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Not great, since the true answer is about 0.186. But, there is a way to do much better! The result
of summing up a bunch of integers will itself be an integer. And generally speaking, the area under
the normal of the interval [24.5, 25.5] will be better at estimating the probability that the random
variable is 25, then then interval [25, 26]. This leads to the use of the half-integer correction.

Definition 56
For random variables X1, X2, . . . , Xn, the half-integer correction to the CLT is the
following. For any integer a,

P(X1 + · · ·+Xn ≤ a) = P(X1 + · · ·+Xn ≤ a+ 1/2),

and
P(X1 + · · ·+Xn ≥ a) = P(X1 + · · ·+Xn ≤ a− 1/2),

Applying this to our example gives:

P (X1 + · · ·+X10 ≥ 25) = P (X1 + · · ·+X10 ≥ 24.5)

= P
(
X1 + · · ·+X10 − 10(2.2)

sqrt(10 · 5.6)
≥ 24.5− 10(2.2)

sqrt(10 · 0.76)

)
≈ P

(
Z ≥ 24.5− 10(2.2)

sqrt(10 · 5.6)
≥ 24.5− 10(2.2)

sqrt(10 · 0.76)

)
≈ 0.1822

which is much closer to the true answer.

Problems

19.1 Let D1, . . . , D8 be iid rolls of a fair eight-sided die. Approximate the probability that∑
Di ≥ 30 using the CLT.

19.2 Let A1, . . . , A10 be iid Exp(2). Approximate P(A1 + · · ·+A10 ≥ 7) using the CLT.

19.3 Suppose that R has density

fR(r) = 2r · 1(r ∈ [0, 1]).

a) What is the expected value of R?
b) What is the variance of R?
c) Say that R1, R2, . . . are independent random variables with the same distribution

as R. Using the CLT, approximately what is

P(R1 + · · ·+R100 ≥ 70)?

d) What is the expected value of R conditioned on R ∈ [0.3, 0.5]?

19.4 Suppose X has density

fX(x) = (3/4)x(2− x)1(x ∈ [0, 1]).

a) What is E[X]?
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b) What is SD(X)?
c) For X1, X2, . . . , X20, approximate with the CLT P(X1 + · · ·+X20 ≥ 13.4).

19.5 Let U1, U2, . . . , U12 be standard uniform random variables (so uniform over [0, 1].) Then
approximate

P(U1 + · · ·+ U12 < 7)

using the CLT.

19.6 Let R1, R2, . . . , R30 be uniform over {1, 2, 3, 4, 5, 6}. Approximate P(R1 + · · ·R30 <
100) using the CLT.



Chapter 20

The Bernoulli Process

Question of the Day Suppose that B1, . . . , B25 are independent identical trials that
are either 0 or 1, with P(Bi = 1) = 0.6. Let S = B1 + · · ·B20. What is P(S = 16)?

Summary
A Bernoulli random variable is either 1 (with probability p) or 0 (with probability
1− p. WriteX ∼ Bern(p). It represents the number of successes on a single trial that
can be considered either a success or a failure.
A Bernoulli process is a stream of random variables B1, B2, . . . that are iid Bern(p).
From the Bernoulli process, we can create binomial, geometric, and negative
binomial random variables. If you have n trials, then you can think of the number
of successes as the sum of n independent Bernoulli random variables. Call this
distributionBinomial, and writeX = X1+· · ·+Xn ∼ Bin(n, p). ForX ∼ Bin(n, p),

P(X = k) =

(
n

k

)
pk(1− p)n−k1(k ∈ {0, 1, . . . , n}).

20.1 The Bernoulli distribution

Suppose that I have an experiment that has two outcomes, either success or failure. I record
successes using a 1 and failures using a 0. Then a single experiment, a single 1 or 0 random variable,
is said to have a Bernoulli distribution

Definition 57
Say that X has a Bernoulli distribution with parameter p, and write X ∼ Bern(p) if

P(X = 1) = p, P(X = 0) = 1− p.

Remark Bernoulli random variables are also called indicator random variables, since if X =
1(Y ∈ A) for any random variable Y , X will also be either 0 or 1, and hence have a Bernoulli
distribution with p = P(Y ∈ A).

Fact 65
The mean of a Bernoulli random variable is p, and the variance is p(1− p).

131
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Proof. For B ∼ Bern(p), the mean is p(1) + (1− p)(0) = p, while the variance is

E[B2]− E[B]2 = p(1)1 + (1− p)(0)2 − p2 = p− p2 = p(1− p).

In general, any collection of random variables is called a stochastic process. For the first stochastic
process that we will study, all of the variables have the Bernoulli distribution.

Definition 58
If B1, B2, . . . ∼ Bern(p) are iid, call the {Bi} a Bernoulli process.

We have already seen another distribution based on the Bernoulli process, the binomial distribu-
tion.

Fact 66
Let B1, B2, . . . be a Bernoulli process with parameter p and n a positive integer. Then

Sn = B1 + · · ·+Bn ∼ Bin(n, p).

In the Question of the Day, each Bi ∼ Bern(0.6), and n = 20. Therefore S ∼ Bin(20, 0.6),
which means

P(S = 16) =

(
20

16

)
0.6160.44 ≈ 0.03499 .

Because the Bernoulli random variables are independent, the mean and variance of the random
variables add together. This immediately gives the following result.

Fact 67
Let B ∼ Bin(n, p). Then E[B] = np, V(B) = np(1− p).

20.2 The Geometric distribution

A Bernoulli process is a sequence of 0’s and 1’s. A typical run might look like

(B1, B2, . . .) = 000010000000110011100110011010111000010010010001 · · ·

Consider the positions in the sequence where there is a 1. There is a 1 at position 5, position 13,
position 14, and so on. The smallest numbered position that is 1 can be written using the infimum
function:

G = inf{i : Bi = 1}.
As stated earlier in the text, we call this random variable geometric with parameter p and write

G ∼ Geo(p).

Example 47
In the qotd, for G = inf{i : Bi = 1}, what is P(G = 4)?

Answer In order for G = 4, the sequence must start out 0001. Each 0 has probability
1− p of occurring, and the final 1 has probability p. In the qotd, p = 0.6, so the answer
is

(0.43)(0.6) = 0.03840 .
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Fact 68 (Geometric density)
A geometric random variable with parameter p has probability (1− p)i−1p of equaling
i for any positive integer i.

Remark There are two common definitions for the geometric random variable in practice. One
is what is given here, the other only counts the 0’s before the first one, so is equivalent to G− 1.
Be sure when you see geometric random variables, that you know which definition is in use!
Note that the Bernoulli process is memoryless. This leads to the following fact about geometric

random variables.

Fact 69
For G ∼ Geo(p), and a ∈ {1, 2, . . .}

[G|G > a] ∼ a+G.

In words, if we wait a tries without seeing a 1, the number of tries we need until the next 1 will
also be a geometric random variable.

Proof. This is shown by verifying that the densities are the same. Let a and i be positive integers.
Then

P(G = i|G > a) =
P(G = i, G > a)

G > a

= p(1− p)i−11(i > a)/(1− p)a

= p(1− p)i−a−11(i− a > 0).

Similarly,

P(a+G = i) = P(G = i− a) = p(1− p)i−a−11(i− a > 0).

Since the densities are the same, the distribution of the random variables are the same.

In particular,
[G|B1 = 0] ∼ [G|G > 1] ∼ 1 +G.

Earlier we used this with the Fundamental Theorem of Probability to show that E[G] = 1/p.

Example 48
A fair six sided die is thrown until a 4 shows up. What is the average number of throws
of the die needed?

Answer The number of throws will be geometrically distributed with parameter 1/6.
This is because that is the chance of a success, which in this case is when a 4 comes up.
Hence the expected number of throws is

1

1/6
= 6 .

Now for the variance of a geometric random variable.
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Fact 70
For G ∼ Geo(p), V(G) = (1− p)/p2.

Proof. By the FTP

E[G2] = E[E[G2|B1]]

= P(B1 = 1)E[G2|B1 = 1] + P(B1 = 0)E[G2|B1 = 0)

= pE[G2|B1 = 1] + (1− p)E[G2|B1 = 0]

= p+ (1− p)E[(1 +G)2]

= p+ (1− p)E[1 + 2G+G2]

= p+ (1− p) + 2(1− p)/p+ (1− p)E[G2].

Bring the (1− p)E[G2] over the other side to get

pE[G2] = p+ (1− p) + 2(1− p)/p

E[G2] = 1 + (1− p)/p+ 2(1− p)/p2.

Therefore the variance is

V(G) = E[G2]− E[G]2

= 1 + (1− p)/p+ 2(1− p)/p2 − 1/p2

= (p2 + p− p2 + 2(1− p)− 1)/p2 = (p+ 1− 2p)/p2 = (1− p)/p2.

20.3 The Negative Binomial distribution

The geometric random variable with parameter p is the first time a 1 appears in a Bernoulli process
with parameter p. A Negative Binomial with parameters k and p is the kth time a 1 shows up in a a
Bernoulli process with parameter p.

Definition 59
Say that N has a Negative binomial distribution with parameters k and p and write
N ∼ NegBin(k, p) if

N = inf{i : B1 + · · ·+Bi = k}.

In a binomial distribution, the number of trials is fixed by the parameter n and the random
variable is the number of 1’s that appear in the first n draws. In a negative binomial distribution,
the number of 1’s is fixed, and the random variable is the number of trials needed for k different
1’s to appear in the draws.

Fact 71
If N ∼ NegBin(k, p), then

P(N = i) =

(
i− 1

k − 1

)
(1− p)i−kpk
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Proof. If N = i then Bi = 1 and there are k − 1 differnt 1’s appearing in B1, . . . , Bi−1. There are(
i−1
k−1

)
ways to choose where these 1’s appear. Each such sequence contains k different 1’s and

i− k different 0’s, and so has probability (1− p)i−kpk of appearing.

Consider N ∼ NegBin(2, p). The first 1 appears in position G1 where G1 ∼ Geo(p). Then it is
like the process starts over from scratch, and we have to wait a geometric number of times for the
next 1 to appear.

Fact 72
Let G1, G2, . . . , Gk be iid Geo(p). Then

G1 + · · ·+Gk ∼ NegBin(k, p).

This immediately gives the mean and variance of a negative binomial.

Fact 73
For N ∼ NegBin(k, p), E[N ] = k/p, V(N) = k(1− p)/p2.

20.4 Point perspective

Instead of keeping track of the Bernoulli random variables, we can just keep track of the points
where the Bernoulli’s are 1.

Definition 60
For a Bernoulli process {Bi}, let P = {i : Bi = 1} be a Bernoulli point process and
call the elements of P points.

Example 49
If the Bernoulli process starts

1, 1, 1, 0, 0, 1, 0, 1, 1, 0,

The first few points are
P = {1, 2, 3, 6, 8, 9}.

Their graph looks like

1 2 3 4 5 6 7 8 9 10

This point process has certain properties.
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Fact 74
A Bernoulli point process with parameter p satisfies the following.

1. If A and B are disjoint subsets of {1, 2, 3, . . .}, then

#(P ∩A) and #(P ∩B)

are independent random variables.

2. For all A ⊆ {1, 2, . . .},

E[#(P ∩A)] = p ·#(A).

Note that we can recast our distributions in terms of these points.

Fact 75
Consider a Bernoulli point process P = {P1, P2, . . .} with parameter p, where P1 <
P2 < P3 < . . ..

P1 ∼ Geo(p)

∀r ≥ 1, Pr+1 − Pr ∼ Geo(p)

Pr ∼ NegBin(r, p)

#(P ∩A) ∼ Bin(#(A), p)

This fact follows immediately from the fact that the Bi are all iid Bern(p) random variables.

Problems

20.1 Suppose X ∼ Bin(34, 0.23). What is E[X]?

20.2 Say W ∼ Bin(10, 0.2) and Y ∼ Bin(10, 0.3). What is E[W + Y ]?

20.3 Let G ∼ Geo(0.38).

a) What is E[G]?
b) What is V[G]

20.4 Suppose I roll a fair six sided die over and over until I get a 5. Let T be the number of
rolls that I make. What is E[T ]?

20.5 Let N ∼ NegBin(20, 0.38).

a) What is E[N ]?
b) What is V[N ]

20.6 LetBi be a Bernoulli process with parameter 0.4. What is the chance thatB1+· · ·+B5 =
4?

20.7 Suppose X ∼ Bin(13, 0.2) and Y ∼ Bin(27, 0.2) are independent. What is the distribu-
tion of X + Y ?
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20.8 Let Bi be a Bernoulli process with parameter 0.2.

a) Find P(inf{i : Bi = 1} = 4)

b) Find P(inf{i : Bi = 0} = 4)

20.9 Let Y be a positive integer valued random variable with E[Y ] = 4.2, and [X|Y ] =
Bin(Y, 0.3). Then what is E[X]?

20.10 Find the moment generating function of a geometric random variable with parameter p.

20.11 Find E[G2] for a geometric random variable by conditioning on B1 and taking the
expectation again.
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Poisson point processes in one dimension

Question of the Day Suppose that a beam 2 meters long has defects modeled as a
Poisson point process of rate λ = 0.3/meter. What is the probability that there are
two or more defects in the beam?

Summary
Constuct a set P that is a Poisson point process P of rate λ over [0,∞) as follows.
Let A1, A2, . . . be an iid sequence of exponential random variables of rate λ. Then set

P1 = A1

P2 = A1 +A2

P3 = A1 +A2 +A3

... =
...

Then let P = {P1, P2, P3, . . .}.
This means that Pi has a gamma distribution with parameters i and λ. Write G ∼
Gamma(α, β) if G has density

fG(s) = λrsr−1 exp(−λs)1(s ≥ 0)/Γ(r).

Here Γ(r) is the gamma function that equals (r − 1)! when r is an integer and∫∞
0 xr−1 exp(−x) dx when r is not.

A Bernoulli process B1, B2, B3, . . . where Bi ∼ Bern(p) is associated with a Bernoulli point
process where P = {i : Bi = 1}.

1 2 3 4 5 6 7 8 9
0 0 0 0 0 01 1 1

The expected number of points that fall into a set A is just the number of points in A times p.
Since the Bi are independent, for A∩B = ∅, the number of points that fall into A and the number
of points that fall into B are independent of each other. That is,

1. For A,B disjoint subsets of {1, 2, . . .},#(P ∩A) and#(P ∩B) are independent random
variables.

139
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2. For A a subset of {1, 2, . . .}, E[#(P ∩A)] = p ·#(A).

Here the points are limited to lie on the integers {1, 2, 3, . . .}. Consider letting the points be
anywhere in [0,∞).

0 4.2 6.2 9.1

We can build such a point process over [0,∞) by changing the measure in Property 2 from counting
measure to Lebesgue measure.

Definition 61
Say that P is a Poisson point process of rate λ over [0,∞) if

1. For A and B disjoint measurable subsets of [0,∞), #(P ∩A) and #(P ∩B) are
independent random variables.

2. ForA a measurable subset of [0,∞), E[#(P ∩A)] = λ ·ℓ(A),where ℓ is Lebesgue
measure.

Recall that for a Bernoull point process P = {P1, P2, . . .} where P1 < P2 < · · · ,

P1 ∼ Geo(p)

∀r ≥ 1, Pr+1 − Pr ∼ Geo(p)

Pr ∼ NegBin(r, p)

#(P ∩A) ∼ Bin(#(A), p).

Similarly, the distribution of the first point, the distribution of the difference between successive
points, the distribution of the rth point, and the distribution of the number of points in a given
interval can all be described for a Poisson point process as well.

Fact 76
For P = {T1, T2, . . .} a Poisson point process of rate λ over [0,∞), where T1 < T2 <
· · · ,

T1 ∼ Exp(λ)

∀r ≥ 1, Tr+1 − Tr ∼ Exp(λ)

Tr ∼ Gamma(r, λ)

#(P ∩A) ∼ Pois(ℓ(A) · λ).

Here Pois(µ) is the Poisson distribution with mean µ. It is defined as follows.

Definition 62
Say that X ∼ Pois(µ) if it has density

fX(i) = exp(−µ)
µi

i!
1{i ∈ {0, 1, 2 . . .}).

So the exponential distribution is the continuous analogue of the geometric distribution, the
gamma is the continuous analogue of the negative binomial, and Poisson counts points in continuous
space where Binomial counts points in discrete space.
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To understand why the Poisson distribution has the form that it does, it helps to consider the
question of the day, and what is known as the exponential space.

21.1 The exponential space and Poisson distribution

Let A = [0, 2] represent the beam in the qotd. Then if P is a Poisson point process of rate 0.3 over
[0,∞), then P ∩ [0, 2] are the points that fall in the beam’s length. So by our fact,

#(P ∩A) ∼ Pois(0.3 · 2).

Why is this?
Well, P ∩A could contain no points, or 1 point, or 2 points, and so on. The space with no point

is ∅. The space with one point is
(
[0,2]
1

)
. The space with two points is

(
[0,2]
2

)
, and so on. Therefore

the set of points P is a subset of

∅ ∪
(
[0, 2]

1

)
∪
(
[0, 2]

2

)
∪
(
[0, 2]

3

)
∪ · · · ,

which is known as the exponential space.
Recall that notation like

(
[0,2]
i

)
means the set of all subsets of [0, 2] of size i. What is the measure

of
(
[0,2]
i

)
? Well, the measure of a single point from [0, 2] is 2. The measure of [0, 2]2 is 22, and in

general the measure of [0, 2]i is 2i.
However, that is the measure of the i-tuples where the order of the points matters. To get the

measure of the subsets where the order does not matter, divide by the number of ways to order
the points. This is i!. For instance, the vectors (0.3, 1.3) and (1.3, 0.3) both map to the subset
{0.3, 1.3}. If I have a subset of size i, there are i! vectors that map to the subset. So we only measure
the subsets of size i, that only has measure

measure
((

[0, 2]

i

))
=

2i

i!

Now, how does the rate figure in? Well, one way to view the rate λ is that it gives a bonus factor
for having more points in the set. With two points, we get a bonus factor of λ2, with seven points
λ7, and so on.

So if we have three points, they get a bonus factor of λ3, and since there are 23/3!, they overall
contribute

(2λ)3

3!

so the measure. When we add this up for 0, 1, 2, or any nonnegative integer number of points, we
get

1 +
(2λ)

1!
+

(2λ)2

2!
+

(2λ)3

3!
+ · · · .

Look familiar? This is exactly the Taylor series expansion of exp(2λ). So to normalize this
expression so that everything sums to 1, we multiply by exp(−2λ).
That means that the probability that we are in the part of the space that has three points

is exp(−2λ)(2λ)3/3!. The probability that we are in the four part part of the space is
exp(−2λ)(2λ)4/4!. And so on. If we let N denote the number of points in the process, then
that is why we have the distribution of a Poisson that we do. For N ∼ Pois(2λ),

P(N = i) = exp(−2λ)
(2λ)i

i!
1(i ∈ {0, 1, 2, . . .}).
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Note that the 2 for the question of the day comes from the fact that the Lebesgue measure of
[0, 2] is 2. With our notation ℓ([0, 2]) = 2, so λ · ℓ([0, 2]) = (0.3)(2) = 0.6, so P(N ≥ 2) is

P(N ≥ 2) = 1− P(N ≤ 1)

= 1− P(N = 1)− P(N = 0)

= 1− exp(−0.6)[(0.6)0/0! + (0.6)1/1!] ≈ 0.1219 . . . .

So the number of points in P ∩ A is Poisson distributed with parameter λ · ℓ(A). Since the
average number of points is also λ · ℓ(A), that means that the parameter of a Poisson distribution
is its own parameter.

Fact 77
For N ∼ Pois(µ), E[N ] = µ.

Poissons random variables also have the nice property that the variance is also µ.

Fact 78
For N ∼ Pois(µ), V(N) = µ.

Oftentimes, such processes are used to model arrival times of events, such as a customer arriving.
Hence the points Ti is the process are often called arrival times. The times between arrivals,
Pi − Pi−1 are often called interarrival times.

0 1

A1 A2 A3

How do we know that the time of the first arrival has an Exp(λ) distribution? Well, consider

P(T1 > a) = P(#(P ∩ [0, a]) = 0) = exp(−λa).

That is just the survival function of an exponential random variable with rate λ.
The remaining interarrival times are found in a similar fashion.

21.2 The Gamma distribution

Now consider the time of the r arrival, Tr . Let s > 0. What has to happen for Tr to fall into a small
differential interval around s of width ds? That is, what is P(Tr ∈ ds)?
Two things have to happen for Tr ∈ ds.

1. There has to be a point in the differential interval around s.

2. There have to be r − 1 points in the interval [0, s].

3. The rest of the space has to be empty.

Here’s the intuition. By that we mean that this is why it is true, but would not be considered a
rigorous proof! For a Poisson point process, a little differential element around s contains either 0
points or 1 point. So it is Bernoulli, and we know the mean is λ ds since ds is the measure of the
differential interval.
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Okay, now what is the chance that the interval [0, s] contains r − 1 points! That has a Poisson
distribution with parameter λs, so

exp(−λs)
(λs)r−1

(r − 1)!
.

Multiplying by λ ds for the probability that there is an rth point near s gives

P(Tr ∈ ds) =
λr exp(−λs)sr−1

(r − 1)!

This inspires the definition of the gamma distribution.

Definition 63
Say X has a gamma distribution with parameters α and λ if it has density

fX(s) =
λα exp(−λs)sα−1

Γ(α)
1(s ≥ 0),

where
Γ(α) =

∫ ∞

0
exp(−s)sα−1 ds

is called the Gamma function and normalizes the density.

Fact 79
When k is a positive integer, Γ(k) = (k − 1)!.

Fact 80
For P1 < P2 < · · · an ordered Poisson point process of rate λ, Pi ∼ Gamma(i, λ).

Remarks

• We motivated the gamma distribution by considering α a positive integer, but the gamma
distribution is defined for any α ≥ −1.

• For k a positive integer, the distribution Gamma(k, λ) is also known as the Erlang dis-
tribution after the Danish mathematician Agner Erlang who invented much of queuing
theory.

Example 50
Suppose P1 < P2 < · · · is an ordered Poisson point process of rate 2.5. What is the
chance that P3 ∈ [1, 2]?

Answer We know P3 ∼ Gamma(3, 2.5), so

P(P3 ∈ [1, 2]) =

∫ 2

s=1

(2.5)3s2 exp(−2.5s)

2!
ds ≈ 0.4191 .
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Problems

21.1 For P a PPP over [0,∞) of rate 2, what is the distribution of inf(P )?

21.2 For P a PPP over [0,∞) of rate 3.2, what is the expected value of inf(P )?

21.3 Let P be a Poisson point process over [0,∞) of rate 1.8, and P1 = inf(P ). What is
P(P1 ≤ 1)?

21.4 Suppose T1, T2, . . . are an iid sequence of Exp(2) random variable. Let

N = sup{n : T1 + · · ·+ Tn ≤ 4.1}.

What is P(N = 8)?

21.5 Suppose that times that a bus arrives at a stop over one hour is modeled as a Poisson
point process of rate 1.4/hr.

a) What is the chance that exactly one bus arrives in the hour?
b) What is the expected number of buses that arrive in the hour?
c) What is the expected number of buses that arrive in the first half hour?

21.6 Requests for information at Honnold library during finals week arrive according to a
Poisson process at rate 4.2 per hour.

a) What is the expected number of requests seen during a six hour shift?
b) What is the chance that the third request arrives before the end of the first hour?
c) What is the covariance between the time of the third request and the time of the

fourth request?
d) Each request (independently) has a 5% chance of being unsolvable. What is the

chance that at least one unsolvable request comes in during a six hour shift?

21.7 For a Poisson point process over [0,∞) of rate λ, let NA = #(P ∩ A). Then find
Cov(N[0,2), N[0,3)).
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The Poisson point process

Question of the Day Lightning strikes in a forest covering 3 square miles are modeled
as occuring at rate 21.2 per square mile using a Poisson point process. What is the
expected number of strikes over the whole forest?

Summary When points are placed over a space Ω such that the number of points in
disjoint sets is independent, and the mean number of points in a set is given by the
measure µ of the set, the points form a Poisson point process. Write P ∼ PPP(Ω, µ).
For A a measurable subset of Ω,

NA = #(P ∩A) ∼ Pois(µ(A)).

One type of random process that we have not yet considered is when we have spatial data, which
consists of a set of points in some space chosen uniformly at random. We need a way to model
such data, for instance

1. Location of outbreaks of a disease in a community.

2. Flaws in a sheet of metal.

3. Cancerous cells in a tissue sample.

To handle this and more general situations, we now give our most general definition of a Poisson
point process over a region Ω together with a measure µ.

Definition 64
A collection P of points in Ω is a Poisson point process of rate measure µ over Ω
(write P ∼ PPP(Ω, µ) if P satisfies two properties.

1. For A and B disjoint measurable subsets of Ω, #(P ∩ A) and #(P ∩ B) are
independent random variables.

2. For A a measurable subset of Ω, E[#(P ∩A)] = µ(A).

Consider the following rate measures.
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1. Bernoulli point process: Ω = {1, 2, 3, . . .}, µ(A) = p ·#(A).

2. Poisson point process with rate λ over [0,∞): Ω = [0,∞), µ(A) = λ · ℓ(A), where ℓ is
Lebesgue measure.

3. In the Question of the Day, Ω = R2, µ(A) = 21.2 · ℓ(A).

Note that the final value of µ(A) should be unitless since it counts the average number of points
in region A.

Example 51
Question of the day Lightning strikes in a forest covering 3 square miles occur at rate
21.2 per square mile as a Poisson point process. What is the expected number of strikes
over the whole forest?

Answer The overall mean is the measure of the space (3 square miles) times the rate
(21.2 per square mile) or 63.60 .

Once we know the mean of the number of points in A, we actually know the entire distribution.

Fact 81
For P ∼ PPP(Ω, µ) and A a measurable subset of A.

NA = #(P ∩A) ∼ Pois(µ(A)).

22.1 Summing independent Poisson random variables

One of the nice things about Poisson random variables is that if you add two independent Poissons,
then the result is still a Poisson random variable!

Fact 82
Suppose N1 ∼ Pois(µ1) and N2 ∼ Pois(µ2) are independent. Then N1 + N2 ∼
Pois(µ1 + µ2).

Proof. Suppose that we have a Poisson point process P1 of rate 1 on [0, µ1], and P2 is a PPP of rate
1 on (µ1, µ1 + µ2]. Note that#(P1) ∼ Pois(µ1) and#(P2) ∼ Pois(µ2).

Let P = P1 ∪ P2 be the combination of these two point processes. The result is a Poisson point
process of rate 1 over [0, µ1+µ2]. It has a number of points equal to#(P1+P2) = #(P1)+#(P2).
So

#(P1) + #(P2) ∼ Pois(µ1 + µ2),

by the properties of Poisson point processes.

Recall that if Z1 ∼ N(µ1, σ
2
1) and Z2 ∼ N(µ2, σ

2
2) are independent, then Z1 + Z2 is also a

normally distributed random variable, with mean µ1+µ2 and variance σ2
1+σ2

2 . So for both normal
random variables and Poisson random variables, adding independent draws togther stays in the
same family, with the appropriate parameter choice to make the mean and variance work out.

For independent Poisson random variables with means µ1 and µ2, the mean of the sum must be
µ1 + µ2, and the variance is µ1 + µ2 because they are independent. This fits nicely with the fact
that the sum is a Poisson random variable with parameter (and so mean and variance) equal to
µ1 + µ2.



22.2. THINNING 147

22.2 Thinning

Consider the following problem.

Example 52
Suppose that arrivals to a queue occur according to a Poisson process at rate 3 per hour.
Each arrival independently has a 40% chance of requiring a long service, and 60% chance
of requiring a short service. What is the chance that there are at least two long services
in the first hour?

This is an example of a problem where the notion of thinning is used. Remember that the rate of
3 per hour indicates that in a tiny time interval dt, we expected to have 3 dt arrivals. But since
only 40% of those arrivals require a long service, the probability of a long service arrival drops to
3(0.4) dt = 1.2 dt.

In other words, if we only consider those arrivals that are long service arrivals, they form a new
Poisson process at rate 1.2 per hour. So the example above has answer equal to P(N ≥ 2) where
N ∼ Pois((1.2)(1)).

P(N ≥ 2) = 1− P(N = 0)− P(N = 1) = 1− exp(−1.2)− 1.2

2
exp(−1.2) = 0.5180 . . . .

Definition 65
Let P be a Poisson point process of rate measure µ(A). Let f : A → [0, 1] assign a
probability to each point inA. ForP = {P1, . . . , Pn} independently drawB1, . . . , Bn ∼
Bern(p). If P ′ = {Pi : Bi = 1}, call P ′ the thinned Poisson point process.

Fact 83 (Thinning a Poisson point process)
If you thin a Poisson point process of rate measure µ over A using the same probability
p of retaining every a ∈ P , then the result is a Poisson point process of rate pµ over A.

Proof. LetP ′ be the thinned version of the Poisson point process P . The independence of#(P ′∩A)
and #(P ′ ∩B) for disjoint A and B follows from the independence of #(P ∩A) and #(P ∩B).
Let A be a measurable set. Then

E[#(P ′ ∩A)] = E[E[#(P ′ ∩A)|#(P ∩A)]]

= E[p#(P ∩A)]]

= pE[#(P ∩A)] = pµ(A).

22.3 Conditioning on the number of points

Let A and B be disjoint sets. Suppose I know that a point of the Poisson point process is either in
A or B, so a ∈ A ∪B. What is the chance that the point falls into A? Not surprisingly, the odds
that it lands in A versus B is the rate measure of A against the rate measure of B.
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Fact 84
Let a be a point of a Poisson point process of rate measure µ over A ∪B, where A and
B are disjoint. Then

P(a ∈ A) =
µ(A)

µ(A) + µ(B)
.

Example 53
Trains arrive as a Poisson point process of rate 2 per hour. Given that exactly one train
arrives in the first three hours, what is the chance that it arrives in the first hour?

Answer The first hour has measure 2(1 − 0) = 2. The remaining two hours have
measure 2(3− 1) = 4. Therefore, the chance that the train arrives in the first hour is

2

2 + 4
= 1/3 = 0.3333 . . . .

Moreover, all the points of a Poisson point process over a continuous space are independent of
each other.

Fact 85
Let P = {P1, . . . , PN} be a Poisson point process over A. Then P1, . . . , PN are inde-
pendent random variables.

Since each train is independent, the number that fall into a particular region will be binomially
distributed.

Fact 86
Let P = {P1, . . . , Pn} be a Poisson point process over A of rate measure µ. For B a
measurable subset of A, given the number of points in the PPP:

[#(P ∩B)|#(P )] ∼ Bin(#(P ), µ(B)/µ(A)).

Example 54
Continuing the last example, if there are exactly three trains in the first three hours,
what is the chance that there is exactly one arriving in the first hour?

Answer Each of these three trains is independent, and so the number of trains in the
first hour is N[0,1] ∼ Bin(3, 1/3), and

P(N[0,1] = 3) =

(
3

1

)
(1/3)1(2/3)2 = 4/9 = 0.4444 . . . .

Problems

22.1 Suppose N1 and N2 are independent Poisson random variables with means 2 and 3
respectively. What is the chance that N1 +N2 = 5?
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22.2 Say N1, . . . , N10 are Poisson random variables of rate 0.5. What is the chance that their
sum is greater than 1?

22.3 EPA clean-up sites in a county are modeled as a Poisson point process of rate λ = 3/mi2.

a) If the region has an area of 9 square miles, what is the expected number of clean-up
sites?

b) If the region is known to have at least 25 clean up sites, what is the chance that it
has at least 30 such sites? (Probably want to use a computer for the calculations on
this one.)

22.4 An epidemiological model covers a city of size 4 square miles. Suppose the model is that
disease outbreaks form a Poisson point process of rate 10 per square mile.

a) What is the mean number of infected in the city?
b) Using a computer, find the probability that more than the average number of people

are infected.
c) What is the mean number of infected in a neighborhood of size 2.3 square miles?

22.5 Suppose that P ∼ Pois([0, 2], λ · ℓ), where λ > 0 is a constant and ℓ is Lebesgue measure.
If N[0,2] = 10, what is the chance that N[0,1] = 4?

22.6 Pine trees in a forest are modeled as occurring as a Poisson point process with rate 15.4
per square kilometer. Suppose the forest is divided into two pieces, a slope of size 14
square kilometers, and a flat region of size 23.1. Suppose there are 597 pine trees in the
forest.

a) What is the average number of trees on the slope region?
b) What is the chance that there are more than the average number of trees on the

slope region?

22.7 Outbreaks of a disease are modeled as coming from a Poisson point process with rate 2.3
per square mile.

a) If the city is 3 square miles, what is the chance that there are exactly 6 outbreaks?
b) Suppose the part of the city west of the river is 1.2 square miles (leaving 1.8 square

miles east of the river). If there are exactly 8 outbreaks across the city, what is the
chance that at least 3 of them are on the west side of the river?

22.8 Defects in a steel sheet are modeled as occurring at 6.1 per square meter. If there are 23
defects in a sheet of size 4 square meters, what is the chance that a portion one square
meter in size has exactly 6 defects?





Chapter 23

Joint densities in higher dimensions

Question of the Day Suppose (X1, X2, X3) have joint density

f(X1,X2,X3)(x1, x2, x3) = (1/3)[x1 + 2x2 + 3x3]1(x1, x2, x3 ∈ [0, 1]),

find E[X1X2X3].

Summary
A random vector (X1, . . . , Xn) has density fX1,...,Xn with respect to measure µ if for
all events A,

P((X1, . . . , Xn) ∈ A) =

∫
(x1,...,xn)∈A

fX1,...,Xn(x1, . . . , xn) dµ.

To find the marginal distributions for higher dimensional integrals.

fXi(xi) =

∫
(x1,...,xi−1,xi+1,...,xn)∈Rn−1

fX1,...,Xn(x1, . . . , xn) dµ.

To find the expected value of a function of the variables:

E[g(X1, . . . , XN )] =

∫
Rn

g(x1, . . . , xn)fX1,...,XN
(x1, . . . , xn) dµ

23.1 Finding probabilities

Recall that densities are used to calculate probabilities and to find expected values. Joint den-
sities in higher dimensions are the same way. The same method holds for finding probabili-
ties.

Fact 87
For A a measurable subset of Rn, and (X1, . . . , Xn) with joint density fX1,...,Xn ,

P((X1, . . . , Xn) ∈ A) =

∫
(x1,...,xn)∈A

fX1,...,Xn(x1, . . . , xn) dµ
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Example 55
Let (X1, X2, X3) have density

f(X1,X2,X3)(x1, x2, x3) = (1/3)[x1 + 2x2 + 3x3]1(x1, x2, x3 ∈ [0, 1])

with respect to Lebesgue measure. Then find P(max{X1, X2, X3} ≤ 0.5).

Answer The event {max{X1, X2, X3} ≤ 0.5} is the same as {X1 ∈ [0, 0.5], X2 ∈
[0, 0.5], X3 ∈ [0, 0.5]}. Therefore the integral is∫

x1∈[0,0.5],x2∈[0,0.5],x3∈[0,0.5]
(1/3)[x1 + 2x2 + 3x3] dR3 = 1/16 = 0.06250 .

23.2 Finding means

Expected values are also handled the same way as before, by the Law of the Unconscious Statistician:

Fact 88
For random variables (X1, . . . , Xn) with joint density f(X1,...,Xn) with respect to µ, if
E[g(X1, . . . , Xn)] exists then

E[g(X1, . . . , Xn)] =

∫
(s1,...,sn)∈Rn

g(s1, . . . , sn)fX1,...,Xn(s1, . . . , sn) dµ.

This can be used to solve the Question of the Day!

Question of the day Using the Law of the Unconscious Statistician,

E[X1X2X3] =

∫
(x1,x2,x3)∈R3

x1x2x3(1/3)[x1 + 2x2 + 3x3]1(x1, x2, x3 ∈ [0, 1]) dR3

=

∫
x1∈[0,1],x2∈[0,1],x3∈[0,1]

x1x2x3(1/3)[x1 + 2x2 + 3x3] dR3

= 1/6 = 0.1666 . . . .

23.3 Testing for independence

Remember that for bivariate random variables, the random variables are independent if the joint
density factors into the marginal densities. The same fact holds in the higher dimensional case as
well.

Fact 89 (Independence means joint is product of marginal densities)
Consider random variables X1, . . . , Xn where each Xi has density fXi with respect to
µi. Then the {Xi} are independent if and only if

∏n
i=1 fi is a joint density for the {Xi}

with respect to the product measure ×n
i=1µi.

Fact 90
If the joint density f forX1, . . . , Xn factors into the product of n densities, then theXi

are independent.
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Example 56
Suppose X1, . . . , Xn have joint density

fX1,...,Xn(s1, . . . , sn) = exp

(
−

n∑
i=1

si

)
1(s1, . . . , sn ≥ 0).

Show that the Xi are independent.

Answer Since

exp

(
−

n∑
i=1

si

)
=

n∏
i=1

exp(−si)

1(s1, . . . , sn ≥ 0) =
n∏

i=1

1(si ≥ 0),

f(X1,...,Xn)(s1, . . . , sn) =
n∏

i=1

exp(−si)1(si ≥ 0)

Remember that to show random variables are not independent, all we need are events where the
probability that event happens is not the product of the individual events.

Example 57
Let (X1, X2, X3) have density

f(X1,X2,X3)(x1, x2, x3) = (1/3)[x1 + 2x2 + 3x3]1(x1, x2, x3 ∈ [0, 1])

with respect to Lebesgue measure. Show that the Xi are not independent.

Answer In an earlier example, we showed that

P(X1 ∈ [0, 0.5], X2 ∈ [0, 0.5], X3 ∈ [0, 0.5]) = 1/16.

However,

P(X1 ∈ [0, 0.5]) =

∫
[0,0.5]×[0,1]×[0,1]

(1/3)(x1 + 2x2 + 3x3) dR3 = 11/24,

P(X2 ∈ [0, 0.5]) =

∫
[0,1]×[0,0.5]×[0,1]

(1/3)(x1 + 2x2 + 3x3) dR3 = 10/24,

P(X3 ∈ [0, 0.5]) =

∫
[0,1]×[0,1]×[0,0.5]

(1/3)(x1 + 2x2 + 3x3) dR3 = 9/24,

And (11/24)(5/24)(9/24) = 55/768 = 0.0716 . . . which does not equal 1/16 =
0.0625.
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23.4 Finding marginals

To find the marginal density of a random variable, we can integrate out the other variables.

Example 58
Let (X1, X2, X3) have density

f(X1,X2,X3)(x1, x2, x3) = (1/3)[x1 + 2x2 + 3x3]1(x1, x2, x3 ∈ [0, 1])

with respect to Lebesgue measure. Find the density of X1.

Answer

P(X1 ∈ A) = P(X1 ∈ A,X2 ∈ R, X3 ∈ R)

=

∫
x1∈A

∫
x2∈R

∫
x3∈R

x1 + 2x2 + 3x3
3

1(x1, x2, x3 ∈ [0, 1]) dx3 dx2 dx1

=

∫
x1∈A

∫
x2∈R

x1x3 + 2x2x3 + (3/2)x23
3

∣∣∣∣1
0

1(x1, x2 ∈ [0, 1]) dx2 dx1

=

∫
x1∈A

∫
x2∈[0,1]

(1/3)[x1 + 2x2 + 3/2]|1(x1 ∈ [0, 1]) dx2 dx1

=

∫
x1∈A

(1/3)[x1x2 + x22 + (3/2)x2]|101(x1 ∈ [0, 1]) dx1

=

∫
x1∈A

(1/3)[x1 + 5/2]1(x1 ∈ [0, 1]) dx1.

Hence the density of X1 must be

fX1(x1) = (1/3)[x1 + 5/2]1(x1 ∈ [0, 1]).

Problems

23.1 Suppose (X1, X2, X3) has joint density

f(X1,...,Xn) ∝ (x1 + x2)(x1 + x3)(x2 + x3)1((x1, x2, x3) ∈ [0, 1]3).

a) Find the normalized density.
b) Find the marginal density of X1.
c) Find the expected value of X1.

23.2 Suppose (X1, X2, X3) has joint density

f(x1, x2, x3) = (x1 + x2 + x3)1(x1, x2, x3 ∈ [0, 1]).

a) Find the marginal density of X1.
b) Find Cov(X1, X3).

23.3 Suppose X1, . . . , Xn have joint density

(1/10)n1((x1, . . . , xn) ∈ [0, 10]n).

Show that the Xi are independent.
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23.4 Suppose Z1, Z2, Z3 are iid standard normal random variables. Find their joint density.

23.5 Suppose that X and Y have joint density:

f(X,Y )(x, y) = (3/4)xy21(x ∈ [0, 1])1(y ∈ [0, 2])

Show that X and Y are independent.

23.6 Suppose that X and Y have joint density

f(X,Y )(x, y) = (2/3)(x+ 2y)1(x ∈ [0, 1], y ∈ [0, 1]).

a) Find P(X ≤ 0.5).
b) Find P(Y ≤ 0.5).
c) Find P(X ≤ 0.5, Y ≤ 0.5).
d) Prove that X and Y are not independent.





Chapter 24

Bayes’ Rule for densities

Question of the Day A drug lowers cholesterol by 20 or more points with unknown
probability p. A statistician models p ∼ Unif([0, 1]) and individuals as independent
Bernoulli random variables. In a study of 17 individuals, the drug was effective in 4 of
them. Conditioned on this information, what is the new distribution of p?

Summary
SupposeX1 andX2 have joint density fX1,X2(x1, x2). Then Bayes’ Rule for densities
is

f[X1|X2=x2](x1) =
f[X2|X1=x1](x2)fX1(x1)

fX2(x2)
.

Recall that Bayes’ Rule for events of positive probability allows us to turn around conditioning.
If we know the distribution ofX given Y , then Bayes’ Rule allows us to determine Y givenX . The
rule is (for P(Y ∈ B) nonnegative),

P(X ∈ A|Y ∈ B) =
P(Y ∈ B|X ∈ A)P(X ∈ A)

P(Y ∈ B)
.

When dealing with events such as {X = s}, for continuous functions this will be 0. So instead
we look at events {X ∈ ds}, the event that X is in an infinitesitmally small interval around s.
When we are conditioning, {X ∈ ds} and {X = s} are the same: knowledge that we are arbitrarily
close to s and actually s gives us the same information. But when we are trying to find P(X ∈ ds),
we know that this is fX(s) ds, and so infinitesimally small, but still nonzero.
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Plugging into Bayes’ Rule then gives:

fX|Y=y(x) dx = P(X ∈ dx|Y = y)

= P(X ∈ dx|Y ∈ dy)

=
P(X ∈ dx, Y ∈ dy)

P(Y ∈ dy)

=
P(Y ∈ dy|X ∈ dx)P(X ∈ dx)

P(Y ∈ dy)

=
fY |X=x(y) dy fX(x) dx

fY (y) dy

=
fY |X=x(y)fX(x) dx

fY (y)

The above is not a mathematical proof (you cannnot just cancel dy terms without justificiation
in a formal proof), but it can be made precise, and the following result does hold for densities.

Theorem 7 (Bayes’ Rule for densities)
Suppose X has density fX and Y has density fY (not necessarily with respect to the
same measure.) Then for y such that fY (y) > 0,

fX|Y=y(x) =
fY |X=x(y)fX(x)

fY (y)
.

Some remarks!

• The theorem states the results hold even if the densities are not with respect to the same mea-
sures. In particular, one of the random variables could be discrete and the other continuous,
and the result would still hold.

• If you do not know fY (y), this result states

fX|Y=y(x) ∝ fY |X=x(y)fX(x).

Remember that ∝ means proportional to here, and means that there is some factor that
does not depend on x (it might depend on y though) multiplying the right hand side to
make inequality. How to find that factor? Remember the left hand side is a density, so if
we integrate both sides with respect to x, that should equal 1. That allows us to find the
constant.

• Statisticians call the initial distribution of X before learning the value Y the prior. The
density of Y given X is called the likelihood, and the distribution of X after learning the
value of Y is the posterior. So Bayes’ Rule for densities can be written with less formal
notation as

posterior density ∝ prior density · likelihood.
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Question of the day. Now let us illustrate these ideas with the qotd. Initially, p ∼ Unif([0, 1]).
This is the prior for p. This means fp(t) = 1(t ∈ [0, 1]).

Next, let N denote the number of individuals for which the drug worked. Then we know that
since the trials were work/not work independently, that [N |p] ∼ Bin(17, p). That means [N |p] has
density

fN |p=t(i) =

(
17

i

)
ti(1− t)17−i1({i ∈ {0, . . . , 17}).

Therefore,

fp|N=i(t) ∝ fp(t)fN |p=t(i)

= 1(t ∈ [0, 1])

(
17

i

)
ti(1− t)17−i1({i ∈ {0, . . . , 17})

∝ 1(t ∈ [0, 1])ti(1− t)17−i.

Since the binomial coefficient 17 choose i and 1(i ∈ {0, . . . , 17}) do not depend on t, they get
absorbed into the constant of proportionality.
Now, to find the constant of proportionality, we integrate the result with respect to t using the

data that N = 4:

1 = C

∫
t∈R

t4(1− t)17−41(t ∈ [0, 1]) dt = C

∫
t∈[0,1]

t4(1− t)17−4 dt =
C

42840

so C = 42840.
Hence the final distribution is

fp|N=4(t) = 42840t4(1− t)131(t ∈ [0, 1]).

In fact, we did not need to do the integration if we had recognized that this is a Beta distribution
with parameters 5 and 14. Therefore,

[p|N = 4] ∼ Beta(5, 14).

would also be an acceptable answer.
Note that Unif([0, 1]) = Beta(1, 1). Hence the prior is a Beta distribution and the posterior is a

Beta distribution.

Definition 66
If the prior and posterior for a Bayesian analysis belong to the same family of distributions,
call them conjugate.

Suppose the prior distribution is
p ∼ Beta(a, b),

and the data given p is N ∼ Bin(n, p). Then the posterior distribution is

[p|N = i] ∼ Beta(a+ i, b+ (n− i)).

Therefore, we say that the Beta family is conjugate with a binomial likelihood.
There are a couple dozen families of distributions and likelihoods that are conjugate. When

working with these particular families, calculations become very easy.
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Example 59
Suppose that Y ∼ Exp(100), and [X|Y ] ∼ Exp(Y ). Given X = 42, what is the new
distribution of Y ?

Answer Here fY (s) = 100 exp(−100s)1(s ≥ 0), fX|Y=s(t) = s exp(−st)1(t ≥ 0),
and so

fY |X=t(s) ∝ 100 exp(−100s)1(s ≥ 0)s exp(−st)1(t ≥ 0)

∝ s exp(−(100 + t)s)1(s ≥ 0).

Integrating the right hand side for s ∈ R gives∫
s≥0

s exp(−(100 + t)s) ds =
1

(100 + t)2
.

So
fY |X=42 = 1422s exp(−142s)1(s ≥ 0).

That is, [Y |X = 42] ∼ Gamma(2, 142) .

Problems

24.1 Suppose A ∼ Unif{1, 2, 3, 4, 5, 6} and [B|A] ∼ Exp(A). Given B = 3.6, what is the
distribution of A with the normalizing constant given to four sig figs?

24.2 Suppose X ∼ Unif({1, 2, 3, 4}) and [Y |X] ∼ Unif([0, X]). Given Y = 2.4, what is the
distribution of X?

24.3 Suppose X1 ∼ Unif([0, 10]) and X2 ∼ Unif([0, 20]). Let B ∼ Unif{1, 2}.

a) Given XB = 15, what is the chance that B = 2?
b) Given XB = 7, what is the chance that B = 2?

24.4 Suppose Y1 ∼ Exp(1) and Y2 ∼ Exp(2), and B ∼ Unif({1, 2}). Find

P(B = 1|YB = 4.3).

24.5 A drug company believes that a new treatment is effective on patients with probability p,
where p is uniform over [0, 1]. A drug trial keeps trying the drug on patients until it finds
four patients where the drug is effective. The study needed to enroll N = 21 patients
before they found four that the drug worked on.
Given this information, what is the new distribution of p?

24.6 Continuing the last problem, the drug company continues testing patients until two more
are found where the drug is effective. In this second trial, 8 more patients were seen to
find two where the drug was effective. Building on the information from the first trial,
what is the new distribution of p?
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Tail inequalities: Markov and Chebyshev

Question of the Day Suppose E[|X|] = 5. Bound P(|X| ≥ 10).

Summary
Markov’s inequality states that for an integrable random variable X and a > 0,

P(|X| ≥ a) ≤ E[|X|]/a.

The Chebyshev inequality states that for a random variable X with finite variance
and a > 0,

P(|X − µ| ≥ a) ≤ V(X)/a2.

Probability distributions with densities f(a) must have the density go to zero as a becomes very
large or very small. But what about the area under the density? Tail inequalities are a way of giving
an upper bound on this sort of probability.

The first, and simplest, tail inequality is called Markov’s inequality. It has limited use in applica-
tions, but serves as a building block for creating more powerful tail inequalities more often used in
practice.

In essence, what Markov’s inequality says is that in order for E[|X|] to be small, you cannot put
too much weight out past a.

Fact 91 (Markov’s inequality)
Let X be a random variable with finite mean. Then for all a > 0,

P(|X| ≥ a) ≤ E[|X|]
a

.

Proof. Note that if we multiply |X| by a number that is either 0 or 1, the product will be at most
|X|. That is

|X| ≥ |X|1(|X| ≥ a).

Whenever 1(|X| ≥ a) = 1, |X| ≥ a, so

|X| ≥ |X|1(|X| ≥ a) ≥ a1(|X| ≥ a).
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Recall that expected value preserves inequalities so

E[|X|] ≥ E[a1(|X| ≥ a)] = aE[1(|X| ≥ a)] = aP(|X| ≥ a).

Remark Markov’s inequality is sometime written as:

For any nonnegative random variable X with finite mean and a > 0, P(X ≥ a) ≤ E[X]/a.

This is equivalent to the other formulation. Form #2 implies form #1 since |X| is a nonnegative
random variable. Form #1 implies form #2 since for a nonnegative random variable, |X| = X .
Markov’s inequality can be used to solve the qotd. Here we are given that E[|X|] = 5, and the

goal is to bound P(|X| ≥ 10). Here a = 10, and Markov’s inequality gives

P(|X| ≥ 10) ≤ E[|X|]
10

=
5

10
= 0.5000 .

One of the nice things about Markov’s inequality is that it can be applied without knowing the
exact values of the parameters describing the distribution.

Example 60
Suppose A ∼ Exp(λ). Upper bound P(A ≥ 5/λ) using Markov’s inequality.

Answer Since A ≥ 0, |A| = A. Also, E[A] = 1/λ, so

P(A ≥ 5/λ) =
1/λ

5/λ
=

1

5
= 0.2000 .

25.1 Chebyshev’s inequality

Markov’s inequality was actually first shown by Markov’s Ph.D. advisor, Chebyshev. Markov
reproved the result as part of his Ph.D. thesis. Chebyshev was interested in a stronger inequality
that used not only the first moment of the random variable, but also the second. This inequality
gives a way of bounding how far away the random variable is from its expected value.

Fact 92 (Chebyshev’s inequality)
Suppose that X has finite first and second moments. Then for all a > 0,

P(|X − E[X]| ≥ a) ≤ V(X)

a2
.

Proof. Let Y = (X − E[X])2. Then |Y | = Y , so Markov’s inequality says for all a > 0,

P(Y ≥ a2) ≤ E[Y ]

a2
.

But E[Y ] = V(X) by definition, and {Y ≥ a2} ⇔ {|X − E[X]| ≥ a}. Hence the inequality is
shown.
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Example 61
Suppose A ∼ Exp(λ). Upper bound P(A ≥ 5/λ) using Chebyshev’s inequality

Answer Since A ≥ 0, |A| = A. Also, E[A] = 1/λ, and V(A) = 1/λ2, so

P(A ≥ 5/λ) = P(A− 1/λ ≥ 4/λ)

≤ P(|A− 1/λ| ≥ 4/λ)

≤ V(A)

(4/λ)2

=
1/λ2

16/λ2

=
1

16
= 0.06250 .

In this case, Chebyshev’s inequality gave a better result than Markov’s inequality, but that is not
always the case. Because both inequalities are true, you can always find both bounds and take the
smaller of the two results.
If we set a = k SD(X), then V(X)/a2 = 1/k2 and we obtain an alternate form of Chebyshev.

Fact 93 (Chebyshev’s inequality (alternate form))
Suppose that X has finite mean and standard deviation. Then for all k > 0,

P(|X − E[X]| ≥ k SD(X)) ≤ 1

k2
.

Another way to say this is, the chance that a random variable is at least k standard deviations
from its mean goes down at least quadratically in k.

Sample averages Let X1, X2, . . . ∼ X be iid and consider the sample average

Sn =
X1 + · · ·+Xn

n

From linearity of expectation we have

E[Sn] =
E[X1] + · · ·+ E[Xn]

n
=

nE[X]

n
= E[X],

so the sample average always has the same mean as the original function.
On the other hand,

SD(Sn) =
√
V(Sn) =

√
V(X1) + · · ·+ V(Xn)

n2
=

√
nV(X)

n2
=

SD(X)√
n

.

By Chebyshev, that tells us that

P(|Sn − E(X)| ≥ a) ≤ V(X)

a2
· 1
n
.

So Chebyshev’s inequality gives us that the sample average will always get closer and closer to
the mean. However, this convergence is only inversely linear in n. In practice, the sample average
converges much more quickly to the true result.
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To show exponentially fast convergence for sample averages, we need an even more powerful
inequality, and that is Chernoff’s inequality in the next section.

Problems

25.1 Suppose X is a random variable with mean 0.4, mean absolute deviation of 1.5, and
standard deviation of 2.

a) Give an upper bound on P(|X − 0.4| > 4) using Markov’s inequality.

b) Give an upper bound on P(|X − 0.4| > 4) using Chebyshev’s inequality.

c) Which is better? (Or equivalently, if you were asked to give the best upper bound
on P(|X − 0.4| > 4), what would you report?)

25.2 Suppose Y has mean 2.3, mean absolute deviation 1.1, and standard deviation 1.8. Bound
P(|Y − E[Y ]| > 3) as best you can using the Markov and Chebyshev inequalities.

25.3 A construction project will take an unknown amount of time. The builders believe that
the mean will be fifty days with a standard deviation of ten days.

a) Give an upper bound for the chance the project takes at least sixty days.

b) Give an upper bound for the chance the project takes at least one hundred days.

25.4 Suppose X ≥ 0 has E[X] = µ and V(X) = 1.3µ.

a) Bound P(X ≥ 5µ) using Markov’s inequality.

b) Bound P(X ≥ 5µ) using Chebyshev’s inequality.

25.5 Outreach Solutions serves a number of clients each day that is uniform over {1, 2, 3, 4, 5}.
Let N be the total number of clients served in a week of seven days.

a) What is the expected value of N?

b) What is the standard deviation of N?

c) Using the fact that N is symmetric about its mean, give a lower bound on the
probability that N ≤ 26.

25.6 A manufacturing plant ships 100 boxes per day, each of which contains 300 items. If
each individual item is defective with probability 0.01 independently of the others, upper
bound the probability that more than 600 items are defective.

25.7 Suppose X has finite mean µ and standard deviation σ. All random variables have at
least one median. Show that there must be a median of X somewhere strictly between
µ−

√
3σ and µ+

√
3σ.

25.8 Bound the probability that a random variable X lies more than 2.5 standard deviations
away from its mean.
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25.9 A construction project time T has the following mean, standard deviation, mean absolute
deviation, and moment generating function at 0.5:

E[T ] = 100√
E[(T − E[T ])2] = 15

E(|T − E[T ]|) = 12

E(exp(0.5T )) = exp(63).

Using these facts together with Markov and Chebyshev, put as best an upper bound as
you can on P(T > 130). Be sure to show all your work!

25.10 Suppose X is a nonnegative random variable with E[X3] = 30. Use this to bound the
probability that X > 10.





Chapter 26

Tail inequalities: Chernoff

Question of the Day Suppose X1, X2, . . . , X20 ∼ X are iid where

P(X = −0.5) = P(X = 0.7) = 1/2.

Bound the probability that X1 + · · ·+X20 ≥ 10.

Summary
The Chernoff inequality states that for a random variable X with finite moment
generating function mgfX(t) that

(∀t ≥ 0)(P(X ≥ a) ≤ mgfX(t) exp(−ta),

and
(∀t ≤ 0)(P(X ≤ a) ≤ mgfX(t) exp(−ta),

provided the mgfX exists for those values of t.

For Markov’s inequality we used the expected value, for Chebyshev’s inequality we used the
variance. For Chernoff’s inequality we will use the moment generating function. This will allow us
to get inequalities for sums and sample averages that go down exponentially fast in the number of
draws.
First, the inequality.

Fact 94 (Chernoff’s inequality)
For a random variable and any t > 0 wheremgfX(t) exists,

P(X ≥ a) ≤ mgfX(t) exp(−ta).

For any t < 0 where mgfX(t) exists,

P(X ≤ a) ≤ mgfX(t) exp(−ta).

Proof. Note that if t ≥ 0

P(X ≥ a) = P(tX ≥ ta) = P(exp(tX) ≥ exp(ta)),
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which is at most E[exp(tX)]/ exp(ta) by Markov’s inequality.
The other inequality is shown in a similar fashion.

Let’s apply this inequality to the qotd. Recall that because the Xi are iid distributed as X ,

mgfX1+···+X20
(t) = mgfX1

(t)mgfX2
(t) · · ·mgfX20

(t) = mgfX(t)20.

Hence

P(X1 + · · ·+X20 ≥ 10) = mgfX(t)20 exp(−10t) = [mgfX(t) exp(−0.5t)]20.

We took the exponent of 20 out of the expression to emphasize the probability bound given by
Chernoff decreases exponentially as the number of random variables in the sum increases.
Now

mgfX(t) = (1/2) exp(−0.5t) + (1/2) exp(0.7t),

so
g(t) = mgfX(t) exp(−0.5t) = [(1/2) exp(−t) + (1/2) exp(0.2t)].

When t = 0 this right hand side is 1, but as t grows, it dips slightly smaller before rising again.

The derivative is
g′(t) = −(1/2) exp(−t) + (0.2)(1/2) exp(0.2t).

Note g′(0) = (1/2)(−1) + (1/2)(0.2) < 0 and g′(3) > 0.9359 > 0. Next find any critical points:

g′(t) = 0

−(1/2) exp(−t1) + (1/2)(0.2) exp(0.2t) = 0

1/0.2 = exp(1.2t)

t = ln(5)/1.2.

So there is a unique value t1 = ln(5)/1.2 such that g′(t1) = 0, and g′(t) is continuous, therefore
g(t) has a global minimum value of g(t1). To find t1:
Putting that back into g gives exp(t) = 51/2, so

g(t1) = (1/2)[5−1/1.2 + 50.2/1.2],

and raising to the 20th power gives

P(X1 + · · ·+X20 ≥ 10) ≤ 0.007815

Given to more digits, the answer is 0.00781493 . . . We rounded up the last digit in our truncation
because we are giving an upper bound.
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26.1 Chernoff applied to Binomials

Now let’s tackle a trickier problem: applying Chernoff bounds to a general distribution. In particular,
let’s consider the binomial distribution. Say B ∼ Bin(n, p), then we can view this as

B = B1 + · · ·+Bn,

where each Bi is iid Bern(p). Each Bi has moment generating function

p exp(t) + (1− p) exp(0t) = p exp(t) + 1− p = 1 + p(exp(t)− 1).

A useful fact is that since the exponential function is convex, it lies above any tangent line. The
tangent line to exp(x) at 1 is 1 + x. This means that 1 + x ≤ exp(x) for any real x, which gives

mgfBi
(t) ≤ exp(p exp(t)− 1).

On average, the binomial will be np, but often it will be larger. Set ϵ > 0. Then Chernoff’s bound
says that

P(B > (1 + ϵ)np) ≤ mgfB(t) exp(−t(1 + ϵ)np).

≤ [exp(p exp(t)− 1) exp(−t(1 + ϵ)p)]n

= exp(p exp(t)− p− t(1 + ϵ)p)n = exp(g(t))n

To make the right hand side as small as possible, make g(t) as small as possible.
Differentiating gives

g′(t) = p exp(t)− (1 + ϵ)p,

which is increasing in t, making for a unique global minimum value at the critical point where
exp(t) = 1 + ϵ. Plugging back in to g(t) gives

P(B > (1 + ϵ)np) ≤ exp(p(1 + ϵ)− p− ln(1 + ϵ)(1 + ϵ)p)n

=

(
exp(pϵ)

(1 + ϵ)(1+ϵ)p

)n

=

(
exp(ϵ)

(1 + ϵ)(1+ϵ)

)np

.

That’s a little difficult to parse, it’s easier if we write out the Taylor series of what’s inside the
parenthesis:

P(B > (1 + ϵ)np) ≤ exp(p(1 + ϵ)− p− ln(1 + ϵ)(1 + ϵ)p)n

=

(
1− ϵ2

2
+

ϵ3

6
+

ϵ4

24
− · · ·

)n

.

The first two terms indicate that n ≈ 2ϵ−2 ln(1/δ) will be required for a binomial to make

P(B > (1 + ϵ)np) ≤ δ.

A similar result holds for the lower bound.
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Fact 95
For B ∼ Bin(n, p) and ϵ > 0,

P(B ≥ (1 + ϵ)np) ≤
(

exp(ϵ)

(1 + ϵ)(1+ϵ)

)np

P(B ≤ (1− ϵ)np) ≤
(

exp(−ϵ)

(1− ϵ)(1−ϵ)

)np

.

Problems

26.1 Suppose that X has moment generating function mgfX(t) = [(exp(t)− 1)/t]10. Bound
P(X ≥ 8) with Chernoff using t = 5.

26.2 Suppose U1, . . . , U20 ∼ Unif([0, 1]).

a) For S = U1 + · · ·+ U20, findmgfS(t).
b) Use Chernoff to bound P(S ≥ 13).

26.3 Use Chernoff’s inequality to give the best upper bound you can on the probability that
the sum of 12 iid random variables uniform over [0, 1] is at least 9.

26.4 Markov Auditing Company completes either 0, 1, or 2 audits in a day independently each
day with respective probabilities 20%, 40% and 40%. Let Xi denote the number of audits
on day i.

a) Find the mean and standard deviation of Xi.
b) Approximate the probability with the CLT that on the first 25 days, at least 36

audits are completed.
c) Use Chebyshev’s Inequality to upper bound the probability that on the first 25 days,

at least 36 audits are completed.
d) Use Chernoff’s bound with t = 0.5 to upper bound the same probability.
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Heavy and light tailed distributions

Question of the Day How can I model data with no variance? with no mean?

Summary A random variable X is said to have a heavy tailed distribution if there
is some i such that E[|X|i] = ∞. If i = 2 then X does not have a standard deviation,
and if i = 1 then X does not have a mean.
The standard Cauchy distribution is a heavy-tailed distribution. This distribution
does not have a mean. The density of a standard Cauchy is

2

τ
· 1

1 + s2
.

Another example of a heavy tailed distribution is the Zeta (also known as Zipf)
distribution with parameter s. This distribution has density for i ∈ {1, 2, . . .} of

1

ζ(s)
· 1
is
,

where ζ(s) is the Riemann Zeta function ζ(s) =
∑∞

i=1 1/i
s.

27.1 Light tailed distributions

Normal random variables are nice. The density τ−1/2 exp(−x2/2) goes down very, very fast as x
gets large, which is why the moment generating function E[exp(tZ)] is finite for any t. Note that
we are exponentiating Z here, which you would think would on average make it pretty big. But Z
is so unlikely to be far away from 0 that this moment generating function is defined for all t.
Exponential random variables are nice, but not quite as nice as normals. They have density

λ exp(−λs)1(s ≥ 0), and so they only have moment generating function that is finite for t ∈
(−∞, λ]. For A ∼ Exp(λ) with λ > 0, that means the moment generating function can be used
to show E[Ak] < ∞ for all integer k. That is, all moments of the random variable are finite. This
motivates the definition of a light tailed distribution.

Definition 67
A random variable A is light tailed if for all k ∈ {1, 2, . . .},

E[|A|k] < ∞.
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27.2 Heavy tailed distributions

The Central Limit Theorem is one of the most powerful theorems in mathematics, but it definitely
does not mean “all random variables are normal”. The CLT only applies when random variables
are being added, it does not apply when random variables are being multiplied. This case happens
in situations such as income distribution, population distribution, word usage, and many other
contexts.
In these types of data, often heavy tailed distributions are seen. These do not have a moment

generating function that is finite anywhere except t = 0. For these random variables, there exists
some k such that E[|X|k] = ∞.

Definition 68
A random variable X is heavy tailed if there exists some k such that E[|X|k] = ∞.

The first random variable we saw with a heavy tail was the Cauchy distribution with density

2

τ
· 1

1 + s2

which makes for X ∼ Cauchy,

‘E[|X|] =
∫
x∈R

2

τ
· |s|
1 + s2

ds

=

∫
x≥0

4

τ
· s

1 + s2
ds

=
2

τ
· ln(1 + s2)|∞0 = ∞.

27.3 The Zeta distribution

Another heavy tailed distribution with more flexibility in the heaviness of the tail is the Zeta
distribution.

Definition 69
Say that random variable X ∈ {1, 2, 3, . . .} has the Zeta or Zipf distribution with
parameter α > 1, if the density is

fX(i) =
1

ζ(α)
· 1

iα
,

where

ζ(α) =

∞∑
i=1

1

iα

is the Riemann Zeta function.

Remarks

• The parameter α must be greater than 1, since the Harmonic series

1 +
1

2
+

1

3
+ · · ·

diverges, while ζ(α) is finite for α > 1 by the Integral test.
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• When α ≤ 2, the Zeta distribution has no mean. When α ≤ 3, the Zeta distribution has no
variance.

Problems

27.1 For X ∼ Cauchy, find
P(X ∈ [0, 5]).

27.2 For X ∼ Cauchy, find
P(3X + 5 ∈ [0, 10]).

27.3 Estimate ζ(2.5) to four significant figures.

27.4 Suppose X ∼ Zeta(1.5). Find P(X ∈ [1, 10]) by summing a large enough number of
terms.

27.5 For X ∼ Zeta(α) with α > 1, prove that ln(X) always has finite mean.

27.6 For X ∼ Zeta(α), for what values of α is E[X3] finite?





Chapter 28

Uniform and Bernoulli marginal
distributions

Question of the DayA preserve has 53 animals, 24 of which are male and 29 of which
are female. Five of the animals are chosen uniformly at random without replacement
to be tagged. What is the average number tagged that are male?

Summary
Consider drawing a subset of k objects uniformly at random without replacement
from a set of n objects. Out of the n objects,m are marked in some way. LetX denote
the number of marked objects chosen. Then X has a hypergeometric distribution
with parameters n,m, and k. For i ∈ {0, . . . ,min(k,m)}:

P(X = i) =

(
m
i

)(
n−m
k−i

)(
n
k

) .

28.1 Drawing without replacement

Consider a small example. Suppose that four out of 12 items in a carton are defective. Two of the
items are selected uniformly at random. What is the chance that exactly 1 of the items drawn out
are defective?

This problem is an example of sampling without replacement and arises occasionally in statistical
sampling from small populations. This type of problem is rare in practice, as small populations
can usually be tested completely, and for large populations the difference in probabilities between
sampling without replacement and with replacement become very small very quickly.

That being said, this type of problem does come up once in a while, so it is helpful to see how to
tackle it.

For the example above, the numbers are small enough that we can deal with it directly. If I draw
two items, the possible outcomes are DD, DN, ND, or NN, where N means not defective and D
means defective.
We can calculate each of these probabilities using conditioning. For instance,

P(DD) =
4

12
· 3

11
.
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The first 4 comes from the 4 defectives, but if the first draw is a D, that leaves only 3 defectives,
giving the 3 in the numerator of the second fraction.
For DN, the calculation is

P(DN) =
4

12
· 8

11

and for ND, the calculation is

P(ND) =
8

12
· 4

11
.

Note that the product of the denominators (12 · 11) is the same as for DD, only the numerator
changes. Also note that for ND and DN, the numerator product is 8 · 4 and 4 · 8, which are the
same number because multiplication does not care what order you multiply the numbers. More
generally, for a sequence NNNDDNN, the product of the numerator is completely determined by
the number of D’s and N’s, and not by their order.

Finally, P(NN) = (8/12)(7/11). Therefore, if X is the number of defective items in the sample
of two,

P(X = 0) =
12

132
, P(X = 1) =

64

132
, P(X = 2) =

56

132

The probabilities have been left as fractions here to show that they add up to 1.
In general, we say that X has a hypergeometric distribution.

28.2 Theory

To find the average number of defectives in the draws (like in the question of the day), it helps to
have a more systematic approach to hypergeometric random variables.
Suppose that

(U1, . . . , Un) ∼ Unif(An).

One of our earliest results is that the Ui are independent random variables, each with marginal
distribution Ui ∼ Unif(A). However, it is possible to draw the Ui such that each is marginally
uniform, but they are dependent random variables.

Consider a vector (a1, . . . , an). A permutation is a reordering of the elements of the vector. For
instance, (3, 4, 1, 2) is a permutation of (1, 2, 3, 4).
For a set of size n, there are n! permutations. Let Sn denote the set of permutation vectors of

(1, 2, . . . , n). Then suppose we draw uniformly from the set of distributions.

Definition 70
Say that

(X1, . . . , Xn) ∼ Unif(Sn)

is a draw without replacement of the elements {1, . . . , n}.

Each marginal distribution will be uniform.

Fact 96
Let (X1, . . . , Xn) ∼ Unif(Sn). Then for all i ∈ {1, . . . , n}, Xi ∼ Unif({1, . . . , n}).

Recall that X−i denotes the vector of values with Xi removed, so for instance if
(X1, X2, X3, X4) = (4, 2, 1, 3), X−3 = (4, 2, 3).
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Proof. Fix i ∈ {1, . . . , n} and let j ∈ {1, . . . , n} as well. Then

P(Xi = j) =
#({x ∈ Sn|x(i) = j})

n!
=

(n− 1)(n− 2) · · · (1)
n!

=
1

n
,

so Xi ∼ Unif({1, . . . , n}).

Of course, the Xi are not independent! For instance, for i ̸= j,

P(Xi = Xj = 1) = 0,

while
P(Xi = 1)P(Xj = 1) =

1

n
· 1
n
=

1

n2
.

Now suppose that we take the Xi and use them to form indicator random variables. For some
fixed a ∈ {1, . . . , n}, let

Bi = 1(Xi ≤ a).

Fact 97
The Bi created in this way have marginal distributions:

Bi ∼ Bern(a/n).

Proof. Since Xi ∼ Unif({1, . . . , n}), P(Bi = 1) = a/n.

As the Xi are not independent, the Bi are not independent as well!

Example 62
Suppose n = 10 and a = 6. What is the chance that B1 = B2 = 1?

Answer Consider choosing X1 uniformly from {1, 2, . . . , n}. Then [X2|X1] ∼
Unif({1, . . . , n} \ {X1}. For B1 = B2 = 1, X1 ∈ {1, . . . , a} and X2 ∈ {1, . . . , a} \
{X1}. The chance that both these things happen is

a

n
· a− 1

n− 1
=

6

10
· 5
9
=

3

9
= 0.3333 . . . .

Here is another way to state the same type of problems. If I have a group of n objects, a of which
are marked in some way, and I draw out k objects without replacement uniform from the set, what
is the chance that exactly i of the objects have the special mark?

Example 63
An urn contains fourteen balls, ten are red and four are blue. If two balls are drawn out
uniformly without replacement, what is the chance that both are red?

Answer The chance that the first ball is red is 10/14. Then the chance that the second
ball is red given that the first is red (and remembering that we are drawing without
replacement) is (10/14)(9/13) = 0.4945 . . . .



178 CHAPTER 28. UNIFORM AND BERNOULLI MARGINAL DISTRIBUTIONS

Another way to approach this type of problem is using binomial coefficients. There are 14 choose
2 ways to pick two balls uniformly at random without replacement from the set of fourteen balls.
How many subsets are red? Well, there are 10 red balls and so there are 10 choose 2 ways to pick
two red balls to be our subset.
Therefore the answer is (

10
2

)(
14
2

) =
10·9
2!

14·13
2!

= 0.4945 . . . .

We get the same answer no matter how we approach the problem!
Now suppose we do not want all of the balls to be the same color.

Example 64
An urn contains fourteen balls, ten are red and four are blue. Six are drawn out uniformly
at random without replacement. Let X denote the number that are red. What is P(X =
3)?

Answer There are 14 choose 6 ways to draw six balls uniformly at random without
replacement from the set of fourteen balls. For instance, if the balls are numbered
{1, . . . , 14}, then the red balls are {1, . . . , 10} and {11, . . . , 14} are blue. Then a subset
with exactly three red balls is

{2, 7, 9, 11, 12, 13}.

How many such subsets are there? Well, the first three entries have to be red, and there
are 10 choose 3 ways to pick the red balls. The last three entries have to be blue, and
there are 4 choose 3 ways to pick the blue balls. Hence the total number of ways is(
10
3

)
·
(
4
3

)
.

That means the overall probability is(
10
3

)(
4
3

)(
14
6

) =
160

1001
= 0.1598 . . .

For B1, B2, . . . , Bn iid Bern(p), we say that

B1 + · · ·+Bk ∼ Bin(k, p).

For our B1, . . . , Bn coming from the draws without replacement, we say that the sum of the
first n of these random variables has a hypergeometric distribution.

Definition 71
Suppose (X1, . . . , Xn) ∼ Unif(Sn) and Bi = 1(Xi ≤ a). Then say

N = B1 + · · ·+Bk

has a hypergeometric distribution with parameters n, k, and a.
Write X ∼ Hypergeo(n, k, a).
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Fact 98
The density of X ∼ Hypergeo(n, k, a) is

fX(i) =

(
a
i

)(
n−a
k−i

)(
n
k

) 1(i ∈ {0, . . . ,min k, a}).

Remark The hypergeometric distribution and the geometric distribution have nothing whatso-
ever to do with each other!
Since the hypergeometric distribution is the sum of k different Bernoulli random variables, the

mean of the hypergeometric equals k times the mean of the Bernoulli random variables.

Fact 99
For X ∼ Hypergeo(n, k, a),

E[X] =
ka

n
.

Example 65
This fact is enough to handle the Question of the Day: with five animals chosen uniformly
from 53, where 24 are male, the expected number of male animals is (5 · 24)/(53) ≈
2.264 .

The variance is calculated similarly, although there is more work to be done because we
must calculate the covariances between pairs of Bernoulli random varaibles. First, this is the
result.

Fact 100
For X ∼ Hypergeo(n, k, a),

V(X) =
km

n
· (n−m)(n− k)

n(n− 1)
.

Proof. As before X = B1 + · · ·+Bk. Hence

V(X) =
k∑

i=1

V(Bi) + 2
∑
i<j

Cov(Bi, Bj) = kV(B1) + k(k − 1)Cov(B1, B2).

Since the Bi are Bernoulli with parameter a/n, V(Bi) = (m/n)(1−m/n) and

Cov(Bi, Bj) = E[BiBj ]− E[Bi]E[Bj ] = P(Bi = Bj = 1)− (a/n)2

=
a

n
· a− 1

n− 1
− a

n
· a
n

= −a

n

[
n− a

n(n− 1)

]
.
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Then

V(X) = k
a

n

[
1− a

n

]
− k(k − 1)

a

n

[
n− a

n(n− 1)

]
=

ka

n

[
1− a

n
− n− a

n
· k − 1

n− 1

]
=

ka

n

[
n(n− 1)− a(n− 1)− (n− a)(k − 1)

n(n− 1)

]
=

ka

n

[
(n− a)((n− 1)− (k − 1))

n(n− 1)

]
=

ka

n

[
(n− a)(n− k)

n(n− 1)

]

Notice that the without replacement makes the variance slightly less than it is in the binomial,
with replacement, case.

Problems

28.1 A small plastic bucket contains tiles with the letters MISSISSIPPI. Four of these tiles are
drawn out of the bucket without replacement.

a) What is the chance that all four S tiles are drawn?
b) What is the chance that exactly two out of the four drawn tiles are S?

28.2 A jar contains five blue and ten green marbles. Seven marbles are drawn from the jar,
what is the chance that exactly 3 are blue?

28.3 In the prodction output of a factory for a day are 500 screws, 10 of which are below
standard.

a) If 5 of the screws are drawn uniformly at random without replacement from the
500 screws, what is the chance that this sample does not contain a below standard
screw?

b) What is the expected number of below standard screws in this sample of 5?

28.4 Continuing the last problem, howmany screws should be in the sample so that on average
one of the sampled screws will be below standard?

28.5 Fifteen hundred of a particular bird are living in an ecosystem. Twenty are sampled
without replacement, and five are found to be carrying a particular gene. What number
of birds out of the 1500 should have this gene so that the expected number found in the
sample would be 5? (This type of estimate is called a method of moments estimate.)

28.6 Out of a set of 316 college students, 160 of which are 20 years or older and 156 of which
are younger than 20 years, 48 are chosen uniformly at random to complete a survey.
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a) What is the expected number of students completing the survey who are 20 years
or older?

b) What is the standard deviation of the expected number of students completing the
survey who are 20 years or older?





Chapter 29

The Multinomial distribution

Question of the Day Suppose that in a survey residents are asked if they are unsatis-
fied, satisfied, or highly satisfied with their long distance service. If each resident is
independently unsatisfied with probability 20%, satisfied with probability 70%, and
highly satisfied with probability 10%, what is the correlation between the number of
unsatisfied and highly satisfied participants?

Summary
Themultinomial distribution arises from trials where there are two or more pos-
sible answers. If each of n trials has outcome {1, . . . , k}, and the trials are iid, then
(X1, . . . , Xk) ∼ Multinom(n, p1, . . . , pk), where pi is the probability any given trial
has outcome i.
For each i ∈ {1, . . . , k}, Xi ∼ Bin(n, pi), and Cov(Xi, Xj) = −pipj .

In forming the binomial distribution, we considered Bernoulli experiments that had one of two
outcomes, success or failure, 1 or 0.
What if there are more than two choices? Perhaps there are three choices for each trial. In this

case, we could count the number of trials where choice 1 occurred, where choice 2 occurred, and
where choice 3 occurred.

As an example, consider a survey of 100 people. The results of the survey are the random
variables (X1, X2, X3), where X1 is the number under 18, X2 the number 18 to 25, and X3 the
number over 25. Suppose the probability a person surveyed is under 18 is 0.2, 18 to 25 is 0.5, and
over 25 is 0.3, Then

X1 ∼ Bin(100, 0.2)

X2 ∼ Bin(100, 0.5)

X3 ∼ Bin(100, 0.3),

with the restriction that X1 +X2 +X3 = 100. In general, we have the following.

Definition 72
Say that (X1, . . . , Xk) has amultinomial distributionwith parameters n, p1, . . . , pk
(write (X1, . . . , Xk) ∼ Multinom(n, p1, . . . , pk)) if the pi are nonnegative parameters
with p1 + · · ·+ pk = 1 and for all i, Xi ∼ Bin(n, pi) and X1 + · · ·+Xk = n.

183
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Recall that if Bi ∼ Bern(p) are independent for i ∈ {1, . . . , n}, then

X = B1 + · · ·+Bn ∼ Bin(n, p).

This same idea can be extended to the multinomial case.

Fact 101
Let W be a discrete random variable such that P(W = i) = pi where

∑n
i=1 pi = 1.

Then for W1, . . . ,Wn ∼ W iid, and i ∈ {1, 2, . . . , k}

Xi =

n∑
j=1

1(Wj = i).

Then (X1, . . . , Xk) ∼ Multinom(n, p1, . . . , pk).

Proof. Since each Xi is the sum of n independent indicator random variables that equal 1 with
probability pi. Xi ∼ Bin(n, pi). Also,

k∑
i=1

Xi =
k∑

i=1

n∑
j=1

1(Wj = i) =
n∑

j=1

k∑
i=1

1(Wj = i)

=

n∑
j=1

1(Wj = 1) + 1(Wj = 2) + · · ·+ 1(Wj = k)

=

n∑
j=1

1 = n.

In particular, this fact implies that if X ∼ Bin(n, p), then (X,n−X) ∼ Multinom(n, p, 1− p).

The density of a multinomial

It is possible to write down a density for (X1, . . . , Xn) multinomial. This density requires the
multichoose function.

Definition 73
Let a1, a2, . . . , ak be a set of symbols. The number of ways to arrange i1 a1 symbols,
i2 a2 symbols, and so on up to ik ak symbols in a row is given by the multichoose
function also known as themultinomial coefficient, written as(

i1 + · · ·+ in
i1, i2, . . . , in

)
.

The formula for calculating the multichoose expression is similar to that of a binomial coefficient.

Fact 102
For nonnegative integers i1, . . . , ik,(

i1 + · · ·+ in
i1, i2, . . . , in

)
=

(i1 + · · ·+ in)!

i1!i2! · · · in!
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Example 66
How many ways are there to arrange 4 a’s, 5 b’s, and 3 c’s in a row?

Answer There are 4 + 5 + 3 = 12 symbols, so this is(
12

4, 5, 3

)
=

12!

4!5!3!
= 27720

Example 67
For (X1, X2, X3) ∼ Multinom(12, 0.2, 0.5, 0.3), what is P(X1 = 4, X2 = 5, X3 = 3)?

Answer Let’s say the outcome of an individual trial is a with probability 0.2,
b with probability 0.5, and c with probability 0.3. Then one particular outcome
with 4 a’s, 5 b’s, and 3 c’s is caaabccbabbb. The probability of this outcome is
(0.3)(0.2)(0.2)(0.2(0.5)(0.3)(0.3)(0.5)(0.2)(0.5)(0.5)(0.5) = (0.2)4(0.5)5(0.3)3. Be-
cause multiplication commutes, this will be the probability of any outcome with 4 a’s, 5
b’s, and 3 c’s. So the total probability is(

12

4, 5, 3

)
(0.2)4(0.5)5(0.3)3 = 0.03742. . . .

The last example can be generalized to get the density for arbitrary multinomials.

Fact 103
For (X1, . . . , Xk) ∼ Multinom(n, p1, . . . , pk). Then

f(X1,...,Xn)(i1, . . . , in) =

(
n

i1, i2, . . . , ik

)
pi11 · · · pinn · 1(i1, . . . , ik ∈ {0, . . . , n})·

1(i1 + · · ·+ ik = n).

29.1 Covariance

The covariance between different components of a multinomial follows directly from the indicator
representation. It is negative because when one component is higher, all other components are
lower on average.

Fact 104
For (X1, . . . , Xk) ∼ Multinom(n, p1, . . . , pk), for all i ̸= j, Cov(Xi, Xj) = −npipj .

Proof. Let i ̸= j. Then the covariance between Xi and Xj is

Cov(Xi, Xj) = E[XiXj ]− E[Xi]E[Xj ] = E[XiXj ]− (npi)(npj),

Remember for indicator functions 1(A)1(B) = 1(AB). Also, Xi =
∑

k 1(Wk = i) and
Xj =

∑
ℓ 1(Wℓ = j), so

XiXj =
∑
k

∑
ℓ

1(Wk = i,Wℓ = j),
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which means
E[XiXj ] =

∑
k

∑
ℓ

P(Wk = i,Wℓ = j).

It would be nice if each of the probabilities were pipj . If that was true, then the double sum would
be n2pipj . Unfortunately, the probabilities only hold this value when k ̸= ℓ. When k = ℓ, the
probability is zero. Since k = ℓ occurs for exactly n of the terms in the double sum, the number of
terms where P(Wk = i,Wℓ = j) = pipj is n2 − n, with the rest being zero. Hence

E[XiXj ] = (n2 − n)pipj .

That makes
Cov(Xi, Xj) = (n2 − n)pipj − n2pipj = −npipj .

Problems

29.1 Suppose (W1,W2,W3,W4) ∼ Multinom(10, 0.3, 0.2, 0.4, 0.1). What is

P((W1,W2,W3,W4) = (1, 3, 2, 4))?

29.2 Fifteen individuals are given a question with five answers. If the probability for each of
the five answers is modeled as (0.2, 0.2, 0.1, 0.25, 0.25), then what is the chance that the
total counts for the answers comes to (4, 3, 1, 5, 2)?

29.3 Suppose (X1, X2, X3) ∼ Multinom(30, 0.5, 0.1, 0.4).

a) What is the distribution of X1?
b) What is E[X1]?
c) Find Cov(X1, X3).

29.4 Suppose (Y1, Y2, Y3, Y4) ∼ Multinom(100, 0.2, 0.3, 0.4, 0.1).

a) What is the distribution of Y3?
b) Find Cov(Y3, Y4).
c) Find Cov(Y3, Y3).

29.5 A research project is studying an animal population. There are 30 animals collected. Each
animal has a 10% chance of being genotype A, 20% of being genotype B, and 70% of
being genotype C. Let (NA, NB, NC) be the number of animals found of each genotype.

a) What is the distribution of (NA, NB, NC)?
b) What is E(NA)?
c) What is Cov(NA, NB)?
d) What is Cov(NA, NC)?

29.6 A psychology experiment is studying the effects on positive messages on sleep. Suppose
they survey 73 students. The model predicts that 25% will sleep well, 55% sleep moder-
ately well, and 20% will sleep badly. They record the number of students for each of the
three responses as (N1, N2, N3). Answer the following.



29.1. COVARIANCE 187

a) What is the distribution of (N1, N2, N3)?
b) What is E(N3)?
c) What is Cov(N1, N3)?
d) What is Cor(N1, N3)?





Chapter 30

Multinormal random variables

Question of the Day Suppose

A =

(
1 −1

0 3

)
.

Let Z = (Z1, Z2), where the Zi are iid standard normal random variables. For
W = AZ :

1. What is the distribution ofW = (W1,W2)?

2. Find Cor(W1,W2).

Summary
For Z1, . . . , Zn be iid standard normal random variables, µ ∈ Rn, A an n by n matrix,
andW = AZ . ThenW has amultivariate normal ormultinormal distribution.
WriteW ∼ Multinorm(µ,AAT ).
Call Σ = AAT the covariance matrix, and Σ(i, j) = Cov(Wi,Wj). The density of
W is

fW (w) = τ−n/2 det(Σ)−1/2 exp

(
−1

2
(w − µ)TΣ−1(w − µ)

)

Suppose Z1, . . . , Zn are iid standard normal random variables. Then because the Zi are inde-
pendent, knowledge of one does not affect knowledge of the other.
This makes calculation easy, but it is terrible for modeling real data, where often knowledge of

one factor changes the distribution of another.
For instance, for two tech stocks, if one is higher than average the other might also be higher.

Birth weight of bears might be positively correlated with available nutrition. Time spent watching
T.V. might be negatively correlated with crime rates, and so on.

Therefore it is helpful to have a distribution where each component has a marginal distribution
that is normal, but we allow for positive or negative correlation between the different components.

To keep things simple, start with two iid standard normal random variables, Z1 and Z2. One of
our rules for random variables is that the sum of independent normal random variables is also a
normal random variables. The parameters (mean and variance) are just the sum of the parameters

189
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for the original random variables. For instance, following those rules gives

Z1 + Z2 ∼ N(0, 2)

Z1 − 2Z2 ∼ N(0, 5),

where −2Z2 has variance (−2)2 and Z1 has variance 1 giving their sum with variance 5.
We could write these equations using matrices:(

1 1

1 −2

)(
Z1

Z2

)
=

(
W1

W2

)

or even more simply
AZ = W,

where A(1, 1) = 1, A(1, 2) = 1, A(2, 1) = 1, A(2, 2) = −2.
Now look at the covariance betweenW1 andW2.

Cov(W1,W2) = Cov(A(1, 1)Z1 +A(1, 2)Z2, A(2, 1)Z1 +A(2, 2)Z2)

= A(1, 1)A(2, 1)Cov(Z1, Z1) +A(1, 1)A(2, 2)Cov(Z1, Z2)

+A(1, 2)A(2, 1)Cov(Z2, Z1) +A(1, 2)A(2, 2)Cov(Z2, Z2)

= A(1, 1)A(2, 1) +A(1, 2)A(2, 2).

The simplification at the end comes from Cov(Zi, Zi) = V(Zi) = 1 and Cov(Z1, Z2) = 0 since
Z1 and Z2 are independent. This final result has a special form. A(1, 1)A(2, 1) +A(1, 2)A(2, 2) is
the dot product of the first row of A and the second column of A.
This idea can be generalized to Z1, . . . , Zn iid standard normal, and

AZ = W,

where A is an n by n matrix and W is then an n dimensional vector. Then a similar calculation as
above gives

Cov(Wi,Wj) = ri · cj ,

where ri is the ith row of the matrix A and cj is the jth column of the matrix A.
We often combine the covariances into a matrix where the (i, j) entry is Cov(Wi,Wj). Because

standard deviation is usually denoted by a lowercase Greek letter sigma, σ, this covariance matrix
is usually denoted with the capital Greek letter sigma. This looks like Σ.
From what we calculated earlier, we know that

Σ = AAT .

Here AT represents the transpose of the matrix, that flips the rows and columns. For example,

B =

(
1 2

3 4

)
, BT =

(
1 3

2 4

)
.

Once we have the covariances, we can add a constant to change the mean of the random variables.
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Definition 74
Let Z1, . . . , Zn be iid standard normal random variables. For A an n by n real matrix
and µ ∈ Rn, say

W = AZ + µ

has a multivariate normal or multinormal distribution with mean µ and covariance
Σ = AAT . Write

W ∼ Multinorm(µ,Σ).

Then the key fact about the multivariate normal is as follows.

Fact 105
ForW ∼ Multinorm(µ,Σ), E[W ] = µ, and for (i, j) ∈ {1, 2, . . . , n}2, Cov(Wi,Wj) =
Σ(i, j).

Example 68
Question of the Day. Suppose

A =

(
1 −1

0 3

)
.

Let Z = (Z1, Z2), where the Zi are iid standard normal random variables. ForW = AZ :

1. What is the distribution ofW = (W1,W2)?

2. Find Cor(W1,W2).

Answer BecauseW is a matrix times a vector of iid standard normal random variables,
it will have a multivariate normal distribution. The first parameter (the mean vector) is
the zero vector. The second parameter (the covariance matrix) is

Σ =

(
1 −1

0 3

)(
1 0

−1 3

)
=

(
2 −3

−3 9

)
.

We can use this information to solve the problems.

1. W ∼ Multinorm

((
0

0

)
,

(
2 −3

−3 9

))
.

2.

Cor(W1,W2) =
Cov(W1,W2)√
V(W1)V(W2)

=
−3√
2
√
9
= −0.7071 . . . .

Note that this means the variances of the individual components lie on the diagonal.
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Example 69
Suppose (W1,W2,W3) is multivariate normal with mean (1.2,−2, 3.4) and covariance
matrix  6.97 −0.64 −3.52

−0.64 6.8 −1.52

−3.52 −1.52 14.24


What is the distribution ofW2?

Answer All the marginal distributions for a multivariate normal are themselves
normal. The variance for W2 is the (2, 2) entry of the covariance matrix. Hence
W2 ∼ N(−2, 4.6) .

Often we are not told the matrix A. Instead, we are only given the covariance matrix Σ. This
covariance matrix will always have a property from linear algebra called positive definiteness. It
is always possible to figure out from such a positive definite matrix what the matrix A is so that
Σ = AAT . This is called the Cholesky decomposition of Σ.

Recall that for a standard normal random variable, the density is

fZ(z) = τ−1/2 exp(−z2/2).

When we take X = µ+ σZ , we get density

fX(x) = τ−1/2σ−1 exp(−(1/2)((x− µ)/σ)2)

= τ−1/2σ−1 exp

(
−1

2
((x− µ)σ−2(x− µ)

)
A similar result holds for the multivariate normal.

Fact 106
For W = (W1, . . . ,Wn) ∼ Multinorm(µ,Σ) and w = (w1, . . . , wn), W has joint
density

fW (w) = τ−n/2 det(Σ)−1/2 exp

(
−1

2
(w − µ)TΣ−1(w − µ)

)

Problems

30.1 Let Z1, Z2, Z3 be iid normal.
What is the distribution of

a) What is the distribution of Z1 + Z2 + Z3?
b) What is the distribution of 5− Z1 + 2Z2 + 4Z3?

30.2 Let Z1, Z2 be iid normal.

a) What is the distribution of Z1 + Z2?
b) What is the distribution of Z1 − Z2?
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c) What is the distribution of 4Z1 − 2Z2?

30.3 For Z1, Z2, Z3 iid normal let

W1 = Z1 + Z2 − 2Z3

W2 = −Z1 + Z3

W3 = Z3.

a) Find Cov(W1,W3).
b) What is the distribution of (W1,W2,W3)?

30.4 LetZ1, Z2, Z3, Z4 be iid standard normal random variables. LetW1 = Z1+Z2+2Z3−Z4,
W2 = Z2 − Z3 + 4Z4.

a) Find V(W1).
b) Find Cov(W1,W2).

30.5 Suppose that (X1, X2, X3) is a multivariate normal with mean 2.3, 1.8,−1.6) and co-
variance matrix 1.1 0 2.3

0 2.4 1.6

2.3 1.6 0.7


a) What is the distribution of X1?
b) What is Cov(X1, X3)?

30.6 Suppose that (Y1, Y2, Y3, Y4) is a multivariate normal with mean (0, 0, 0, 0) and covari-
ance matrix 

4.3 6.2 −2.3 2.6

6.2 3.4 −1.7 10.5

−2.3 −1.7 1.0 4.7

2.6 10.5 4.7 4.2


a) What is the distribution of Y2?
b) What is Cov(Y1, Y4)?





Chapter 31

Order Statistics

Question of the Day Let U1, U2, U3, U4 be iid uniform random variables over [0, 1].
What is the density of the second smallest number among the four?

Summary
The order statistics of random variables (X1, . . . , Xn) is the vector (X(1), . . . , X(n))
such that there is a permutation f : {1, . . . , n} → {1, . . . , n} such that X(i) = Xf(i),
and

X(1) ≤ X(2) ≤ · · · ≤ X(n).

SupposeX1, . . . , Xn are iid with the same distribution asX . IfX has density fX with
respect to Lebesgue measure, and cdf FX , then the density of the ith order statistic is

fX(i)
(s) = n

(
n− 1

i− 1

)
FX(s)i−1fX(s)(1− FX(s))n−i.

The order statistics of a vector are the same values as the vector, but listed smallest to largest.
For instance, if the vector was

(3.1, 2.8, 1.7, 8.1,−1.2, 2.8, 3.6),

then the order statistics would be

(−1.2, 1.7, 2.8, 2.8, 3.1, 3.6, 8.1)

If we labeled the original components of the vector using subscripts

(x1, x2, . . . , xn),

then we use subscripts surrounded by parentheses to indicate that they are the order statistics. So
the notation for the order statistics would be

(x(1), x(2), . . . , x(n)).

In the question of the day, (U1, U2, U3, U4) are random variables, and so the order statistics

(U(1), U(2), U(3), U(4))
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are random variables as well.
The question of the day asks about the second smallest number, which would be U(2) using order

statistics notation.
Consider P(U(2) ∈ da). This means that at least one of the uniforms is close to a, while

exactly one uniform is below a, and 2 more uniforms are above a. For a standing uniform U ,
P(U ∈ da) = 1(a ∈ [0, 1]) da. Therefore, for a ∈ [0, 1],

P(U(2) ∈ da) = (5)(1(a ∈ [0, 1]) da)

(
4

1

)
(a)(1− a)2 = 20a(1− a)21(a ∈ [0, 1]) da.

Here 5 is the number of choices among the uniforms to pick the one that will be near a, da is the
probability that the uniform chosen is actually within an interval of width da that surrounds a.
The factor

(
4
1

)
is the number of ways to choose which of the four remaining uniforms is below a,

and a is the chance that it actually is below a. Finally (1− a)2 is the probability that the remaining
two uniforms are above a.

0 1a

This is a Beta distribution with parameters 2 and 3. Write U(2) ∼ Beta(2, 3).
More generally, the following fact holds.

Fact 107
Suppose U1, . . . , Un are iid Unif([0, 1]). Then

U(i) ∼ Beta(i, n− i+ 1).

31.1 Formula for the density of an order statistic

For continuous random variables, this same argument can be generalized to give the following
method for calculating the density of order statistics.

Fact 108
For X1, . . . , Xn iid as X that has density fX with respect to Lebesgue measure, let FX

be the cdf of X . Then the ith order statistic has density

fX(i)
(s) = n

(
n− 1

i− 1

)
FX(s)i−1fX(s)(1− FX(s))n−i

with respect to Lebesgue measure.

Proof. Suppose X1, . . . , Xn are iid with cdf FX , and let i ∈ {1, . . . , n}. Then for the ith order
statistic to be less than a, at least i of the values of the Xj have to be at most a. So

P(X(i) ≤ a) =

n∑
j=i

(
n

j

)
FX(a)j(1− FX(a))n−j .

Differentiating gives

fX(i)
(a) =

n∑
j=1

(
n

j

)
[jFx(a)

j−1fX(a)(1− FX(a))n−j − (n− j)FX(a)j(1− FX(a))n−jfX(a)]
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Consider now that

f(n, j) = j

(
n

j

)
FX(a)j−1FX(a)n−j = n

(n− 1)!

(j − 1)!(n− j)!
FX(a)j−1FX(a)n−j ,

and

(n− j)

(
n

j

)
FX(a)j(1− FX(a))n−j−1 = n

n!(n− j)

j!(n− j)!
FX(a)j(1− FX(a))n−j−1

= n
(n− 1)!

j!(n− j − 1)!
FX(a)j(1− FX(a))n−j−1

= f(n, j + 1),

So the sum for j from i to n is

[f(n, i)− f(n, i+ 1)] + [f(n, i+ 1)− f(n, i+ 2)] + · · ·+ [f(n, n)− f(n, n+ 1)]

which is a telescoping sum. When j = n, n− j = 0, so the last term f(n, n+ 1) = 0, leaving the
sum as just f(n, j). Hence

fX(i)
(a) =

n∑
j=1

(
n

j

)
[jFx(a)

j−1fX(a)(1− FX(a))n−j − (n− j)FX(a)j(1− FX(a))n−jfX(a)]

= f(n, i)fX(a)

= n

(
n− 1

j − 1

)
FX(a)ifX(a)(1− FX(a)n−i.

Problems

31.1 Suppose X1, X2, X3 are iid with density f(s) = s/2 · 1(s ∈ [0, 2]).

a) What is the density of X(1)?
b) What is E[X(2)]?

31.2 Suppose T1, T2, T3 are iid Exp(3). What is the density of T(2)?

31.3 Suppose P(X = 0) = 0.3, P(X = 1) = 0.5, and P(X = 2) = 0.2. Suppose that
X1, X2, X3 are iid with the same distribution as X .

a) What is the distribution of X(1)?
b) What is E[X(2)]?

31.4 Suppose X has density

fX(i) = 0.21(X = 1) + 0.71(X = 9) + 0.11(X = 13).

Let X1, X2, X3 be iid as X . Draw the cdf of X(2)

31.5 What is the chance that for three iid uniforms over [0, 1], that the middle of the three
numbers falls in the interval [1/3, 2/3]?

31.6 What is the chance that for eleven iid uniforms in [0, 2], the middle number is between
0.9 and 1.1?





Chapter 32

Measurable functions and Random variables

Question of the Day Can random variables be expressed as functions?

Summary
For a measurable space (Ω1,F1) and measurable space (Ω2,F2), a function X :
Ω1 → Ω2 is measurable if for all A ∈ F2, the set {a ∈ Ω1 : X(a) ∈ A} ∈ F1. If
the measurable space (Ω1,F1) has a probability distribution P1 on it, then X induces
a probability distribution on Ω2 called the distribution of X , and X is a random
variable.

A random variable represented a number about which we have partial information. That is the
essence of a random variable, but it is not all that helpful when it comes to rigorous proofs. So
mathematicians have developed another view of random variables, that they are functions. Since
functions can be defined in terms of sets, this reduces probability to set theory, which was a popular
form of mathematical foundations in the first half of the twentieth century.
To explain this process begin with a measurable space. Remember that this is a set such as Ω1,

together with a collection of subsets of Ω1 that form a σ-algebra. Call the σ-algebra F1. We call F1

the measurable sets. Because Ω1 has measurable sets, now we can create a probability distribution
P1 : F1 → [0, 1].
Next, suppose that we have a second set Ω2 with its own set of measurable sets F2. Finally,

assume that we have a functionX : Ω1 → Ω2 that takes elements ofΩ1 and maps them to elements
of Ω2.
So the value of X(a) always lies in Ω2. Let A ⊆ Ω2. Then an event like {X ∈ A} is really

mathematical shorthand for the following:

{X ∈ A} = {a ∈ Ω1 : X(a) ∈ A}.

(This set {X ∈ A} is also known as the inverse of A under X .)
In order for this event {X ∈ A} to mean something, we want this new event to be measurable

back in F1. That is the motivation behind the following definition.

Definition 75
Let (Ω1,F1) and (Ω2,F2) be a pair of measurable spaces. Let X : Ω1 → Ω2. Then X is
ameasurable function if

(∀A ∈ F2)({a : X(a) ∈ A} ∈ F1).
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This is equivalent to saying that for all measurable events A in F2, we want the inverse event
{X ∈ A} to be measurable back in F1.

Example 70
Suppose Ω1 = [0, 1], Ω2 = {3, 4}, and F2 = {∅, {3}, {4}, {3, 4}}.
Consider the function

X = 3 + 1(a ≤ 0.3).

What events does F1 have to contain for X to be a measurable function?

Answer Looking at the inverse of measurable events in F2 gives

{X = 4} = {X ∈ {4}} = {a : X(a) ∈ {4}} = [0, 0.3].

Similarly

{X = 3} = (0.3, 1], {X ∈ ∅} = ∅, {X ∈ {3, 4}} = [0, 1].

So X is a measurable function if and only if

{∅, [0, 0.3], (0.3, 1], [0, 1]} ⊆ F1.

So at this point if A is measurable in Ω2, then {X ∈ A} is measurable in Ω1. Now suppose
that we have a probability measure over Ω1. Then {X ∈ A} can be assigned a probability. That
probability is of course the distribution of X since

PX(A) = P(X ∈ A).

Definition 76
If X : Ω1 → Ω2 is a measurable function, and P is a probability measure over Ω1, then
PX(A) = P(X ∈ A) is a probability measure over Ω2, and X is a random variable.

Remember that like all such definitions, this one helps us prove theorems and facts, but does not
really help with our intuition. The intuition remains the same as always: any reasonable function
of a uniform random variable is also a random variable.

Problems

32.1 Suppose Ω1 = [0, 1] and Ω2 = {1, 2, 3}. Say The function Y : Ω1 → Ω2 is defined as

Y (y) = 1 + 1(y ∈ [0.4, 0.6]) + 1(y ∈ [0.5, 0.7]).

What is Y −1({2})?

32.2 Suppose Ω3 = [−1, 1] and Ω4 = [0, 5]. For X : Ω3 → Ω4 defined as

X(x) = x2,

find X−1([0.5, 1.5]).
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32.3 Suppose Ω1 = [0, 1], Ω2 = {1, 2, 3}, and

F2 = {∅, {1}, {2}, {3}, {1, 2}, {1, 3}, {2, 3}, {1, 2, 3}.

For Y : Ω1 → Ω2, let

Y (y) = 1 + 1(y ∈ [0.4, 0.6]) + 1(y ∈ [0.5, 0.7]).

Thenwhat sets mustF1 (a sigma algebra overΩ1 contain in order for Y to be ameasurable
function?

32.4 Suppose Ω3 = [−1, 1] and Ω4 = [0, 5]. For X : Ω3 → Ω4 defined as

X(x) = x2,

and
F4 = {∅, [0.5, 1.5], [0, 0.5) ∪ (1.5, 5], [0, 5]},

what sets must F4 (a sigma algebra over Ω4) contain in order for X to be a measurable
function?

32.5 Continuing with Y from earlier, if P1 over Ω1 is uniform, what is P(Y ≤ 2)?

32.6 Continuing with X from earlier, if P3 over Ω3 is uniform, what is P(X ≤ 0.3)?





Part II

Experiments in probability
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Chapter 33

Getting to know randomness

Summary In this lab youwill get to understand the basic behavior of random variables
through use of the R programming environment. The sample command can be used
to draw random variables from a variety of distributions. The hist command can be
used to summarize date

Instructions In this first lab we will learn how to use the R programming environment to learn
about probability. This lab is divided into two parts to help you gauge your progress.

Before you begin Be sure that the latest version of R and RStudio are loaded onto your computer
or laptop.

• You can find R at https://www.r-project.org/. Click the link to download R in
the first paragraph, and proceed from there.

• RStudio is an IDE for R that you can download from posit at https://posit.co/
products/open-source/rstudio/. Click the DOWNLOAD RSTUDIO button in
the upper right corner of the website. Be sure to download RStudio Desktop and not
RStudio Desktop Pro.

First part To begin, start up RStudio, an integrated development environment (IDE) for R. In the
lower left window will be the console. Here you can type commands and see what R does.

• We will start with some simple arithmetic. Type
3 + 5

Note that R returns [1] 8. The 8 is of course the answer to 3 + 5, the [1] indicates that
the 8 is the first number in the output. Try using R to calculate 141 + 232− 14 and record
your answer.

• One thing that is useful is getting R to generate sequences. Try
1:6
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and report the result.

• Next let’s roll a fair six sided die. Try
sample(1:6, 1)

and report the result.

• Now try the sample sample(1:6, 1) command three times. You do not have to retype
the command three times, use the up arrow key to get back commands that you previously
used in R.

• R can of course draw three numbers from the sequence by passing more parameters to
sample. Try

sample(1:6, 3)

and report your result.

• Notice that the numbers that were returned were all different. That is the default behavior
for the sample command. You can see this causes problems when you try to sample more
values than are in the set. Try

sample(1:6, 7)

Report the last five words of the error message R gives.

• To find out more about sample, we can put a ? in front of the command to enter the help.
The help screen appears in the right hand corner. Try

?sample

What are the first two parameters for the sample command?

• In order to get sampling with replacement, we need to add another parameter. Try
sample(1:6, 7, replace = TRUE)

(Note that TRUE is all caps here.) Report your result.
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• Now lets keep your sample in another variable. In R, the <- command assigns a value to a
variable name. So try

x <- 5
y <- 3
x + y

Record your answer.

• Now let’s put our random sample in a variable. Try
results <- sample(1:6, 7, replace = TRUE)
print(results)

and record your results.

• Let’s generate a lot of fair six-sided die rolls, and look at a histogram of the results. Try
results <- sample(1:6, 10^7, replace = TRUE)
hist(results)

and sketch the result.

• The sequence 1:6 is an example of a vector in R. To create vectors manually, you can use
the c command (for combine). Try the following

die <- c(1, 1, 1, 2, 2, 3, 4, 5, 6, 7)
print(die)

Report the result.

• Now lets sample from this distribution. Try
results.die <- sample(die, 10^7, replace = TRUE)
hist(results.die)

and sketch the result.

• If we want to see the seventh entry from results.die, we can use square brackets. Try
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print(results.die[7])

and report your result.

• To see the first ten entries of results.die, combine the brackets with the sequence
notation. Try

print(results.die[1:10])

and report your result.

• We can check which of the first 10 entries are equal to 1 by using the == command. Try
print(results.die[1:10] == 1)

Did the TRUE and FALSE pattern match what you thought it would?

• If we apply a numerical function to the output, then it will convert TRUE to a 1 and FALSE
to a 0. Try

sum(results.die[1:10] == 1)

Record the result.

• We can estimate the probability that a 1 appears by taking the number of ones that appear
and dividing by the number of draws. Try

sum(results.die == 1) / length(results.die)

Record your result. Was this what you expected?

Second Part In this second part of the lab you will learn about the min, max, and sum
functions in R

• The min function finds the minimum of a vector of values. Try
v <- c(10, 4, 7)
min(v)

Record the result.

• The max function finds the maximum of a vector of values. Try
max(v)
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Record the result.

• The sum command finds the sum of a vector of values. Try

sum(v)

Record the result.

• We can use these commands on multiple rolls of our six sided die. Try

min(sample(1:6, 3, replace = TRUE))

and report your result. This is the smallest value among three rolls of a fair six-sided die.

• What is the probability that min{X1, X2, X3} = 1 where X1, X2, X3 ∼ Unif({1, . . . , 6})
are independent and identically distributed (abbreviated iid)? (Hint: it might be easier to
calculate the complement of this event.)

• Let’s test your answer with a simulation. First, we must generate a bunch of draws from the
minimum of the three rolls. We can use the replicate command in R to accomplish this.
Try

results <- replicate(10^6, min(sample(1:6, 3, replace = TRUE)))
hist(results)

and sketch your results. Because we are using the minimum function, the result is closer to
0.

• Estimate the probability that a 1 occurred with

sum(results == 1) / length(results)

Report the result.

• Now try out the max function with

results <- replicate(10^6, max(sample(1:6, 3, replace = TRUE)))
hist(results)
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Sketch the result.

• Last (but not least) let’s try summing the three die rolls, and sketching the histogram.
results <- replicate(10^6, sum(sample(1:6, 3, replace = TRUE)))
hist(results)

• Previously we used the sample command to draw from a set of objects with replacement,
but what if we draw without replacement? Then we end up with a random permutation of
the objects. Try

letters <- c(’a’, ’a’, ’a’, ’b’, ’b’)
perm <- sample(letters)
print(perm)

Report the result.

• Note that although we used the single quote ’ in defining the variable letters, R prints
out the result using a double quote ". In fact, you can use either the single quote or the double
quote in defining letters (which are called strings in most computing languages.
What should the probability that the letter ‘a’ falls into the third position be?

• Now let’s test that through simulation. Try
results <- replicate(10^5, sample(letters)[3] == ’a’)
sum(results)/length(results)

Report your estimate.

• We’ve been using sum(results) / length(results) to get the average value of
the results vector, but there actually is a command in R that does both these simultaneously.
Try

\mean(results)

• Try estimating the probability that ’a’ is in the fourth position. Does the position matter for
the probability?
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• Try estimating the probability that ’b’ is in the 3rd position.





Chapter 34

Continuous random variables

Summary In the first part of the lab you will learn to use the runif commands to
generate random variables that are uniform over [0, 1]. In the second part you will
learn about order statistics and the sort command.

• Try the command
runif(1)

This generates a single uniform random number over the interval [0, 1]. Try the command
three times and record your results. By the way, you don’t have to retype the command three
times: use the up arrow key to reissue commands that you previously used in R.

• Note that R could have generated all 3 numbers at once by changing the parameter given to
runif. Try

runif(3)

and record your results.

• Now let’s put 1000 random iid uniform [0, 1] numbers into an array with
a <- runif(1000)

Try typing a. You can see that as it displays the numbers. Perhaps more useful is a plot. Try
plot(a)

On the x-axis are the numbers 1 to 1000, indicating which uniform they are plotting. On the
y-axis are the actual numbers, which all fall between 0 and 1. Now try

hist(a)

in order to get a histogram of the numbers. Sketch the resulting plot.
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• Unlike with the discrete random variables from our last lab, for continuous random variables
there is no easy way to see how many bars should be in the histogram. The histogram will
probably contain about 10 bars by default, but we can change that by passing parameters to
the hist function. We can create more advanced sequences of numbers in R using the seq
command. Try

seq(0, 1, by = 0.1)

What do you get?

• Let’s make more bars by using the seq command to give the boundaries of the histogram.
Try

hist(a, seq(0, 1, by = 0.05))

How many bars are there in the histogram?

• Our histogram is looking a bit ragged, so let’s up the number of uniforms that we are using.
Try

hist(runif(10^6), seq(0, 1, by = 0.05))

About what is the frequency of each bar?

• You can get the inbuilt help for the hist command by using ?hist in R. Always the ?
in front of a command gives the help for that command. Of course, you can always learn
about a command in R by Googling it. If you try ?hist, you will see that there is a freq
parameter. By default this parameter is TRUE; by setting it to FALSE instead the density of
the numbers will be given. Try the following command

hist(runif(100000), seq(0, 1, by = 0.05), freq = FALSE)

What is the label on the y-axis now?

• Unlike discrete uniform random variables, continuous uniform variables can be shifted and
scaled. Start by scaling. This code takes the numbers that lie in the interval [0, 1] and
multiplies them by three so that they lie in the interval [0, 3].

results <- 3 * runif(10^6)

Our x-axis will run from 0 up to 3 to hold these new numbers.
hist(results, seq(0, 3, by = 0.05), freq = FALSE)

Sketch the resulting histogram.
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• The result of multiplying a uniform over [0, 1] by 3 is to scale the interval. The resulting
random variable is now uniform over [0, 3]. Now shift the uniform as well as scale by adding
2. This will make the new random variable uniform over [2, 5]. The following code does this
and then makes the x-axis from 1 to 6. Note that from 1 up to 2 and 5 up to 6 there are no
numbers, they are all uniform over [2, 5].

results2 <- 3 * runif(10^6) + 2
hist(results2, seq(0, 6, by = 0.05), freq = FALSE)

Sketch the resulting histogram.

• This is an estimate of the density function of the uniforms. Let’s try looking at the density of
functions like the square of uniforms. Recall that numbers can be squared using ^2.

seq(1, 4)
seq(1, 4)^2

Now try it with random draws.
runif(5)^2

Since numbers from 0 up to 1when squared are still in [0, 1] these do not look much different
at first glance. But the histogram of lots of draws will be very different! Try

hist(runif(100000)^2, breaks = 20, freq = FALSE)

and sketch the result. This is the density estimate for the square of uniforms. Remember that
squaring a number between 0 and 1 will make it smaller, so this pushes the density towards
smaller values.

• Repeat with the square root function instead.
hist(sqrt(runif(100000)), breaks = 20, freq = FALSE)

and sketch the result. This is the density estimate for the square root of uniforms. Remember
that taking the square root of a number between 0 and 1 will make it larger, so this pushes
the density towards values closer to 1.

• Next do this for the negative log function
hist(-log(runif(100000)), breaks = 20, freq = FALSE)
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and sketch the result.

• Now consider estimating something like P(U1 ≤ U2
2 ), where U1 and U2 are independent

uniform over [0, 1]. Try
mean(runif(10^6) <= runif(10^6)^2)

Report your result. Was this what you expected?

• Use the same idea to estimate P(U1 ≤ U3
2 ).
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Second part This part of the lab studies what are called the order statistics of random variables.
The first order statistics we will examine are the maximum and minimum of the random variables.

• Two more functions that are used a lot in probability are max and min. Try
max(10, 14)

and record the result.

• Now generate the maximum of two uniform random numbers.
max(runif(2))

To do this same action lots of times, use the replicate command
a <- replicate(10000, max(runif(2)))
hist(a, breaks = 20, freq = FALSE)

Sketch the resulting density estimate.

• What is the range of the density (the y-axis)?

• Now generate an equal number of random variables that is themaximum of three independent
uniforms, and sketch the resulting histogram.

• Another useful function is sum. Try the following.
a <- replicate(10000, sum(runif(2)))
hist(a, breaks = 20, freq = FALSE)

Sketch the result.

• Try the same thing, but with 100000 replications and summing 10 uniforms.
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• The maximum is the largest of the uniforms, and the minimum is the smallest. How do we
get at the middle one? We can use the sort command in R. Try
sort(runif(3))

and report your results.

• We can pick out the second element of this vector using sort(unif(3))[2]. (Note that
we use brackets [2] around the 2 when we are picking elements out of a vector.)

b <- replicate(10000, sort(runif(3))[2])
hist(b, breaks = 20, freq = FALSE)

and sketch the result. Notice how using this middle value is more likely to be in the middle
of [0, 1] than a vanilla uniform.

• When you sort random variables X1, X2, X3 you are creating what are called order statistics.
They are written using parenthesis around the subscript, so

X(1) ≤ X(2) ≤ X(3).

For example, if X1 = 0.34, X2 = 0.15, and X3 = 0.75, then X(1) = 0.15, X(2) = 0.34, and
X(3) = 0.75. Try generating 106 draws from the third order statistic of 10 uniforms, and
sketch a histogram of the result.

• Let’s consider how to calculate

P(X(2) < 0.3, X(3) ≥ 0.3}.

This is saying that the second smallest of the numbers is less than 0.3, and the third smallest
of the numbers is at least 0.3. For this to happen, exactly two of the uniforms must be at
most 0.3, and exactly eight of the uniforms must be at least 0.7. There are 10 choose 2 ways
to choose the small uniforms, and then the large uniforms are those that remain. The chance
the chosen uniforms are small is 0.32, and the chance that the unchosen uniforms are large
is 0.78. So altogether the chance is (

10

2

)
0.320.78.

You can find this value in R using
choose(10, 2) * 0.3^2 * 0.7^8
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What is this probability?

• Now let’s try to estimate this probability by simulation. We need to generate a random
variable that is 1 if X(2) < 0.2 and X(3) ≥ 0.3 and 0 otherwise. To do this we will need to
give replicate two commands. Multiple commands can be combined in R in a single line
using a semicolon symbol ;. We will put this in curly braces { and } to indicate that the
commands should be combined.

{v <- sort(runif(10)); as.integer(v[2] < 0.3 & v[3] >= 0.3)}

Report your result.

• By the way, a random variable that is either 0 or 1 is called a Bernoulli or an indicator random
variable. It is called an indicator random variable because it can be written using an indicator
function.

Y = 1(X(2) < 0.3, X(3) ≥ 0.3).

Now, one draw from the distribution of Y isn’t very helpful. Let’s do this a million times and
record the results.

results <- replicate(10^6, {v <- sort(runif(10)); as.integer(v
[2]<0.3 & v[3] >= 0.3)})

mean(results)

(Note this first command might take a while depending on the speed of your computer. Try
it first with 104 and then 105 to get an idea of how long 106 will take.) Report your estimate.

• Calculate exactly the following probability for X1, . . . , X10 iid Unif([0, 1]).

P(X(4) < 0.5, X(5) ≥ 0.5).

• Estimate the above probability using 106 samples from 1(X(4) < 0.5, X(5)). Report your
estimate.

• Consider a different problem. Suppose that T1 ∼ Exp(1) and T2 ∼ Exp(2) are independent
exponential random variables. Then because T2 has the higher rate, it will tend to be smaller
than T1. But what is the chance of that? To find out, first consider generating copies of the
T1 and T2 random variables uniformly, and comparing one by one.
An exponential random variable of rate λ can be generated by taking the negative log of a
uniform, and dividing by λ.
Try
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n <- 10^6
t1 <- -log(runif(n))
t2 <- -log(runif(n)) / 2
mean(t2 <= t1)

and report your estimate. (Note that here each component of t1 is Exp(1) and each compo-
nent of t2 is Exp(2).)

• Estimate the probability that T1 ∼ Exp(1) is at least T3 ∼ Exp(3) if the random variables
are independent.
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Conditioning

Summary Partial information about a random variable can be encoded using condi-
tioning. Write P(A|B) for the probability A occurs given B occurs. The conditional
probability formula is (for P(B) > 0)

P(A|B) =
P(AB)

P(B)
.

First part One way of thinking about the probability of an event is that an experiment is being
carried out simultaneously in an infinite number of parallel universes. The percentage of the
universes where the event happens is the probability of the event. This way of thinking about
probability is called the frequentist interpretation and gives us a way to estimate probabilities by
performing independent experiments.

• Let’s begin by generating some uniforms over {1, . . . , 10}. Note that we will be explicitly
setting parameters in the following command. This is so we do not have to remember what
order the parameters are supposed to come in.

sample(x = 1:10, size = 5, replace = TRUE)

Report your sample.

• Try the same command, but with the parameters in a different order.
sample(size = 5, replace = TRUE, x = 1:10)

• Now try generating 7 iid draws from {1, . . . , 10}. Write down the command you used.

• Now get a bunch of these draws by changing the value of size parameter. Try
results <- sample(x = 1:10, size = 10^6, replace = TRUE)
head(results)
length(results)
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What is the number of elements of the results vector?

• Plot the histogram of these results with
hist(results, breaks = 0:10)

and sketch the result.

• For an event A, we can estimate the probability that A occurs by counting out of our trials,
how many fell into A. For instance, for A = {1, 2, 3, 4}, typing

results[1:10] <= 4

returns a vector of entries that are TRUE or FALSE. If we use
sum(results[1:10] <= 4)

then all the TRUE values are converted to 1, the FALSE values are converted to 0, and then
summed up to tell you the total number of true statements. How many TRUE values were
there in your first ten uniforms?

• Now let’s estimate P(U ∈ A) by
sum(results <= 4) / length(results)

That tells us what percentage of uniforms out of the 106 draws were at most 4. Instead of
using sum and length and dividing, you can also use mean. Try

mean(results <= 4)

and report your result.

• To select some of the elements of results, we can use something like results[1:10].
Give this a try and report the result.

• We can use a logical statement to find elements that satisfy a certain criterion. We first put
the first ten elements of results into x. Next, we return only those elements of x that are at
most 6.

x <- results[1:10]
print(x)
print(x[x <= 6])

Report your results.
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• The last command picked out the first ten entries of results that were at most 6. Now let’s
do that for the whole million entries.

r6 <- results[results <= 6]

How many entries are there in r6?

• Now let’s plot the histogram of r6
hist(r6, breaks = 0:10)

and sketch the result.

• The resulting histogram looks a lot like that of the uniform distribution over the integers
1 through 6. This is not a coincidence! Using our conditioning notation, say that for
X ∼ Unif({1, . . . , 10}) it holds that

[X|X ≤ 6] ∼ Unif({1, 2, . . . , 6}).

The idea is that if a random variable X is uniform over B, and A ⊆ B, then [X|X ∈ A] is
uniform over A. Using this idea, what is the distribution of [X|X ≤ 3]?

The conditional probability formula

• Okay, now let’s use our uniforms to create events and test the conditional probability formula.
Recall that for random variables X and Y , if P(X ∈ A) > 0,

P(Y ∈ B|X ∈ A) =
P(Y ∈ B,X ∈ A)

P(X ∈ A)
.

If U ∼ Unif({1, . . . , 10}), then let A = {1, 2, 3, 4} and B = {3, 4, 5, 6, 7}. Then the
conditional probability formula says that

P(U ∈ A|U ∈ B) =
P(U ∈ A ∩B)

P(U ∈ B)
.

We still have 106 draws from the uniform in results. First let’s estimate P(U ∈ B) with
sum(results <= 7 & results >= 3) / length(results)

Note that the ampersand character & means logical and in R. That means that both the
number must be at most 7 and at least 3 for it to be true. Report your resulting estimate.

• Next estimate the probability that our result is both in A and in B

sum(results <= 7 & results >=3 & results <= 4) / length(
results)
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Report your estimate of P(U ∈ A ∩B).

Note that the results <= 7 part of the formula is redundant. If results <= 4 is true
then it must also be true that results <= 7.

• So our estimate for P(U ∈ A|U ∈ B) is the estimate for P(U ∈ A,B) divided by the
esttimae for P(U ∈ B). Record this estimate. .

• Now let’s try conditioning directly. First create a vector ub contains uniforms conditioned to
lie in B. Then see how many of these fall into A.

ub <- results[results <= 7 & results >= 3]
sum(ub <= 4) / length(ub)

Report this estimate of P(U ∈ A|U ∈ B). How does this compare to our previous estimate?
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Second Part
Bayes’ Rule

• One of the classic errors in probability is to mix up P(A|B) (the chance A occurs given
B occurs) and P(B|A) (the chance B occurs given A occurs.) Let’s tackle this with an
experiment. Suppose that U ∼ Unif([0, 1]), and A = {U ∈ [0, 0.3]}, while B = {U ∈
[0.2, 0.4]}. First let’s estimate P(A|B):

results <- runif(10^6)
mean(results[results <= 0.4 & results >= 0.2] <= 0.3)

Note that the results <= 0.4 &results >= 0.2] part only keeps uniforms in [0.2, 0.4].
This is the conditioning on B part of things. Then the <= 0.3 part of things estimates the
probability that A occurs given B. Report your estimate.

• Now let’s try it the other way around, and estimate the probability of B given that A occurs.
results_A <- results[results <= 0.3]
mean(results_A <= 0.4 & results_A >= 0.2)

Report your estimate. Recall that your first estimate was for P(A|B), and this estimate is for
P(B|A).

• Bayes’ Rule says that there is a way to turn the conditioning around, that

P(A|B) = P(B|A) · P(A)
P(B)

.

Let’s try that
prob.b <- mean((results <= 0.4) & (results >= 0.2))
prob.a <- mean(results <= 0.3)
prob.bgivena <- mean((results[results<=0.3] <= 0.4) & (results[

results <= 0.3] >= 0.2))
print(prob.bgivena * prob.a / prob.b)

Report your result.

• A classic problem involving Bayes’ Rule goes as follows. Suppose that there is a 1% chance
that a particular person has a disease. A test for the disease is correct 95% of the time, but is
wrong 5% of the time. If the test says that the person has the disease, what is the chance that
the person actually has the disease?
To simulate this, we will use U1 to determine if someone has the disease, and U2 to determine
if someone tests positive for the disease. Start with the following.

u1 <- runif(10^8)
u2 <- runif(10^8)
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Someone has the disease if U1 ≤ 0.01. If U1 ≤ 0.01, the test is positive if U2 ≤ 0.95. But if
U1 > 0.01 (they do not have the disease) the test is still positive if the test is wrong, that is,
if U2 > 0.95. Recall that & is logical and, while | is logical or. So we are only keeping the
results where the test is positive if we set

test.pos <- u1[((u1 <= 0.01) & (u2 <= 0.95)) | ((u1 > 0.01) & (
u2 > 0.95))]

print(length(test.pos)/length(u1))

Report the result of these commands. Does this fit with what you thought the probability of
a positive test would be?

• So test.pos now contains all the uniforms where the test was positive. Some of these were
positive because U1 ≤ 0.01 and U2 ≤ 0.95, but some are positive because U1 > 0.01 and
U2 ≤ 0.05. To estimate the chance that someone actually has the disease, try

mean(test.pos <= 0.01)

Report your result.

• Note that even though the test reported positive, the chance of having the disease is still only
about one in six. The reason is that it is much more likely that the person does not have the
disease and the test was wrong (0.99 · 0.05 = 0.0495) then it is that the person does have
the disease and the test was right 0.01 · 0.95 = 0.0095). So given the test was positive, the
chance of having the disease is only 0.0095/[0.0095 + 0.0495]. Find this value.

Uniforms in more than two dimensions

• The principle that for A ⊆ B, ifX ∼ Unif(B), then [X|X ∈ B] ∼ Unif(A) works in higher
dimensions as well. To see this in action, start with 1000 points drawn uniformly from the
unit square.

results_pts <- t(replicate(1000, runif(2)))

Break this down: the runif(2) command generates two uniform random variables over
[0, 1], together they make a single point in the unit square. Then the replicate command
repeats this procedure 1000 times. Finally, the t command transposes a matrix. This leaves
us with a matrix with two columns and 1000 rows, which is similar to how statistical data
would be presented.

Report the results of using head(results_pts).
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• Note that column one is labeled [,1] and column two is labeled [,2]. R uses statistical
notation where the comma is a wildcard character. So [,1] means all the items in any row
and the first column. Let’s plot the first column as the horizontal axis, and the second column
as the vertical axis.

plot(results_pts[,1], results_pts[,2])

This is what completely uniform random data looks like. Now let’s select those rows where
the x coordinate is less than the y coordinate.

r1 <- results_pts[results_pts[,1] <= results_pts[,2],]
plot(r1[,1], r1[,2])

What is the resulting shape of the points? In other words, for (X,Y )Unif([0, 1]× [0, 1]),

[(X,Y )|X ≤ Y ] ∼ Unif(A),

what is the region A?

Odds

• Another way to view conditioning is through the use of odds. The odds between two disjoint
events is the ratio of the probabilities for each of the events. So for instance, say

P(X = 1) =
2

9
, P(X = 2) =

3

9
, P(X = 3) =

4

9
.

Then the odds that X = 1 versus X = 2 is (2/9)/(3/9) = 2/3, which can be written as
2 : 3 (read 2 to 3). What are the odds of X = 1 versus X = 3?

• The advantage of the colon notation versus the fraction notation is that odds can be given
for more than two things simultaneously. For instance, the odds for X = 1 versus X = 2
versus X = 3 is

2 : 3 : 4.

This tells us that the odds for X = 2 versus X = 3 is 3 : 4. Suppose that Y ∈ {1, 2, 3, 4}
has odds of

3 : 1 : 2 : 7.

What are the odds of Y = 1 versus Y = 4?

• The nice thing about odds is that when we condition on an event, the odds stay the same,
we just keep the values given the information. For instance, for [Y |Y ∈ {1, 3, 4}, we just
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keep the odds numbers associated with 1, 3, and 4. So the odds Y = 1 versus Y = 3 versus
Y = 4 given Y ∈ {1, 3, 4} is

3 : 2 : 7.

The odds originally where 3 : 1 : 2 : 7 for numbers (1, 2, 3, 4). Conditioned on Y ̸= 2,
remove the number associated with 2, so the new odds are 3 : 2 : 7 for numbers (1, 3, 4).
What are the odds of Y being 1, 2, or 3 given Y ∈ {1, 2, 3}?

• To turn odds back into probabilities, simply divide by the *normalizing constant*. This is
just the sum of the numbers in the odds. For X with odds 2 : 3 : 4, add to get normalizing
constant 2 + 3 + 4 = 9. Then divide by 9 to get odds of (2/9) : (3/9) : (4/9). Then the
probability X = 1 is 2/9, and so on. What are the probabilities for Y ∈ {1, 2, 3, 4} for the
odds given earlier?

• Now let’s combine these ideas, We know the odds for Y being 1 versus 2 versus 3 given
Y ∈ {1, 2, 3}. So find P(Y = i|Y ∈ {1, 2, 3}) for i ∈ {1, 2, 3}.
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Continuous distributions

So far we have been using the hist command in R to approximate the density, but for continuous
random variables, the plot(density) command is much more useful. This command creates
what is called a kernel density plot, and while it does not handle discontinuities in the distribution
very well, overall it paints a clearer picture of what is happening with the distribution.

• Uniforms The first density that we have is for U ∼ Unif([0, 1]).

fU (s) = 1(s ∈ [0, 1]).

Remember that the indicator function 1 evaluates to 1 when the argument inside is true and
0 otherwise. So this is a fast way to write that fU (s) = 1 when s ∈ [0, 1] and fU (s) = 0
otherwise. Sketch a graph of this function.

• Now R does have a built in command for evaluating the density of random variables. The
name is d followed by the name of the distribution. Try the following commands

dunif(1.1)
dunif(0.6)
dunif(-0.3)

and report your results.

• By using a vector, R could have accomplished the same task in one line:

dunif(c(1.1, 0.6, -0.3))

returns all three values. Let’s use this to plot the density of the uniform. Try

x <- seq(-2, 2, by=0.1)
plot(x, dunif(x), type = ’l’)
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and sketch the results. Be sure to type a lowercase ell (l) for line and not a one (1) for the
type parameter. .

• Note that the plot did not really handle the discontinuities at 0 and 1 very well. Let’s get an
estimate of the density function by drawing samples from the uniform distribution. To do
this, we will use the density command. Try the following

results <- runif(10^6)
plot(density(results))

Sketch the result. This command tries to approximate what the density function is for the
random variable draws.

• This is called the kernel density plot. As with the deterministic plot, the kernel density plot
does not handle discontinuities very well. Let’s try an estimate of the kernel density of the
sum of two uniform random variables. Here the density will be continuous, and so the kernel
density estimate does a pretty good job.

r2 <- replicate(10^5, sum(runif(2)))
plot(density(r2))

Sketch your result.

• Exponential You can get an exponential random variable with parameter λ by taking the
negative of the natural logarithm of a uniform, and then dividing by λ. The density is

f(s) = λ exp(−λs)1(s ≥ 0).

Does this density have a discontinuity?

• Try
results <- -log(runif(10^6))
plot(density(results))

and sketch the result.
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• Let’s add a line indicating the true density on top of things.
x <- seq(0, 8, by = 0.1)
lines(x, exp(-1*x), col = "blue", lwd = 2)

Note the use of the lines command rather than the the plot command. If you had used
plot, R would have started over with a new plot. By using lines, R puts the result on top
of the existing plot.
Next, repeat this experiment for λ = 0.7.

plot(density(results / 0.7))
lines(x, 0.7 * exp(-0.7 * (x)), col = "blue", lwd = 2)

Sketch the result.

• Notice that when we divided the results variable with our random results by 0.7, we had
to multiply the density by 0.7 so that the area undeath the density curve stayed 1.
R has built in commands for generating exponential random variables. Try

results2 <- rexp(10^6, rate = 0.7)
lines(density(results2), col = "gold", lwd = 2)

Does the R command rexp generate data from the same distribution as the negative log
method?

• Is the kernel density estimate as accurate as before?

Gamma/Erlang When we sum exponential random variables together, we obtain a gamma
distribution. Let’s give it a try.

results <- replicate(10^5, sum(rexp(3, rate = 0.7)))
plot(density(results))

Sketch the result.

•• For X1, . . . , Xk iid Exp(λ), say that X1 + · · · + Xk = X ∼ Gamma(k, λ), where X has
density

fX(s) =
λksk−1 exp(−λs)

Γ(a)
1(s ≥ 0).

Here Γ(a) is called the gamma function. A useful fact is when a is an integer, Γ(a) = (a−1)!.
Test out this fact with
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integrate 4^6*s^5*exp(-4*s) from 0 to infinity

in Wolfram Alpha. What is the result? Is the result a factorial of an integer? (For instance, if
your result was 24, then 24 = 4!.)

• The command for directly generating gamma random variables in R is rgamma. Use this
command to generate 106 iid Gamma(3, 0.7) random variables and plot the kernel density
estimate.
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Second Part

• Beta The beta distribution comes from looking at the order statistics of uniform random
variables over [0, 1]. Given a set of random variables X1, . . . , Xn, the order statistics are the
same numbers, put in order. We use subscripts surrounded by parentheses to indicate order
statistics. That is,

X(1) ≤ X(2) ≤ · · · ≤ X(n).

So for instance, u <-runif(4) generates U1, . . . , U4 iid uniform over [0, 1].
The sort(u) command then generates their order statistics. Give this a try, and report your
four order statistics U(1), U(2), U(3), U(4).

• To get the ith order statistic from a vector v, use sort(v)[i]. Putting this all together, let’s
generate some betas:

results <- replicate(10^5, sort(runif(10))[4])
plot(density(results))

Sketch the result.

• Note that the density peaks at about 4/10, this is because we used the fourth order statistic
out of 10 uniforms. Try the seventh order statistic out of 10 uniforms and sketch the resulting
density.

• If we use the ith order statistic out of n uniforms (so X = U(i)) then

X ∼ Beta(i, n− i+ 1)

and the density is

fX(s) =
xi−1(1− x)n−i

B(i, n− i+ 1)
1(x ∈ [0, 1]).

where B is a function that gives the normalizing constant called the beta function. Note that
while lowercase Greek letter beta (β) is easy to tell apart from the lowercase Roman letter b,
the upper case Greek beta (B) looks exactly like the upper case Roman letter B. Use Wolfram
Alpha to find B(7, 10− 7 + 1) with

integrate x^(7-1)*(1-x)^(10-7) from 0 to 1

What is B(7, 10− 7 + 1)?
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• The command for directly generating beta random variables in R is rbeta. Use this command
to generate 106 Beta(7, 4) random variables and plot the kernel density estimate.

The next distribution we consider is the normal distribution, also known as the Gaussian.

• Try
z <- rnorm(10^6)
plot(density(z))

Sketch the result.

• This is called the standard normal distribution. If we scale and shift the data, we get a different
normal distribution.

plot(density(3 * z + 10))

Now the peak should be centered over 10 rather than over 0. Sketch the result.

• It turns out that multiplying a standard normal by 3 is the same as adding 9 independent
standard normals together. Try

z2 <- 10 + replicate(10^5, sum(rnorm(9)))
lines(density(z2), col = "blue")

(By using lines instead of plot here we add the drawing to the existing plot rather than
starting over.) Does the new kernel density estimate look like the old one?

• Now let’s take a look at the square of a standard normal. This is called the chi-squared
distribution. It is also written as χ2, since χ is the Greek letter chi. Try

plot(density(z^2))

and sketch the result.
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• The χ2 distribution is related to the gamma distribution. Try

lines(density(rgamma(10^6, shape = 1/2, rate = 1/2)))

What would you say the relationship is?

For all of the distributions (uniform, exponential, gamma/Erlang, beta, normal) that we have
looked at the kernel density plot has been very good. However, this is not always the case. In this
part of the lab we will look at a situation where the kernel density plot fails, namely, when the
density function is only going down polynomially rather than exponentially in the tails.

• Cauchy The kernel density plot by default in R smooths using a normal density. This works
well for random variables where the density is declining quickly (like normals, gammas,
betas, and exponentials) but not so well when the density is declining slowly (like Cauchys).
To see this effect, first let’s plot the density of a standard Cauchy.

x <- seq(-10, 10, by = 0.1)
plot(x, 1 / pi / (1 + x^2), type = "l", col = "blue", lwd =

2)

Sketch the result.

• Now let’s do the kernel density estimate. Cauchy random variables come from taking the
tangent of a uniform number over [−τ/4, τ/4].

results_C <- tan(pi * runif(10^6) - pi / 2)
plot(density(results_C))

Sketch the result.

• Why do they look so different? Because the Cauchy tails are only going down polynomially
we say they have a heavy tail. Heavy tailed distributions have a lot of very large and very
small values, which confuses the kernel density plot.

Another example of a random variable with a heavy tail isX = 1/U , where U ∼ Unif([0, 1]).
Try

results_X <- 1 / runif(10^6)
plot(density(results_X))
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Sketch the result. Again the presence of extremely large values throws everything off and
pushes everything into a spike.

Now we will look at the relationship between the beta and gamma functions.

• It turns out that the beta function and gamma function are related. In general:

B(a, b) =
Γ(a)Γ(b)

Γ(a+ b)

Since Γ(a) = (a− 1)! for integers a, this makes B(a, b) look like the inverse of a bi Recall
that for integers a, Γ(a) = (a − 1)!. Use this to find Γ(7), Γ(10 − 7 + 1), Γ(11), and
B(7, 10− 7 + 1).
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Expected value

Summary This lab will introduce you to the mean of random variables and the Strong
Law of Large Numbers

• Suppose I have four values (x1, x2, x3, x4) = (5, 1, 4, 2). Then the first four sample averages
are

5/1, (5 + 1)/2, (5 + 1 + 4)/3, (5 + 1 + 4 + 2)/4.

You can find these using the cumsum (cumulative sum) function in R. Try

x <- c(5, 1, 4, 2)
cumsum(x)

and report the result.

• Divide these numbers by 1, 2, 3, and 4 with

cumsum(x) / 1:4

• Verify that the last entry is the average of the four numbers with

mean(x)

• Now let’s try the same thing for 1000 uniforms over [0, 1].

u <- runif(1000)
y <- cumsum(u) / 1:length(u)
plot(y, type = "l", col = "blue")
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Make a rough sketch of the result.

• Look at just the last half of the values with
plot(y[501:1000], type = "l", col = "blue")

Sketch the result.

• Now generate 106 uniforms and again plot the sample averages. Sketch the result.

• This is an example of a set of sample averages that converge to a particular value. That value
is the mean (aka the expected value, expectation or average) of the random variable. Since
uniforms have continuous density, we can find them using the formula

E[U ] =

∫
u∈R

u1(0 ≤ u ≤ 1) du,

where u is there because we are trying to find the mean of U , and 1(0 ≤ u ≤ 1) is the
density of a uniform random variable.
The indicator function can be used to modify the endpoints of the integral. That is,

E[U ] =

∫ 1

0
u du,

In Wolfram Alpha, use
integrate x from 0 to 1

and give the result. .

• Now let’s try to estimate E[U2] in R.
mean(u^2)
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Report the result.

• Now try converting the indicator function in the integral to limits∫
x∈R

x21(0 <= x <= 1) dx

then evaluate in Wolfram Alpha and report the result.

• The fact that the sample average of U2
1 , U

2
2 , . . . , U

2
n converges to E[U2] is called the Strong

Law of Large Numbers, or SLLN, and is one of the major theorems in probability theory.

We say that a random variable U is integrable if E[|U |] is a finite number. (It will always be
either a finite nonnegative number or∞.)

The SLLN does not apply to all random variables! Try the following and sketch the result:

w <- 1 / runif(1000)
plot(cumsum(w) / 1:length(w), type = "l", col = "blue")

• Try it again but with 106 draws from 1/U .

• The plots show that there are sudden bursts of increases followed by a slow decline. If the
bursts are bigger than the decline parts, then the SLLN will not hold.

To get an idea of why these bursts occur, let’s look at the four largest values of w:

sort(w)[(length(w)-3):length(w)]

Report these values.
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• Note that the change in the overall sample average caused by the largest of these values is
the value divided by 106. How much did just this one value change the sample average?

• When the random variable occasionally has these super large values, it keeps making the
total sample average larger and larger. One way to see if this happens is to look at the integral
that gives E[|1/U |].
What is ∫

u∈R
(1/u)1(u ∈ [0, 1]) du?
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Second Part

• Cauchy distribution In the example of 1/U , |1/U | = 1/U because it is always positive. A
different example is the Cauchy distribution, which has density

fX(s) =
2

τ
· 1

1 + s2
.

First let’s draw the density of a Cauchy, and also a normal distribution for comparison
x <- seq(-5, 5, by = 0.1)
plot(x, dnorm(x), type = "l", col = "red")
lines(x, dcauchy(x), type = "l", col = "blue")

Sketch the result.

• The Cauchy and normal distributions have similar shapes, the difference being that the
Cauchy is a bit lower near 0 and more of the probability has been pushed out to the tails.
But that probability in the tails makes all the difference!
First let’s try the SLLN for normal random variables, repeating the experiment four times

replicate(4, mean(rnorm(10^6)))

What is the result?

• Based on these results, would you say that the SLLN holds for normal random variables?

• Let’s look at the mean of 106 Cauchy random variables four times.
replicate(4, mean(rcauchy(10^6)))

Record the results

• Based on these results, would you say that the SLLN holds for Cauchy random variables?

• Now let’s generate 106 Cauchy random variables and look at the sample average as the
number of samples grows.

r <- rcauchy(10^6)
plot(cumsum(r) / 1:length(r), type = "l", col = "blue")
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Sketch the plot.

• The Cauchy random variable will sometimes jump up and sometimes jump down. That is
because its density allows for both large positive and large negative numbers. Use

max(r)
min(r)

to find the largest and smallest values for the Cauchy, and report your results.

• Importance Sampling In Monte Carlo simulation, we construct a random variable whose
mean is equal to the target value.
Consider the integral ∫ 1

0
exp(−x1.5) dx.

Find the integral to four significant figures using Wolfram Alpha.

• Now let’s build a random variable with this integral as its mean. Start with U which has
1(x ∈ [0, 1]) as its density. Then

E[exp(−U1.5)] =

∫ 1

0
exp(−x1.5) dx,

so the following should approximate the integral.
u1000 <- runif(10^3)
mean(exp(-u1000^(1.5)))

Try this four times (to see what kind of variation in your answers you get) and report the
results.

• This idea of using a function of the random variable to get an integral is called importance
sampling. Generally speaking, importance sampling works better when the density of the
random variable is as close as possible to the integrand. The uniform density is flat which
does not match the shape of exp(−x1.5) at all.
Something closer would be exp(−x), but we also want the density to only be positive
over [0, 1]. Therefore, what we would like is an exponential random variable with rate 1
conditioned to lie in [0, 1].
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Recall that an exponential random variable can be found by using

T = − ln(U)

If T ∈ [0, 1], then what does that tell you about U? The probability that T ∼ Exp(1) falls

into [0, 1] is 1− exp(−1). LetW = [T |T ∈ [0, 1]] Then

fW (s) =
exp(−s)

1− exp(−1)
1(s ∈ [0, 1]).

To make the expectation match the integral then, we use

I =

∫
s∈R

(1− exp(−1)) exp(−s1.5 + s)
exp(−s)

1− exp(−1)
1(s ∈ [0, 1]) ds

= E[(1− exp(−1)) exp(−W 1.5 +W )].

Let’s put this all together and create our new random variables.
u_is <- runif(10^3, min = exp(-1), max = 1)
w_is <- -log(u_is)
plot(density(w_is))
x_is <- seq(0, 1, by = 0.01)
lines(x_is, exp(-x_is) / (1 - exp(-1)), type = "l", col = "red"

)

Sketch the result.

• Now let’s put everything together.
mean((1 - exp(-1)) * exp(-w_is^(1.5) + w_is))

Repeat this entire process four times and record the results to get an idea of the spread in the
estimate.

• Did you see more or less variation than when you used the uniform over [0, 1] variables?

• To see why this has less variation, let’s plot the values that (1− exp(−1)) exp(−W 1.5 +W )
can take on.

y_is <- (1 - exp(-1)) * exp(-x_is^1.5 + x_is)
plot(x_is, y_is, type = "l", col = "blue")
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Sketch the result

• Let’s look at the maximum relative error that can occur. Try
max(y_is) / min(y_is) - 1

What is the result?

• Now let’s try the same thing for the estimate using uniforms.
y2 <- exp(-x_is^1.5)
max(y2) / min(y2) - 1

Report the maximum relative error for the uniforms.
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Joint densities

Summary In this lab we will plot points directly drawn from a distribution in order
to visualize the density in one and two dimensions. You will also learn how to use an
auxiliary random variable in order to create draws from different densities.

First Part

• Recall, that fX is the density of X , if for all A,

P(X ∈ A) =

∫
x∈A

fX(x) dµ =

∫
x
1(x ∈ A)fX(x) dx.

So whenever the density is large, we expect more points in that area, and when the density
is small, we expect fewer points in that region.
The normal density fs = τ−1/2 exp(−s2/2) is large in the middle value of 0 and smaller in
the tails, so we expect draws to be concentrated towards the middle. Try

x <- rnorm(20)
stripchart(x)

Give a rough sketch of the result.

• Now try the same for 100 points and sketch the result.

• The Cauchy distribution has density 2τ−1(1 + s2)−1. It is also big in the middle but has
much larger tails. This means it is much more likely to have outliers that are very big or very
small. Try

x1 <- rcauchy(20)
stripchart(x1)

and sketch the results.
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• Now let’s go back to uniforms over [0, 1]. Try
x2 <- runif(1000)
plot(density(x2))

Sketch the plot.

• Now we will use an auxiliary variable to draw samples from the density

fX(s) ∝ s(1− s)1(s ∈ [0, 1]).

Sketch this function, recalling that you can graph functions in Wolfram Alpha using the
plot command.

• Note that the largest this density can be is 1/4 as s = 1/2. So my auxiliary random variable
will also be uniform from 0 to 1/4. Try the following

y2 <- 0.25 * runif(length(x2)))
plot(x2, y2)

This gives points that are uniform over [0, 1]× [0, 1/4]. Now let us restrict to points where
y < x(1− x).

keep2 <- which(y2 < x2 * (1 - x2))
plot(x2[keep2], y2[keep2])

Sketch this region that the points (x, y) are uniform over.

• Because we started with (x,y) uniform over [0, 1]× [0, 1/4], and kept the points that fell
into A = {(x, y) : x ∈ [0, 1], y ∈ [0, x(1 − x)]}, then (x2[keep2], y2[keep2]) are
uniform over A.
The area of [0, 1]× [0, 1/4] is 1/4. So the percentage of points from [0, 1]× [0, 1/4] that fell
into the region A times 1/4 gives an estimate of the area of A.

0.25 * length(keep2) / length(x2)

and report the result.
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• Now find
∫
s∈R s(1− s)1(s ∈ [0, 1]) ds exactly using Wolfram Alpha and compare to your

estimate above.

• In two and higher dimensions we also have densities. We can again take random samples to
get an idea of what various densities look like in practice. For instance, try

x3 <- runif(100)
y3 <- runif(100)
plot(x3, y3)

and sketch the result.

• Now let’s create a set of values that have the density

f(X,Y )(x, y) ∝ (x+ 2y)1({(x, y), x ∈ [0, 1], y ∈ [0, 1]).

Again we will use an auxiliary random variable z to accomplish this. The largest the function
can be is 3, and so z will be uniform over [0, 3].

z3 <- 3 * runif(length(x3))
keep3 <- which(x3 + 2 * y3 < z3)
plot(x3[keep3], y3[keep3])

For x3 values in [0, 1] and y3 values in [0, 1], x3 + 2y3 ∈ [0, 3], which is why z3 is chosen
to be uniform from 0 to 3. The code above is more likely to keep (x, y) values with large y
and x values.

• Let’s create a larger set of draws from this distribution.
n <- 10^6
x4 <- runif(n)
y4 <- runif(n)
z4 <- 3 * runif(n)
keep4 <- which(z4 < x4 + 2 * y4)

Now let’s estimate the normalizing constant for the density by multiplying the volume of
[0, 1]× [0, 1]× [0, 3] by the percentage of (x, y, z) that we kept.

3 * length(keep4) / n

Report your result. (Remember, the density is divided by this number to get a normalized
density.)
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• Now find the normalizing constant exactly using Wolfram Alpha and compare to your
estimate.

• Let’s check for independence.
print(sum(x4[keep4] < 0.5) / length(keep4))
print(sum(y4[keep4] < 0.5) / length(keep4))
print(sum((x4[keep4] < 0.5) & (y4[keep4] < 0.5)) / length(keep4

))

Report your estimates.

• Would you say that P(X < 1/2)P(Y < 1/2) = P(X < 1/2, Y < 1/2)?

• Find these values exactly using Wolfram Alpha and compare to your estimates. (Remember
to include the normalizing constant that you found in the density!)
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Second Part

• The correlation
Cor(X,Y ) =

E[XY ]− E[X]E[Y ]

SD(X) SD(Y )

will be 0 for random variables that are independent. If X and Y are independent, then
E[X|Y ] = E[X], and

E[XY ] = E[E[XY |Y ]] = E[Y E[X|Y ]] = E[Y E[X]] = E[X]E[Y ].

Try this with
z5 <- rnorm(10^6)
z6 <- rnorm(10^6)
mean(z5 * z6) - mean(z5) * mean(z6)

Report your result.

• We can form more random variables that are correlated by taking linear combinations of z5
and z6. Try

z7 <- z5 + 2 * z6
z8 <- z5 - z6

Note that if you add or subtract normal random variables, the result is still a normal random
variable! Test this with

plot(density(z7))
plot(density(z8))

and sketch the results.

• Now z7 is not determined completely by z5 because of the randomness in z6, but as z5
grows, so does z7 on average. The ratio of growth is one-to-one (also written 1-1), for every
unit rise in z5, the average value of z7 grows by the same amount. Check this by estimating
the covariance between z7 and z5 with

mean(z7 * z5) - mean(z7) * mean(z5)

Report your result.

• When z6 goes up, the average of z7 grows by twice the change in z6. So now let us look at
their covariance.
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mean(z7 * z6) - mean(z7) * mean(z6)

Report your result.

• The standard statistical estimate for covariance is actually slightly different than what we
have been using. Try

cov(z7, z6)

How does the result compare to the estimate we made earlier?

• Of course, covariance is symmetric in the variables. Try
cov(z6, z7)

Did you obtain the same estimate?

• To move from covariance to correlation, we must divide by the standard deviations of the
variables. Try

cov(z7, z6) / sd(z6) / sd(z7)
cov(z7, z5) / sd(z5) / sd(z7)

and report the results.

• Note that since z7 is more strongly correlated with z6 than z5, the estimate of the correlation
is much stronger. R has a shorthand command for finding correlation just like it has shorthand
for estimating the covariance. Try

cor(z6, z7)
cor(z5, z7)

to estimate the correlation directly. Does this match your earlier estimates?

• Now see what positively correlated draws look like when they are plotted. Try
plot(z5[1:100], z7[1:100])

and sketch the result.
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• The covariance of z6 and z7 is twice as great. Try
plot(z6[1:100], z7[1:100])

and sketch the result.

• What is the difference between this plot and the previous one?

• Next we turn our attention to random variables that are negatively correlated.
cov(z5, z8)
cor(z6, z8)

Report your results.

• Try sketching a plot of the first 100 points of negatively correlated normals.
plot(z6[1:100], z8[1:100])

and sketch the result.

• Recall that correlation is symmetric, so flipping the variables around yields similar results.
Try

plot(z8[1:100], z6[1:100])

and sketch the result.
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Transforming random variables

Summary

• Rotating points in R2.

• Rotational invariance of normal distribution.

• Functions in R.

First Part First we will learn how to rotate points in the x, y plane.

• Given a vector of points (
x

y

)
,

the rotation matrix R(t) is

R(t) =

(
cos(t) − sin(t)

sin(t) cos(t)

)
Notice that the Jacobian of the matrix is 1: that means it does not alter the areas of regions.
Then for a point v ∈ R2,

R(t)v

is the point v rotated counterclockwise by angle t.
In R, the cos and sin functions take an argument in radian measure. Multiply by τ/360 =
2π/360 to convert from degrees to radians. For instance, an angle of 20 degrees can be
converted to radians in R with

t <- 20 * 2 * pi / 360

Write down the rotation matrix for t equal to 20 degrees.
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• Now multiply this matrix by the column vector to find the point that is (0.5, 0.5) rotated by
20 degrees counterclockwise. Plot the original point and the rotated point.

• In R, one way we can create matrices using the rbind (which stands for row bind) function,
or with the cbind (which stands for column bind). Remember that we can create vectors
with c. Then we can bind these vectors together as follows.

t <- 20 * 2 * pi / 360
R <- rbind(c(cos(t), -sin(t)), c(sin(t), cos(t)))
x <- cbind(c(0.5, 0.5))

Report the values of R and x.

• The matrix multiplication operator in R is %*%. Try

R %*% x

and report the result.

• Now let’s look how the rotational symmetry of standard normal random variables works.
Try

z1 <- rnorm(10^6)
z2 <- rnorm(10^6)
plot(density(z1), col = "gold")
lines(density(z2), col = "blue")

and sketch the results.

• Now let’s rotate all of these points 20 degrees to the left.

A <- rbind(z1, z2)
B <- R %*% A

Let’s plot the first five points in the original and rotated points.

plot(A[1,1:5], A[2,1:5], xlim = c(-3, 3), ylim = c(-3, 3))
points(B[1,1:5], B[2,1:5], col = "blue")
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• Now let’s look at the densities of the rotated points. The notation B[1,] gives the first row
of the matrix B, while B[2,] gives the second row.

plot(density(B[1,]), col = "gold")
lines(density(B[2,]), col = "blue")

Sketch the result.

• Sidebar: functions in R Up until now, we have been restricting ourselves to using the
built-in functions in R, but in fact, we can create our own functions!
In creating our rotation matrix, we used a value t that can change. In R, the best way to do
this is with a function. Try the following.

rotate <- function(deg) {t <- deg * 2 * pi / 360; return(rbind(
c(cos(t), -sin(t)), c(sin(t), cos(t)))) }

rotate(20)

What the rotate function does is first calculate the value of t given the argument deg, and
then returns the appropriate matrix to the user. It executes these two lines every time the
rotate function is called with an argument.
The rotate(20) command should return your rotation matrix for 20 degrees from earlier.
Using the function rotate, calculate the rotation matrix for 110 degrees.

• Check that your new rotation matrix does what it is supposed to by calculating (1, 0) and
(0, 1) rotated 110 degrees.

• We can use a function to turn Cartesian coordinates into polar coordinates. Try entering the
following function.

car2pol <- function(v) {
x <- v[1]
y <- v[2]
r <- sqrt(x^2 + y^2)
t <- atan2(y, x)
return(c(r, t))

}
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Now car2pol(c(1, 2)) returns the polar coordinates for the point (1, 2). Find the polar
coordinates for the point (−2, 6).

• Now let’s find the polar coordinates when we draw two iid standard normal random variables.
We will repeat the experiment 1000 times with the replicate command.

results <- replicate(1000, car2pol(rnorm(2)))

Check to see the dimensions of results with the dim command.
dim(results)

What are the dimensions of results?

• The first coordinate is the R value, while the second coordinate is the θ value.
plot(density(results[2,]))

Sketch the result. (Note that here the θ values are forced to lie in [−τ/2, τ/2].)

• Now let’s sketch the density of the distances from the origin, and compare to the Rayleigh
density.

plot(density(results[1,]))
x <- seq(0, 4, by = 0.1)
lines(x, x * exp(-x^2 / 2), col = "blue", lwd = 2)
plot(density(results[1,]))

Sketch the result.

Second Part

• If we draw Z1, . . . , Zd iid N(0, 1), then the points have a direction that is uniform over all
possible directions. So we can create a function that generates uniformly from the surface of
a sphere as follows.

sphere.surface <- function(d) {
v <- rnorm(d)
return(v / sqrt(sum(v^2)))

}
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This is called Haar measure on the surface of a sphere. Let’s generate 106 of these, and plot
the first 100 of these.

results2 <- replicate(10^6, sphere.surface(2))
plot(results2[1, 1:100], results2[2, 1:100])

Sketch the result.

• Now let’s plot the density of the x values

plot(density(results2[1,])))

Sketch the result

• Now let’s move up to the surface of a 3-dimensional sphere.

results3 <- replicate(10^6, sphere.surface(3))
plot(density(results3[1,])))

Conjecture what the distribution of X is for (X,Y, Z) uniform over the surface of the
3-sphere.

• By symmetry,X , Y , andZ will have the same distribution. But because they lie on the surface
of the sphere,X2+Y 2+Z2 = 1. So they are not independent. However, givenX and Y , for
instance, Z is equally likely to be

√
1−X2 − Y 2 and −

√
1−X2 − Y 2. So E[Z|X,Y ] = 0

for all X and Y , which means that (X,Y ), (X,Z), and (Y, Z) are all uncorrelated. Check
this with

cor(results3[1,], results3[2,])
cor(results3[1,], results3[3,])
cor(results3[2,], results3[3,])

and report your results.
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• Now generate 106 points uniformly from the surface of the 4 dimensional sphere and plot
the kernel density estimate of the first coordinate.

When we go higher in dimension, the first coordinate is more and more likely to be close to
0. In general, when you are on the surface of a high dimensional sphere, you are very likely
to have all the coordinates very near 0. Of course, they are dependent, so if X1, . . . , Xd−1

are all 0, then Xd must equal 1.

• Now suppose (U1, U2) are iid uniform over [0, 1]. Let’s generate 1000 of these and sketch
the plot.

u1 <- runif(1000)
u2 <- runif(1000)
plot(u1, u2)

• Now let’s transform them usingW1 = U1 − U2,W2 = U1 + U2. Then the Jacobian of this
transform is a constant, so the transformed variables are still uniform. Test this with

plot(u1 - u2, u1 + u2)

Sketch the result.

• These provide another example of random variables that are dependent (the values that W2

can take on depend on the value ofW1) but which are uncorrelated. Check this with
cor(u1 - u2, u1 + u2)

Report your result.

• Moment generating functions Recall that for a random variable, X , the moment gen-
erating function is mgfX(t) = E[exp(tX)] whenever this is finite. For instance, if
X ∼ Unif({1, 2, 3}), then

mgfX(t) = (1/3)[et + e2t + e3t].
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Then for X1, . . . , Xn iid Unif({1, 2, 3}),

mgfX1+···+Xn
(t) = mgfX(t)n.

Find
P(X1 + · · ·+X20 = 40)

using the moment generating function and Wolfram Alpha.

• Using Wolfram Alpha, find the moment generating function of T ∼ Exp(1), which has
density fT (s) = exp(−s)1(s ≥ 0). Recall that

mgfT (t) = E[exp(tT )] =
∫
s
exp(ts)fT (s) ds.

Report the result.

• What is the moment generating function of T1 + T2 + · · ·+ Tn where Ti are iid Exp(1)?

• Find the moment generating function of G with density (s4/24) exp(−s)1(s ≥ 0).

• Do G and T1 + · · ·+ T5 have the same density?
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Discrete Distributions

Summary This lab will introduce you to the common discrete distributions.

First Part

• Start with the simplest discrete distribution, the Bernoulli or indicator random variables.
For U ∼ Unif([0, 1]), B = 1(U ≤ p) is a Bernoulli random variable with parameter p, and
we write B ∼ Bern(p). We can create such variables by using the as.integer function
together with logical statements involving uniforms. Try the following.

u <- runif(10)
print(u <= 0.3)
print(as.integer(u <= 0.3)).

Report your results.

• Now let’s do many of these and form a histogram.
b <- as.integer(runif(10^6) <= 0.3)
hist(b)

Sketch the histogram.

• WhenB1, B2, B3, . . . are an iid sequence of Bern(p) random variables, we call the sequence a
Bernoulli process. A Bernoulli process can be used to create three other important distributions.
The first is the binomial distribution with parameters n and p (write N ∼ Bin(n, p). This is
the sum of the first n random variables. For instance, if n = 6 and p = 0.3, then you can
generate one Binomial by using

b <- sum(runif(6) <= 0.3)

Let’s try creating 10 iid Bin(6, 0.3) random variables.
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b <- replicate(10, sum(runif(6) <= 0.3))

Report your results.

• Try generating 106 iid Bin(6, 0.3) and sketch the histogram of the results.

• As with all built in distributions, R can generate random binomials by placing an r in from
of the distribution name. Try

c <- rbinom(10^6, size = 6, prob = 0.3)

and sketch a histogram of the results. .

• The next distribution that comes from the Bernoulli process is the geometric. Here we examine
G = inf{i : Bi = 1} . So for instance, if the Bernoulli process starts with 0, 1, 1, 0, 0, 1, then
{i : Bi = 1} = {2, 3, 6}. Suppose the Bernoulli process starts with 1, 0, 0, 0, 1, 1. What are
the first few elements of {i : Bi = 1}?

• The infimum of a set is the greatest lower bound. For a subset of integers, it is kind of
like the minimum. So inf{7, 4, 6} = 4, and inf{5, 6, 7, . . .} = 5. One difference between
the infimum of a set and the minimum is that inf(∅) = ∞. With that in mind, what is
inf{2, 4, 6, 8, . . .}?

• Now we combine these ideas. A geometric random variable is the smallest value of i such
that Bi = 1. Formally, G = inf{i : Bi = 1}. So if the sequence starts 0, 0, 0, 1, 1, 0, then
{i : Bi = 1} = {4, 5, . . .}, and G = inf{i : Bi = 1} = 4. Generate a Bernoulli process and
find {i : Bi = 1} using the which function.

b <- as.integer(runif(10) <= 0.3)
print(b)
which(b == 1)

Report the result.

• Now let’s generate some geometric random variables using this approach.
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g <- replicate(10^4, min(which(runif(100) <= 0.3)))
hist(g, breaks=0:max(g))

Sketch the histogram of g.

• As with binomials, R has built in functions for drawing random geometric random variables.
Try

g <- rgeom(10^4, prob = 0.3)) + 1
hist(g, breaks=0:max(g))

and sketch the result. Notice that we had to add 1 to the random geometrics generated by
R. That is because some authors define a geometric as inf{i : Bi = 1} − 1. While both
definitions are valid, in this course we will always use the inf{i : Bi = 1} version.

• A slightly different way to write the definition of geometric random variable is to say

G = inf

i :
i∑

j=1

Bi = 1

 .

Then we can extend this definition to negative binomial distribution with parameters k and p,
by letting

Gk = inf

i :

i∑
j=1

Bi = k


Note that if B1, B2, . . . are iid Bern(p) and G1, G2, . . . are iid Geo(p), and

Nn = B1 + · · ·+Bn

Gk = G1 + · · ·+Gk,

Then Nn is binomial with parameters n and p, and Gk is negative binomial with parameters
k and p. Put another way, Nn is the random number of successes in a fixed number of trials
n, and Gk is the random number of trials needed to obtain a fixed number of successes k.
Try k = 1, which gives a geometric random variable

g <- rnbinom(10^4, size = 1, prob = 0.3) + 1
hist(g, breaks=0:max(g))

Sketch the result.
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• Next try adding together multiple random variables
g <- rnbinom(10^4, size = 4, prob = 0.3) + 1
hist(g, breaks=0:max(g))

Sketch the result.
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Second Part

• Poisson There are multiple ways to view the Poisson random variable. First, consider it as
the limiting distribution of a binomial random variable, where np equals a constant µ, while
n goes to infinity (which makes p go to zero.) For instance, let µ = 0. Try

n <- rbinom(10^6, size = 10, prob = 0.3)
hist(n, breaks=0:max(n))

Sketch the result. Notice that the most common value is 3 = (10)(0.3).

• Now sketch the histogram of 106 draws from Bin(100, 0.03). Note that np = (100)(0.03) =
3 remains the same.

• Now sketch the histogram of 106 draws from Bin(10000, 0.0003). Again np =
(10000)(0.0003) = 3 remains the same.

• At this point the distribution is very close to a Poisson distribution with parameter µ = 3
(write N ∼ Pois(µ)). Try the following.

n <- rbinom(10^6, size = 10, prob = 0.3)
hist(n, breaks=0:max(n))

Sketch the result.

• Poisson random variables are useful for modeling phenomena where there are lots of exper-
iments, each with a low chance of success. For instance, the number of defects in a large
assembly line with very low chance of failure, or the number of typos in words in a book,
typically follow a Poisson distribution.
Let’s calculate the probability that N = 0 for N ∼ Pois(µ) . This is the limit as n → ∞ of
P(Nn = 0) where Nn = Bin(n, µ/n). So

P(N = 0) = lim
n→∞

(
n

0

)
(µ/n)0(1− µ/n)n.
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Find this limit. Recall that the exponential function exp satisfies

exp(x) = lim
n→∞

(1 + x/n)n.

• Now try

n <- rbinom(10^6, size = 10000, prob = 0.0003)
mean(n == 0)

to verify your calculation above.

• To study the rest of the distribution, consider for a binomial random variable,

P(Nn = i+ 1)

P(Nn = i)
=

(
n

i+1

)
pi+1(1− p)n−(i+1)(
n
i

)
pi(1− p)n−i

=
n!

(i+ 1)!(n− i− 1)!
· i!(n− i)!

n!
· p

1− p

=
n− i

i+ 1
· p

1− p
.

For X ∼ Bin(100, 0.6), what is P(X = 51)/P(X = 50)?

• Now estimate this value with

n <- rbinom(10^6, size = 100, prob = 0.6)
mean(n == 51) / mean(n == 50)

• Note that for µ = np,

P(Nn = i+ 1)

P(Nn = i)
=

n− i

i+ 1
· p

1− p
=

µ− i(µ/n)

(i+ 1)(1− µ/n)
.

Go ahead and take the limit of this right hand side as n → ∞, keeping µ as a constant.
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• Use your limit to find
P(N = 2)

P(N = 1)

for N ∼ Pois(3).

• Verify your estimate with

n <- rpois(10^6, lambda = 3)
mean(n == 2) / mean(n == 1)

Report your result.

• So at this point, we know how to find P(N = 0), and how to find P(N = i+ 1)/P(N = i).
Using

P(N = 3) = P(N = 0) · P(N = 1)

P(N = 0)
· P(N = 2)

P(N = 1)
· P(N = 3)

P(N = 2)
,

find P(N = 3) for N ∼ Pois(3). By the way, this is known as a telescoping product.

• Poisson process The second way to think of a Poisson random variable is as coming from a
Poisson point process. In this case, if we generate a standard PPP (so it has rate 1) on [0,∞),
then

0 3

the number of points that fall into the interval [0, 3) will have a Poisson distribution. In a
standard PPP, the distance until the first point is an exponential random variable with mean
1.

In general, Pois(µ) is the distribution of the number of points that fall in the interval [0, µ).

The following code generates the first point in the process T1. If T1 is above µ, then 0
points fell in [0, µ). Otherwise, we generate the number that fell in [T1, µ), or equivalently
[0, µ− T1), and add that to the first point.

rpoisson <- function(mu = 3) {
t1 <- rexp(1)
if (t1 > mu) return(0)
else {x <- rpoisson(mu - t1); return(1 + x)}

}
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Replicate 105 iid Pois(3) draws with the function and plot the histogram.

• Having a function call itself during the execution is called recursion, and when recursion is
used as part of a simulation algorithm it becomes a perfect simulation algorithm.
Generally speaking, recursive algorithms tend to be slower than nonrecursive ones. You
can test this out with the system.time function, which times how long commands take to
execute. Try

system.time(results <- replicate(10^5, rpoisson(3)))
system.time(results <- rpois(10^5, 3))

and report your results.
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Central Limit Theorem

First Part

• Consider adding up a bunch of random variables. For instance, if we add up 10 iid uniforms
over [0, 1], we end up with a random variable S that has mean 5 and variance 10/12.

results <- replicate(1000, sum(runif(10)))
mean(results)
var(results)

Report your results.

• Look at a density plot for this sum of variables.

plot(density(results))

Sketch the kernel density estimate of S.

• The Central Limit Theorem says that as more and more random variables are added together,
the result looks more and more like the density of a normal random variable. It helps to
standardize the random variable by subtracting off the mean and dividing by the standard
deviation. The result will then have mean 0 and standard deviation 1, and will look similar
to the density of a standard normal random variable.

plot(density((results - 5) / sqrt(10 / 12)))
x <- seq(-2, 2, by = 0.1)
lines(x, dnorm(x), lwd = 2, col = "blue")
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Sketch the result.

• Consider the same procedure but this time with exponential rate 2 random variables.
results2 <- replicate(1000, sum(rexp(10, rate = 2)))
plot(density((results - 10 * 1 / 2) / sqrt(10 * (1 / 2)^2)))
lines(x, dnorm(x), lwd = 2, col = "blue")

Sketch the result.

• Notice that the result is a bit off compared to adding 10 uniforms. That is because like
the normal distribution, the uniform distribution is symmetric around its mean, while the
exponential distribution is not. We say that the exponential distribution is skewed. In general,
the skewness of a random variable X with mean µ and standard deviation σ is

skew(X) = E

[(
X − µ

σ

)3
]
.

Estimate the skewness for S = U1 + · · · + U10 where the Ui are iid Unif([0, 1]) and R =
T1 + · · ·+ T10 are iid Exp(2) with

mean(((results - 10 * 1 / 2) / sqrt(10 / 12))^3)
mean(((results2 - 10 * 1 / 2)/sqrt(10 * (1 / 2)^2))^3)

Report your estimates for the uniforms and exponentials.

Second part

• The CLT also holds for discrete random variables. Consider the rolls of a six sided die.
results3 <- sample(1:6, size = 1000, replace = TRUE)
hist(results3, breaks = 0:6)

• Now consider the rolls of the sum of a pair of dice.
results4 <- replicate(1000, sum(sample(1:6, size = 2, replace =

TRUE)))
hist(results4, breaks = 0:12)

• Now sum together 20 dice.
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results5 <- replicate(1000, sum(sample(1:6, size = 20, replace
= TRUE)))

hist(results5, breaks = 0:120)

Sketch the resulting plot.

• This will continue, with more and more dice rolls resulting in a better fit. LetX be the sum of
20 iid fair six-sided dice rolls. Now let’s look at how something like P(X ≤ 60). Subtracting
off the mean and dividing by the standard deviation gives something approximately normal.
The mean formula forX is (20)(1+6)/2 = 70, and the variance is (20)(6−1)(6+1)/12 =
700/12 = 58.333 . . ..
Estimate the mean and variance of results5 with mean and var an report your results.

• So

P(X ≤ 60) = P

(
X − 70√
700/12

≤ 60− 70√
700/12

)
≈ P(Z ≤ −1.309 . . .).

This can be found with pnorm((60 - 70) / sqrt(700 / 12)). Report this esti-
mate of the probability.

• The probability can also be estimated from the sample die rolls.
mean(results5 <= 60)

Report this Monte Carlo estimate.

• The last estimate is in some way better than the CLT estimate. The CLT estimate is a fixed
thing, it does not get any better. Increasing the number of samples from 1000 to a larger
number will give a better estimate. Try estimating the probability using 100000 samples and
report your result.





Part III

Mathematics needed for probability
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Chapter 42

Logic notation

Summary The symbol ∀ means for all or for every. The symbol ∃ means there exists
or there is at least one. The symbol ∧ means logical and, the symbol ∨ means logical
or, and ¬ means logical negation.

42.1 True and false

Much of this text is about determining the probability that events are true or false. Start with
logical statements.

Definition 77
A logical statement is a statement that is either true or false.

For instance 3 is greater than 1 is true and 7 is greater than 10 is false. Once we introduce
variables to the mix, the truth or falseness of a statement depends on the actual value of the variable.
For instance x > 1 is true when x = 2 but false when x = 1/2.

42.2 For all and for every

In the last example, there exists some value of x such that x > 1 is true. In logic notation, there
exists is represented by ∃. So the statement

(∃ real numbers x)(x > 1)

is true because there does exist at least one real value of x in the set of reals that makes the statement
at the end true.
On the other hand, some statements are true no matter what the value of the variable is. In

(∀ real numbers x)(x2 ≥ 0),

the symbol ∀ means for all, or for every, and means that the statement at the end (x2 ≥ 0) is true
for every possible of choice for the variable x as a real number.
Things really get interesting once we start to combine the two. Consider the logical statement

(∀x ∈ R)(∃y ∈ R)(x+ y ≥ 10).

This can be read as follows:
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For every real number x, there exists a real number y such that x+ y is at least 10.

This statement is true. However, the statement

(∃y ∈ R)(∀x ∈ R)(x+ y ≥ 10)

is false. Order matters in these logical statements!
In logic, “there exists” and “for all” are known as universal quantifiers. In this course, since we

are usually dealing with real numbers, we will use the shorthand (∀x) to mean (∀ real numbers x).

42.3 Proving logical statements

How can I be sure that (∀x)(∃y)(x+ y ≥ 10) is true? I can use a proof to show the result. In order
to prove such a statement, we begin by dealing with the quantifiers at the start of the proof.

For instance, let us try to prove (∀x)(x2 ≥ 0). The very first line of the proof comes from the fact
that x is using a universal quantifier. When I see a ∀ statement I have to instantiate the quantifier.
That means that in my first line of the proof, I let the variable be an arbitrary value.

So my first line of the proof that (∀x)(x2 ≥ 0). is

Let x be a real number.

Not very exciting! However, by doing this we are signaling that the value of x has been chosen,
and so now we can talk about the value of x as a fixed quantity.

For instance, because x is a fixed quantity, we know that it is either greater than or equal to 0, or
it is less than or equal to 0. Since the product of two positive numbers and two negative numbers
is nonnegative, this gives us our proof.
Written out completely, our proof is as follows.

Fact (∀x)(x2 ≥ 0)

Proof Let x be a real number.
Suppose that x ≥ 0, then x2 = x · x ≥ 0.
Suppose that x ≤ 0, then x2 = x · x ≥ 0.
Either way, x2 ≥ 0, and the proof is complete.

A couple of remarks about the proof.

• In mathematical writing, we use complete sentences. Often when thinking about the proof
we think in sentence fragments, but the final proof should always use complete sentences.

• We ended the proof with the symbol □, which indicates that the proof is complete. Another
common way to end a proof is with QED, which stands for the Latin phrase quad erat
demonstrandum which means “what was to be demonstrated.” Most areas of mathematics
have removed Latin phrases from their everyday use, and so the simple symbol□ is preferred
today.

• We used “suppose” here to break the possible values of x into different cases. Another
common way to say this is to use the word “case”. So “Case 1: x ≥ 0” and “Case 2: x ≤ 0”
could also have been used.
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When instantiating (∀x), we have to allow for any value of x. When instantiating (∃x), we get
to pick the value of the variable x. This can make these types of proofs very simple.

Fact (∃x)(x+ 5 ≥ 10)

Proof Let x = 5.
Then x+ 5 = 5 + 5 = 10 ≥ 10.

Now let us return to (∀x)(∃y)(x+ y ≥ 10). Our first line instantiates x

Let x be a real number.

Our next line should instantiate y. Because we have already instantiated x, we can now use x in
defining y. Now I want to end with x+ y ≥ 10. That means I want y ≥ 10− x. I cannot just say
y ≥ 10 − x because that is not a number, I need to write y is equal to something. For instance,
y = 10− x works. Hence my proof ends up being as follows.

Fact (∀x)(∃y)(x+ y ≥ 10)

Proof Let x = 5.
Let y = 10− x

Then x+ y = x+ 10− x = 10 ≥ 10.

It is important to note that my choice of y here was not unique. For instance,

Proof Let x = 5.
Let y = 14− x

Then x+ y = x+ 14− x = 14 ≥ 10.

is a perfectly valid proof. There are an infinite number of possible proofs for this statement, and
you should not worry about obtaining the “best” proof by trying to make y as small as possible.
Whatever works for the proof is great!

42.4 Logical and and logical or

The logical and operator is written ∧ and links true an false statements together. The logical and
of two logical statements is true only if the statements that it connects are all true. For instance,

(3 > 5) ∧ (7 > 5)

is false because (3 > 5) is false and at least one false statement is enough to make a logical and
false. However,

(5 > 3) ∧ (7 > 5) = T.

The logical or operator is written ∨ and is true if at least one of the two logical statements linked
is true. For example,

(3 > 5) ∨ (7 > 5)

is true because (7 > 5) is true and at least one true statement is enough to make a logical or true.
These can be written using a truth table.
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Definition 78
Logical and (∧) and logical or (∨) can be defined as follows for logical statements p
and q.

p q p ∧ q p ∨ q

T T T T
T F F T
F T F T
F F F F

42.5 Negation and proving things false

The negation operator ¬ switches true to false and false to true. For example, (3 > 5) is false, but
¬(3 > 5) is true. Similarly, (∀x ≥ 3)(2x ≥ 5) is true, but ¬(∀x ≥ 3)(2x ≥ 5) is false.

Definition 79
Logical negation (¬) can be defined using the following table.

p ¬p

T F
F T

Suppose that I want to prove that a statement p is false. Then we can use the same rules as
earlier, we just want to prove that ¬p is true. In order to use this, we need rules for how to negate
a logical statement.
For the final statement, this depends on the type of statement. For instance,

¬(x = 5) = (x ̸= 5),

whereas
¬(x ≥ 5) = (x < 5).

Consider negating a for all statement. This is saying that not all of the variable values are okay.
In other words, there exists a variable value that is not okay. So our rule is negation turns ∀ into ∃,
that is,

¬(∀p)(q) = (∃p)(¬q).

The choice of p that makes q false is sometimes called a counterexample.
Similarly, when we negate a there exists statement, we are saying that no matter what value we

pick, we fail. So negation turns ∃ into ∀, that is,

¬(∃p)(q) = (∀p) ̸= (q).

Consider our earlier example (∃y)(∀x)(x+ y ≥ 10). I claimed that this was false, but now we
have the tools to prove it. Instead of trying to prove it false, try to prove the negation is true.

¬(∃y)(∀x)(x+ y ≥ 10) = (∀y)¬(∀x)(x+ y ≥ 10)

= (∀y)(∃x)¬(x+ y ≥ 10) = (∀y)(∃x)(x+ y < 10).
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Fact (∀y)(∃x)(x+ y < 10)

Proof Let y ∈ R.
Let x = 9− y

Then x+ y = 9− y + y = 9 < 10.

42.6 If then statements

A common formulation in logic is “If something is true, then something else is true.” This can be
written using the if-then operator→, so

p → q

means if statement p is true, then q is true. This is also read as p implies q. It turns out that we can
write this operator using our previous operators as

(p → q) = (p ∧ q) ∨ ¬p

In other words, either p is not true, or if it is true, then q had better be true as well. This means
that when proving these sorts of statements, we do not need to worry about what happens when p
is not true. Our first line of an if-then proof is always “Let p be true.”
For instance,

Fact If a > 2, then a2 > 3.

Proof Let a > 2.
Then a · a > 2 · 2 so a2 > 4 > 3.

Problems

42.1 Prove that (∃x)(2x+ 3 ≥ 10).

42.2 Prove that (∀y)(y2 + 1 > 0).

42.3 Prove that (∀x)(∃y)(xy ≤ 0)

42.4 Write ¬(∀x ∈ R)(∃y)(2x+ y ≥ 4) without the negation.

42.5 Prove that if x > 3 then 2x > 6.

42.6 Prove that (∀ϵ > 0)(∃δ > 0)(∀x ∈ [−δ, δ])(x2 ≤ ϵ).





Chapter 43

Sets and Measures

Question of the Day What is a set?

Summary Sets are an unordered collection of elements. Measures such as counting
measure and Lebesgue measure tell us the size of a set. We can combine two sets
A and B to form the Cartesian product A×B, where (a, b) ∈ A×B if and only
if a ∈ A and b ∈ B. This can be extended to the Cartesian product of an arbitrary
number of sets.

The first mathematics that most people learn is the concept of a number. But what is a number
really? One way of thinking about numbers is that they represent the size of a set. For instance, if I
have a set of objects

{paperclip, pen, stapler},

then anyone would say that I have three objects. If I have the following fruit:

{apple, orange, banana},

then I have three objects. The fact that the first set was office supplies and the second set was fruit
does not matter.
About a century ago, several mathematicians tried to write the foundations of mathematics

using sets.

43.1 Sets

A set is a collection of elements where order does not matter. Put curly brackets around your
elements to indicate that it is a set. For instance,

{a, b, c}

is the set containing elements a, b, and c. It is the same as the set {b, c, a}. Write that a ∈ {a, b, c}
is true, b ∈ {a, b, c} is true, c ∈ {a, b, c} is true, and all other statements such as d ∈ {a, b, c} is
false.

Definition 80
A mathematical object A is a set if for another mathematical object a, it is possible to
determine if the logical statement a ∈ A is true or false.
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As throughout, T will be used for true and F for false.
For a basic set theory, this determination can be done using a Turing machine, but for more

advanced mathematics, more powerful oracle computers would be needed. Throughout this text,
only the Turing machine approach is needed.

Definition 81
If (a ∈ A) = T for set A and object a, say that a is an element of the set A.

There is also notation for when an object is not an element of A.

Notation 5
If (a ∈ A) = F, write a /∈ A.

Definition 82
Suppose that

(a ∈ A) → (a ∈ B)

for sets A and B. Then say that A is a subset of B, and write A ⊆ B.

Note that the subset notation looks a lot like the ≤ notation: always face the open end of the ⊆
symbol towards the larger set. For instance,

{a, b} ⊆ {a, b, c}, {a} ⊆ {a, b, c}, {b, d} ̸⊆ {a, b, c, }.

It helps to have a set with no elements, we call that the empty set.

Definition 83
If

(∀a)(¬(a ∈ A))

say that A is the empty set.

Notation 6
The empty set is often denoted {} or ∅.

There are two useful operations we would like to be able to do with sets. First, for a collection of
sets, consider elements that are in every single one of the sets. This is the intersection of the sets.

Definition 84
The intersection of two sets A and B is a set A ∩B such that

(x ∈ A ∩B) = (x ∈ A) ∨ (x ∈ B).

This can be extended to an arbitrary number of sets.

Definition 85
Suppose there is a set S such that for any element s ∈ S, As is also a set. Then the
intersection of the sets are

(x ∈ ∩s∈SAs) = (∀s ∈ S)(x ∈ As).
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Second, consider which objects are in at least one of a collection of sets. This is the union of the
sets.

Definition 86
The union of two sets A and B is a set A ∩B such that

(x ∈ A ∪B) = (x ∈ A) ∧ (x ∈ B).

This can be extended to an arbitrary number of sets.

Definition 87
Suppose there is a set S such that for any element s ∈ S, As is also a set. Then the
union of the sets are

(x ∈ ∪s∈SAs) = (∃s ∈ S)(x ∈ As).

Euler diagrams can be used to indicate properties of sets. For instance

Shaded region is A ∩B.

A B A B

Shaded region is A ∪B.

To summarize this notation:

∅ the empty set
∈ is an element of
/∈ is not an element of
⊆ is a subset of
̸⊆ is not a subset of
∩ intersection
∪ union

Here is another Euler diagram.

A

BC

D

This picture tells us that A ∩B, A ∩ C , A ∩D, and C ∩D are all the empty set. It also indicates
that C ⊆ B.
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43.2 Some important sets

Important sets usually are denoted with blackboard boldface letters. The two most important sets
of numbers used in this course are the following.

R the real numbers
Z the integers

43.3 Measures

A measure is another way of measuring the size of a set. There are two important measures that
will be used constantly throughout this course.

1. Counting measure. This counts the number of objects in a set. For instance, the counting
measure of {a, b, c} is 3 because it contains three distinct elements. We will write # for
counting measure, so #({a, b, c}) = 3. The counting measure of the empty set is 0, so
#(∅) = 0.
We can also write it as a sum

#(A) =
∑
i∈A

1,

or using indicator functions
#(A) =

∑
i

1(i ∈ A).

2. Lebesgue measure. This is the measure that is the same as length in one dimension, area
in two dimensions, volume in three dimensions and so on. For instance, the Lebesgue
measure of the interval [3.5, 7.2] is 7.2− 3.5 = 3.7. We will use ℓ for Lebesgue measure, so
ℓ([3.5, 7.2]) = 3.7.
Just like you can find counting measure by summing up 1’s, you can find Lebesgue measure
for all of the sets considered in this course by integrating the constant function that is always
1.

ℓ(A) =

∫
A
1(s) dA,

or we can write it using indicator functions

ℓ(A) =

∫
s
1(s ∈ A) dA.

For instance,

ℓ([3.5, 7.2]) =

∫
s∈[3.5,7.2]

1 ds = s|7.23.5 = 7.2− 3.5 = 3.7.

Let A be the triangle connecting vertices (0, 0), (0, 1), and (1, 0) in R2. Then

ℓ(A) =

∫
s∈A

1 dR2

=

∫ 1

x=0

∫ 1−x

y=0
1 dy dx

=

∫ 1

x=0
1− x dx

= −(1− x)2/210 = 1/2.
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See the later chapter on Integrals for more details about iterated integrals.
A useful fact about a measure m is that if two sets do not intersect, then the measure of the

union is the sum of the measure of the two sets. So in our second Euler diagram

m(A ∪B) = m(A) +m(B).

43.4 The Cartesian product of sets

If I have two sets A and B, then the Cartesian product, written A × B consists of ordered pairs
(also called 2-tuples) (a, b) where a ∈ A and b ∈ B.

Definition 88
The Cartesian product of two sets A and B (written A×B) has

(a, b) ∈ A×B if and only if a ∈ A and b ∈ B.

For instance

{a, b} × {c, d, e} = {(a, c), (a, d), (a, e), (b, c), (b, d), (b, e)}.

Both counting measure and Lebesgue measure are examples of product measures.

Definition 89
The measure µ is a product measure if for all measurable A and B,

µ(A×B) = µ(A) · µ(B).

Fact 109
Both counting measure and Lebesgue measure are product measures.

For example, let A = {a, b} and B = {c, d, e}. Then

A×B = {(a, c), (a, d), (a, e), (b, c), (b, d), (b, e)}.

Also,
#(A) ·#(B) = (2)(3) = 6 = #(A×B).

An example with Lebesgue measure, let A = [2, 3] and B = [6, 7.5]. Then

A×B = {(x, y) : x ∈ [2, 3], y ∈ [6, 7.5]},

here ℓ(A) = 3− 2 = 1, ℓ(B) = 7.5− 6 and ℓ(A×B) = (1)(1.5) = 1.5.
In other words, the area of a rectangle equals the product of the lengths of the sides!

Problems

43.1 What is the counting measure of {1, 2, . . . , 10}?

43.2 What is the counting measure of {1, 2, . . . , 10} ∩ {6, 7, . . . , 15}

43.3 a) What is {r, g, b} ∩ {g, b, y}?
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b) What is {r, g, b} ∪ {g, b, y}?

43.4 What is {1, 2, 3, 4, 5} ∪ {3, 4, 5, 6, 7}?

43.5 What is the counting measure of {r, g, b}?

43.6 What is the counting measure of {x1, x2, x3}?

43.7 What is the counting measure of {1, 3, 5} × {7, 9}?

43.8 What is the counting measure of {r, g, b} × {y,m, r}?

43.9 Let A = {r, g, b}. What is the counting measure of A×A×A×A?

43.10 What is the counting measure of {0, 1}10?

43.11 a) What is the Lebesgue measure of [2, 10]?
b) What is the Lebesgue measure of [−6, 2]?

43.12 What is the Lebesgue measure of [−1, 1] ∩ [0, 4]?

43.13 What is the Lebesgue measure of [3, 4.5]× [0, 6]?

43.14 What is the Lebesgue measure of [0, 2]4?

43.15 De Morgan’s Laws say that

(A ∪B)C = AC ∩BC

(A ∩B)C = AC ∪BC .

Assume this law hold for two sets, and then prove that

(A ∪B ∪ C)C = AC ∩BC ∩ CC .



Chapter 44

Functions

Summary

• A function f : A → B takes as input an element of A and returns as output a
single element of B.

• A function is one to one (also written 1-1) if

(f(a) = f(a′)) → (a = a′).

• A function is onto if

(∀b ∈ B)(∃a ∈ A)(f(a) = b).

Functions are the heart and soul of modern mathematics. Much of the appeal of mathematics as
a tool is its ability to transform problems from a complicated formulation to a simpler result. And
these transformations can often be written as functions.
This text will only be dealing with computable functions. These are essentially machines

that take one or more variables as input. These input parameters are also called arguments of
the function. The function then performs some computations and returns one or more output
variables. There is a formal definition involving a model called Turing machines, but that’s more
detail than is necessary here.

f

x1
x2

· · ·
xn

y1
y2

· · ·
ym

For instance, the computable function f(x1, x2) = x1 + x2 = y1 has as input (x1, x2) and
returns one output variable y1.

Definition 90
The set of possible inputs to a function f is called the domain. The set of possible
outputs of a function is called the codomain.
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In other words, a function takes inputs from its domain and transforms them into elements of
the codomain. Note that the codomain is not unique. For instance, I could say that f(x) = x2 has
domain and codomain equal to the set of real numbers, or I could say that the codomain consists
only of nonnegative numbers.

Notation 7
Write f : A → B if A is the set of inputs to f , and all outputs lie in B.

For a given b ∈ B, there might be 0, 1, or an infinite number of values a ∈ A such that f(a) = b.
When there is at least 1, we call the function onto.

Definition 91
For function f : A → B, the function is onto if

(∀b ∈ B)(∃a ∈ A)(f(a) = b).

Mathematicians use the term image to describe the output that comes from applying the function
to one or more inputs.

Definition 92
The image of a ∈ A under the function f is f(a). The image of A′ ⊆ A under the
function f is {b : (∃a ∈ A′)(f(a) = b)}.

In words, the image of a set is all possible outputs of the function when the input comes from
the set. We can characterize the onto property in terms of images.

Fact 110
Function f : A → B is onto or surjective if the image of A is B.

Onto functions have at least one input for every output. If a function has at most one input for
every output, the function is one-to-one.

Definition 93
A function f : A → B is one-to-one (also written 1-1) or injective if

(∀a, a′ ∈ A)((f(a) = f(a′)) → (a = a′)).

In words: if two inputs have the same output, the two inputs must have been the same input
after all! Now, if a function is both 1-1 and onto than it is called (big surprise) one-to-one and onto.

Definition 94
A function f is 1-1 and onto or a bijection if it is both one-to-one and onto.

Problems

44.1 Given a function f : {a, b, c} → {b, c, d}, answer the following.

a) What are the possible inputs to f?
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b) What are the possible outputs from f?

44.2 Given a function t : {[0, 3] → [0, 10]}, answer the following.

a) What are the possible inputs to t?
b) What are the possible output from t?

44.3 Suppose g(a) = b, g(b) = b, and g(c) = d. Is g one-to-one?

44.4 Suppose h(2) = h(3) = 4, h(4) = 5. Is h one-to-one?

44.5 Consider the function f(x) = x2.

a) Say f : [0, 1] → [0, 1]. Is f onto? Is it 1-1?
b) Say f : [−1, 1] → [0, 1]. Is f onto? Is it 1-1?
c) Say f : [−1, 1] → [0, 2]. Is f onto? Is it 1-1?

44.6 Suppose r(a) = b, r(b) = c, r(c) = c.

a) If r : {a, b, c} → {a, b, c}, is r onto?
b) If r : {a, b, c} → {b, c}, is r onto?
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Integration

Summary Integrals with respect to Lebesgue measure are the classic type of integral
that you encounter in Calculus. Integrals over counting measure are the same as sums.
In double (and triple and higher) integrals and sums, you can change the order of
integration (or summation) using Fubini’s theorem when the overall integral or sum
is finite, or using Tonelli’s theorem when the integrand or summand is nonnegative.

In Calculus you learned about integrals such as

A1 =

∫ 1

x=0
x2 dx,

or sums like

A2 =
∞∑
i=1

1/i2.

These both involve summing over objects, and to a mathematician these are both examples of
integrals. The first integral is with respect to Lebesgue measure, and the second is with respect to
counting measure. For µ equal to Lebesgue measure, we can write

A1 =

∫
x∈[0,1]

x2 dµ =

∫
x∈[0,1]

x2 dx.

This is a continuous integral.
The sum is also an integral, but with respect to counting measure.

A2 =

∫
i∈{1,2,...}

1/i2 d# =
∑

i∈{1,2,...}

1/i2.

Such an integral is a discrete integral.
Why is it useful to consider both integrals and sums as integrals (just with respect to different

measures)? Well, it allows us to write theorems about integrals and sums just using one notation,
rather than twice, once for continuous integrals and once for discrete integrals. Later on in this
chapter we will see Tonelli and Fubini’s theorems. These provide a nice example of this in action,
because they apply to general integrals whether the measure is Lebesgue or counting measure.
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45.1 Integrating over a measure

An integral consists of three parts:

1. The limits of integration.

2. The integrand.

3. The differential that tells us the measure being used for the integral.

These three parts can be remembered through the acronym LID: Limits, Integrand, Differential.
When µ is counting measure, an integral just becomes into a sum:

∫
x∈A

f(x) dµ =
∑
x∈A

f(x).

Example 71
Let f(i) = i for i ∈ {1, 2, 3, . . .}. Find∫

i∈{1,2,3,4}
f(i) dµ,

where µ is counting measure.

Answer Since µ is counting measure, this becomes∫
i∈{1,2,3,4}

f(i) dµ = f(1) + f(2) + f(3) + f(4) = 1 + 2 + 3 + 4 = 10 .

Example 72
For f(i, j) = i+ j, what is

∫
(i,j)∈A f(i, j) d# for A = {1, 2, 3} × {1, 2}?

Answer There are six elements in A, so the integral is the sum of the function over
these elements:∫

(i,j)∈A
f(i, j) = f(1, 1) + f(1, 2) + f(2, 1) + f(2, 2) + f(3, 1) + f(3, 2).

When µ is Lebesgue measure, first try to calculate the Riemann integral that you learned about
in your Calculus course. This is typically evaluated (when possible) by finding an antiderivative
and using the Fundamental Theorem of Calculus. If the Riemann integral exists and is finite, the
Lebesgue integral equals the same value.
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Example 73
Let f(x) = x. Find ∫

x∈[1,4]
f(x) dx.

Answer Since [x2/2]′ = xwhich is a continuous function over [1, 4], the Fundamental
Theorem of Calculus tells us∫

x∈[1,4]
f(x) dx =

x2

2

∣∣∣∣4
1

= 8− 1/2 = 7.500 .

45.2 Iterated integrals

When faced with an integral over 2 or more dimensions, it would be nice to be able to turn it into a
sequence of one dimensional integrals. For instance, we would like to be able to say that

∫
(x,y)∈[0,1]×[0,2]

f(x, y) dµ(x, y) =

∫
x∈[0,1]

∫
y∈[0,2]

f(x, y) dµ(y) dµ(x).

Unfortunately, this equality does not always hold. That being said, there are a couple simple
conditions under which this equality does hold.

1. Tonelli says that the equality holds when the integrand is nonnegative.

2. Fubini says that the equality holds when

∫
(x,y)∈A

|f(x, y)| dµ < ∞.

Note that if the integrand f(x, y) is both positive and negative for points (x, y) ∈ A, then one
approach is to first calculate ∫

(x,y)∈A
|f(x, y)| dµ

using Tonelli, then if it is finite you can use Fubini on the original problem.
Formally, we can state these theorems as follows.
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Theorem 8 (Fubini and Tonelli)
Suppose A ⊆ R2 and we wish to calculate

I =

∫
(x,y)∈A

f(x, y) dµ.

where µ = µ1×µ2 is a product measure. Suppose one of the following conditions holds:

1. Tonelli: f(x, y) ≥ 0 for all (x, y) ∈ A.

2. Fubini:
∫
(x,y)∈A |f(x, y)| dµ < ∞.

Then

I =

∫
{x|(∃y)((x,y)∈A)}

[∫
{y|(x,y)∈A}

f(x, y) dµ2

]
dµ1

=

∫
{y|(∃x)((x,y)∈A)}

[∫
{x|(x,y)∈A}

f(x, y) dµ1

]
dµ2.

Let’s start with an example using Lebesgue measure.

Example 74
Find ∫

(x,y)∈[0,1]×[0,2]
x2y dµ,

where µ is Lebesgue measure.

Answer Since the integrand is nonnegative for all (x, y) ∈ [0, 1] × [0, 2], Tonelli
applies, and ∫

(x,y)∈[0,1]×[0,2]
x2y dR2 =

∫
x∈[0,1]

∫
y∈[0,2]

x2y dy dx

=

∫
x∈[0,1]

x2y2/2|20 dx

=

∫
x∈[0,1]

2x2 dx

= (2/3)x3|10 = 2/3 ≈ 0.6666 .

Here’s an example that uses counting measure.
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Example 75
Find

∞∑
i=1

i∑
j=1

(1/2)i.

Answer This is ∫
(i,j):i∈{1,2,...},j∈{1,...,i}

(1/2)i dµ,

where µ is counting measure. Since the integrand is nonnegative, we can apply Tonelli.
Note that the event

{(i, j) : j ∈ {1, . . . , i}, i ∈ {1, 2, . . .}}

is the same as the event

{(i, j) : j ∈ {1, 2, 3 . . .}, i ∈ {j, j + 1, j + 2, . . .}}

So by Tonelli

∞∑
i=1

i∑
j=1

(1/2)i =

∞∑
j=1

∞∑
i=j

(1/2)i

=
∞∑
j=1

(1/2)j/(1− 1/2)

= 1/(1− 1/2) = 2 .

Note that

∞∑
i=1

i∑
j=1

(1/2)i =
∞∑
i=1

i(1/2)i,

so the above example also shows that Tonelli can be useful in evaluating sums over a single variable.
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Example 76
Find

I =

∫
(x,y):x∈[0,1],y∈[x,1]

1− xy dy dx.

Answer Because the integrand is nonnegative for all (x, y) such that x ∈ [0, 1] and
y ∈ [x, 1], this is by Tonelli

I =

∫
x∈[0,1]

∫
y∈[x,1]

1− xy dy dx

=

∫
x∈[0,1]

y − xy2/2|1x dx

=

∫
x∈[0,1]

1− x/2− (x− x3/2) dx

=

∫
x∈[0,1]

1− (3/2)x+ x3/2 dx

= x− (3/4)x2 + x4/8|10
= 1− 3/4 + 1/8 = 3/8 = 0.3750 .

In the example above, the limits for the y variable were allowed to depend on x because x had
already been set by the integral on the outside.
What if we had wanted to do y on the outside? The set A looks like

1

1

The smallest y can be in this region is 0, and the largest is 1. Once we pick y, then x can range
from a low value of 0 to a high value of y. Hence

I =

∫
y∈[0,1]

∫
x∈[0,y]

1− xy dx dy

=

∫
y∈[0,1]

x− x2y/2|y0 dy

=

∫
y∈[0,1]

y − y3/2 dy

= y2/2− y3/8|10 dy
= 1/2− 1/8 = 0.3750 .

and we end up with the same answer. (Thank goodness!)
The Tonelli and Fubini conditions were written for two-dimensional integrals, but actually

applies to any integral of finite dimension.
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45.3 Integration by parts

Integration by parts (IBP) allows us to slide a derivative from one factor inside an integral over to
another factor. Its form is the same as the product rule for integration.

fg′ = [fg]′ − f ′g.

You can see that this formula allows us to slide the derivative from g over to f , at the cost of
having to add a negative sign and another term [fg]′. There are three steps to using IBP

1. Write your integrand as f · g′.

2. Use the product rule formula to slide the derivative from g over to f .

3. Solve the simpler integral.

Usually you want to slide the derivative over to a term that becomes simpler when a derivative
is applied. For instance, [x]′ = 1, so often f(x) = x. Also [ln(x)]′ = 1/x, so we also try to slide
derivatives over natural logs.

Example 77
Find ∫ 1

0
x exp(−x) dx

using IBP.

Answer Here f(x) = x and g′(x) = exp(−x). Hence g(x) = − exp(−x). Plugging
into the formula for IBP gives∫ 1

0
x exp(−x) dx =

∫ 1

0
x[− exp(−x)]′ dx

=

∫ 1

0
[x(− exp(−x)]′ − [x]′(− exp(−x)) dx

= −x exp(−x)|10 +
∫ 1

0
exp(−x) dx

= − exp(−1)− (0) + (− exp(−x))|10
= 1− 2 exp(−1) ≈ 0.2642 .

Problems

45.1 Evaluate the following integrals:∫ 3

0
x3 dx,

∫ 0

−∞
x exp(x) dx,

∫ ∞

−∞
x exp(−x2/2) dx.

(Note, after you have worked problems like this out, I encourage you to use tools like
Wolfram Alpha to check your answers. For instance, type

integrate x^3 from 0 to 3
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at the website www.wolframalpha.com to check your answer to the first integral.)

45.2 Find
∫∞
0 x2 exp(−x) dx.

45.3 Find ∫ 2

1
x ln(x) dx

by moving a derivative from x = [x2/2]′ over to ln(x) to get rid of it.

45.4 Find
∫ 1
0 − ln(s) ds.

45.5 Suppose
I =

∫ ∞

0

∫ x

0
|f(x, y)| dy dx < ∞

so Fubini can be applied. Replace the question marks with the appropriate function of y.

I =

∫ ∞

0

∫ ?

?
f(x, y) dx dy.

45.6 Suppose
∞∑
i=1

i∑
j=1

|w(i)| < ∞.

Replace the question marks with the appropriate function of j.

∞∑
i=1

i∑
j=1

w(i) =

∞∑
j=1

?∑
i=?

w(i) < ∞.

www.wolframalpha.com
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Chapter 46

Worked problems

1.1 For A ∈ F , find P(A ∪AC).

Solution Since A ∪AC = Ω, this is just P(Ω) = 1 .

1.3 Prove that if the state space Ω is measurable, so is ∅.

Solution The empty set ∅ is the complement ofΩ, so ifΩ ∈ F , that impliesΩC = ∅ ∈ F .

1.5 If [0, 1− 1/n] is measurable for every n ≥ 2, show that the interval [0, 1) is measurable.

Solution Since measurable sets are closed under countable union, it suffices to show
that

[0, 1) = ∪∞
n=1[0, 1− 1/n].

Let x ∈ ∪∞
n=1[0, 1 − 1/n]. Hence there is an n such that x ∈ [0, 1 − 1/n] so 0 ≤ x ≤

1− 1/n < 1. Hence x ∈ [0, 1).

Let x ∈ [0, 1). Then 0 ≤ x < 1. Let i = ⌈1/(1 − x)⌉. Then since f(x) = ⌈x⌉ is an
increasing function,

1

1− x
≤
⌈

1

1− x

⌉
= i.

So
1− x ≥ 1/i

and
−(1− x) ≤ −1/i.

Adding 1 to both sides then gives

1− (1− x) = x ≤ 1− 1/i.

So x ∈ [0, 1− 1/i] and must be in x ∈ ∪∞
n=1[0, 1− 1/n].

1.7 A partition of a set Ω is a collection of sets that are disjoint whose union is Ω. Suppose A,
B, and C partition Ω. What is P(A) + P(B) + P(C)?

Solution Since A, B, and C form a partition they are disjoint, so

P(A) + P(B) + P(C) = P(A ∪B ∪ C) = P(Ω) = 1 .

301
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1.9 Suppose for i ∈ {0, 1, 2, . . .},

P([i, i+ 1)) = (1/3)i+1.

What is P([0,∞)?
Solution Since Ai = [i, i+ 1) are disjoint, and

∪∞
i=1[i, i+ 1) = [0,∞),

we have

P([0,∞)) = P(∪Ai) =
∞∑
i=1

P(Ai) =
∞∑
i=1

(1/3)i =
1/3

1− 1/3
= 0.5000 .

2.1 Suppose A and B are disjoint events, P(A) = 0.1 and P(B) = 0.7. What is P(A ∪B)?
Solution Since A and B are disjoint, the probability of the union is the sum of the
probabilities, so

0.1 + 0.7 = 0.8000

2.3 Suppose P(A) = 0.4, P(B) = 0.8 and P(AB) = 0.3. What is P(A ∪B)?
Solution Using the principle of inclusion/exclusion,

P(A ∪B) = P(A) + P(B)− P(AB) = 0.4 + 0.8− 0.3 = 0.9000

2.5 If P([0, 3]) = 0.3 and P([5, 9]) = 0.6, what is P([0, 3] ∪ [5, 9])?
Solution Since probability is a measure and [0, 3] and [5, 9] are disjoint, this is

P([0, 3]) + P([5, 9]) = 0.3 + 0.6 = 0.9000 .

2.7 Say P(A1) = P(A2) = P(A3) = 0.2. Give an upper bound for P(A1 ∪A2 ∪A3).
Solution From the union bound, P(A1 ∪ A2 ∪ A3) ≤ P(A1) + P(A2) + P(A3) =
0.2 + 0.2 + 0.2 = 0.6000 .

2.9 Suppose a fair six sided die with sides labeled {1, 2, . . . , 6} is rolled three times. There
are many possible outcomes, for instance, (2, 3, 3) is one possible outcome.

a) How many possible outcomes are there?
b) If each outcome is equally likely, what must the probability of each outcome be?
c) What is the chance of getting all 6’s on the three rolls?
d) What is the chance of not getting all 6’s on the three rolls.

Solution

a) There are 6 · 6 · 6 = 216 such outcomes.
b) Note that

P(1, 1, 1) + P(1, 1, 2) + · · ·+ P(6, 6, 6) = 1.

If each of the 216 outcomes have the same probability, that means each outcome
must have probability 1/216. Hence 1/216 = 0.004629 . . . .
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c) From the last argument, P(6, 6, 6) = 0.004629 . . . .

d) From the complement rule, this is

1− 1

216
=

215

216
= 0.9953 . . . .

2.11 P(A ∪B) = 0.3. What is P(ACBC)?
Solution Recall De Morgan’s Law: (A ∪B)C = ACBC . Hence

P(ACBC) = P((A ∪B)C) = 1− P(A ∪B) = 1− 0.3 = 0.7000 .

2.13 Suppose P(A ∈ [0, 3]) = 1, P(A ∈ [1, 2]) = 0.3 and P(A ∈ [2, 3]) = 0.6. What is
P(A ∈ [2, 5])?
Solution Since P(A ∈ [0, 3]) = 1,

P(A ∈ [2, 5]) = P(A ∈ [2, 5] ∩ [0, 3]) = P(A ∈ [2, 3]) = 0.6000 .

3.1 Let U ∼ Unif({1, 2, 3, 4, 5, 6}). What is P(U ≤ 4)?
Solution There are four values ({1, 2, 3, 4}) that are less than or equal to 4. There are
six total values. So because it is uniform, this is 4/6 = 0.6666 . . . .

3.3 Let A = {a, b, c} and B = {d, e}. What is A×B?
Solution This set consists of six vectors:

A×B = {(a, d), (a, e), (b, d), (b, e), (c, d), (c, e)}.

3.5 Let W ∼ Unif({a, b, c, d}). What is P(W ∈ {a, c})?
Solution SinceW is uniform over a finite set,

P(W ∈ {a, c}) = #({a, c})
#({a, b, c, d})

=
2

4
= 0.5000

3.7 Let X1 ∼ Unif({1, . . . , 6}) and X2 ∼ Unif({1, . . . , 6}) be independent. Then what is
P(X1 +X2 = 6)?
Solution Out of the 36 possibilities in {1, . . . , 6} × {1, . . . , 6}, there are 5 that add up
to 6:

(1, 5), (2, 4), (3, 3), (4, 2), (5, 1).

Since both X1 and X2 are uniform, each of these 36 possibilities are equally likely, so
5/36 ≈ 0.1388 is the answer.

3.9 Suppose I roll three fair six sided dice so that each outcome is equally likely, and call
the result (X1, X2, X3). Let S be the smallest value showing on the dice. For i ∈
{1, 2, 3, 4, 5, 6}, find P(S = i).
Solution A trick for solving minimum problems is to consider P(S ≥ 2). For this to
happen, X1, X2 and X3 must all be at least 2. Each one is at least 2 with probability 5/6.
Because the three random variables are independent, the probability that all are at least 2
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is the product of these values, so this happens with probability (5/6)3. Now consider
P(S ≥ 3). Here

P(S ≥ 3) = P(X1, X2, X3 ≥ 3) =

(
4

6

)3

.

Next we note that
{S ≥ 2} = {S ≥ 3} ∪ {S = 2}.

The last two events are disjoint, so

P(S ≥ 2) = P(S ≥ 3) + P(S = 2).

Hence

P(S = 2) = P(S ≥ 2)− P(S ≥ 3) =

(
5

6

)3

−
(
4

6

)3

.

In general, for i ∈ {1, 2, . . . , 6},

P(S = i) =

(
6− i+ 1

6

)3

−
(
6− i

6

)3

which gives the answer:

i P(S = i)

1 0.4212

2 0.2824

3 0.1712

4 0.08796

5 0.03240

6 0.004629

3.11 Prove that {2, 3, 4, 5, . . .} is a discrete set.
Solution Let f(i) = i + 1. Then let j ∈ {2, 3, 4, 5 . . .}. Since f(j − 1) = j and
j − 1 ∈ {1, 2, 3, . . .}, f is onto {2, 3, . . .}. Hence {2, 3, . . .} is discrete.

4.1 SupposeW ∼ Unif([−3, 3]).

a) What is P(W ∈ [−1, 2])?
b) What is P(W ∈ [−5, 0])?

Solution

a) Here [−1, 2] ⊆ [−3, 3], so the answer is

P(W ∈ [−1, 2]) =
m([−1, 2])

m([−3, 3])
=

2− (−1)

3− (−3)
=

3

6
= 0.5000 .

b) Here [−5, 0] = [−5,−3) ∪ [−3, 3]. Since [−5,−3) ∩ [−3, 3] = ∅, it holds that
P(W ∈ [−5,−3)) = 0. Hence

P(W ∈ [−5, 0]) = P(W ∈ [−5,−3)) + P(W ∈ [−3, 0])

= 0 +
0− (−3)

3− (−3)
=

3

6
= 0.5000 .
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4.3 Suppose (U1, U2) is uniformly chosen over the unit circle

{(x, y) : x2 + y2 ≤ 1}.

What is the chance that |U1| ≥ U2?
Solution If |x| ≥ y, then x ≥ y or −x ≥ y. So the region looks like

The shaded area is three quarters of the circle, so the probability is 0.7500 .

4.5 Let U1 and U2 be independent uniform random variables over [0, 1]. What is the chance
that U2 ≥ 3U1?
Solution Putting U1 on the horizontal axis and U2 on the vertical, the region where
U2 ≥ 3U1 is the shaded area.

U1

U2

1

1

The area of the shaded region is (1/2)(1/3)(1) = 1/6 and the area of the whole unit
square is 1, so the probability is (1/6)/1 ≈ 0.1666 .

4.7 Say that R ∼ Unif([0, 1]).

a) What is P(R ≤ 0.4)?
b) What is P(R ≤ 1.4)?
c) What is P(R ≤ −0.4)?

Solution

a) This is the length of [0, 0.4] (which is 0.4) divided by the length of [0, 1] (which is
1). So 0.4000 .

b) Because R ∈ [0, 1] always, this is 1 .

c) Since R is at least 0, this is 0 .

5.1 Suppose U ∼ Unif([0, 1]) and A = − ln(U)/2.
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a) Find P(A ≥ 2).
b) Find P(A ≥ −2).
c) For a ≥ 0, find P(A ≥ a).
d) For a < 0, find P(A ≥ a).

Solution

a) We need that x 7→ −x is a decreasing function, and x 7→ exp(x) is increasing. So

P(A ≥ 2) = P(− ln(U)/2 ≥ 2)

= P(ln(U) ≤ −4)

= P(U ≤ exp(−4))

= P(U ∈ (−∞, exp(−4)] ∩ [0, 1])

= P(U ∈ [0, exp(−4)]) ≈ 0.01831 .

b) As in the last problem

P(A ≥ −2) = P(− ln(U)/2 ≥ −2)

= P(ln(U) ≤ 4)

= P(U ≤ exp(4))

= P(U ∈ (−∞, e4] ∩ [0, 1]) = P(U ∈ [0, 1]) = 1

c) For a ≥ 0,

P(A ≥ a) = P(− ln(U)/2 ≥ a)

= P(ln(U) ≥ −2a)

= P(U ≥ exp(−2a)) = exp(−2a) .

d) For a ≤ 0,

P(A ≥ a) = P(− ln(U)/2 ≥ a)

= P(ln(U) ≤ −2a)

= P(U ≤ exp(−2a)) = 1

5.3 Let U ∼ Unif([−1, 1]). Find the cdf of 1− U2.
Solution For U ∈ [−1, 1], U2 ∈ [0, 1] and 1− U2 ∈ [0, 1]. Hence cdf1−U2(a) = 0 for
a < 0 and cdf1−U2(a) = 1 for a > 1. Suppose a ∈ [0, 1]. Then

P(1− U2 ≤ a) = P(1− a ≤ U2)

= P((
√
1− a ≤ U) ∨ (U ≤ −

√
1− a))

= P((
√
1− a ≤ U) ∨ (U ≤ −

√
1− a),−1 ≤ U ≤ 1)

= P((
√
1− a ≤ U ≤ 1) ∨ (−1 ≤ U ≤ −

√
1− a))

= P(
√
1− a ≤ U ≤ 1) + P(−1 ≤ U ≤ −

√
1− a))

=
1−

√
1− a

1− (−1)
+

−
√
1− a− (−1)

1− (−1)

= 1−
√
1− a.



307

Therefore, the entire cdf is

cdf1−U2(a) = (1−
√
1− a)1(a ∈ [0, 1]) + 1(a > 1) .

5.5 Let ω be uniform over [0, 1], and suppose X(ω) = 2ω + 3. Find

a) P(X ∈ [3.5, 4.7]).
b) P(X ∈ [0, 1]).
c) P(X2 ≤ 10).

Solution

a) Since X = 2ω + 3, we can solve for ω to get

3.5 ≤ X ≤ 4.7

3.5 ≤ 2ω + 3 ≤ 4.7

0.5 ≤ 2ω ≤ 1.7

0.25 ≤ ω ≤ 0.85,

which since ω ∼ Unif([0, 1]), the chance that happens is

P(ω ∈ [0.25, 0.85]) = 0.85− 0.25 = 0.6000 .

b) For X ∈ [0, 1], solving for ω gives ω ∈ [−3/2,−1]. The chance of this happening
is 0 .

c) Since X ≥ 0, we have

X2 ≤ 10

X ≤
√
10

2ω + 3 ≤
√
10

ω ≤ (
√
10− 3)/2 ≈ 0.05409 .

5.7 Suppose U ∼ Unif([−1, 0]).

a) Let X = U2. Find the cdf of X .
b) Find the cdf of U .

Solution

a) As always, begin with substituting the function of U for the random variable X .

P(X ≤ a) = P(U2 ≤ a)

This is 0 if a < 0 since U2 ≥ 0. Assume a ≥ 0. Then

P(X ≤ a) = P(−
√
a ≤ U ≤

√
a)

= P(−
√
a ≤ U ≤

√
a,−1 ≤ U ≤ 0)

= P(max(−1,−
√
a) ≤ U ≤ 0)

=
0−max(−1,−

√
a)

0− (−1)

= min(1,
√
a).
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Putting this together gives

cdfX(a) =
√
a1(a ∈ [0, 1]) + 1(a > 1).

b) When a > 0 it holds that P(U ≤ a) = 1 and for a < −1 it holds that P(U ≤ a) = 0.
For a ∈ (−1, 0),

P(U ≤ a) =
a− (−1)

0− (−1)
= 1 + a

Hence
cdfU (a) = (1 + a)1(a ∈ [0, 1]) + 1(a > 1) .

5.9 Let G ∼ Geo(p). For i a value in {1, 2, 3 . . .}, what is P(G = i)?

Solution Recall that our Bernoulli random variables can be built as Bi = 1(Ui ≤ p),
where the {Ui} are iid uniform over [0, 1]. For G to equal i, all of U1, . . . , Ui−1 must be
greater than p, and Ui ≤ p. So

P(G = i) = P(U1 > p,U2 > p, . . . , Ui−1 > p,Ui ≤ p)

= (1− p)(1− p) · · · (1− p)p

= (1− p)i−1p .

5.11 Let U ∈ [−1, 1]. What is P(U2 ≥ 0.6)?

Solution The graph of U2 looks like

-1 1

Note that U2 ≥ 0.6 when U ≥
√
0.6 and U ≤ −

√
0.6. So

P(U2 ≥ 0.6) = P(U ≥
√
0.6) + P(U ≤ −

√
0.6)

=
1−

√
0.6

1− (−1)
+

−
√
0.6− (−1)

1− (−1)

= 0.2254 .

5.13 Consider the probability that for Exp(1) and Unif([0, 1]) random variables drawn in-
dependently, that the second is bigger than the first. To find this, let U1 and U2 be iid
Unif([0, 1]). Then set T = − ln(U2). Then find P(U1 ≥ T ).

Solution This the same as finding the area of the region {U1 ≥ − ln(U2)}, or {−U1 ≤
ln(U2)}, or {U2 ≥ exp(−U1)}. Graphically, this region looks like:
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U1

U2

1

1

Then the area is

area =
∫ 1

x=0

∫ 1

y=exp(−x)
1 dy dx

=

∫ 1

x=0
(1− exp(−x)) dx

= x+ exp(−x)|10
= 1/e = 0.3678 . . . .

5.15 Let B ∼ Bern(p) and T ∼ Exp(1) be independent random variables. Find P(T ≥ B).
Solution Let B = 1(U1 ≤ p), and T = − ln(U2). Then if U1 ≤ p, we are looking at

P(− ln(U2) ≥ 1) = P(U2 ≤ exp(−1)) = exp(−1),

and if U1 > p, we are looking at

P(− ln(U2) ≥ 0) = P(U2 ≤ exp(−0)) = 1.

Hence the region looks like

U1

U2

1

1

and the area is
(1− p)(1) + (p)(exp(−1)) = 1− p− p/e .

5.17 The time until radioactive decay of a single atom is exponentially distributed with
rate λ. If T is the time until the particle decays, the half-life thl is the time such that
P(T ≥ thl) = 1/2. The half-life for an atom of uranium 238 is 4.5 billion years.

a) What is λ?
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b) If the Earth is 4.2 billion years old, what is the chance that an atom of U-238 present
at the birth of the planet is still intact?

Solution

a) Recall that for an exponential random variable, the median is ln(2)/λ. So ln(2)/λ =

4.5 billion years, which makes λ ≈ 0.1540 per billion years.
b) The cdf of an exponential random variable with rate λ is FT (a) = (1 −

exp(−λa))1(T ≥ 0). So P(T > 4.5 billion years) is

P(T > 4.5) = exp(−4.2(ln(2)/4.5)) = 2−4.2/4.5 = 0.5236 . . . .

(What this implies is that roughly 52.36% of the original U-238 in the Earth is still
intact. The rest has undergone radioactive decay.)

6.1 Suppose P(A|B) = 0.3 and P(B) = 0.8. What is P(AB)?
Solution From the conditional probability formula, this is

P(A|B)P(B) = (0.3)(0.8) = 0.2400 .

6.3 Suppose P(A) = 0.3 and P(B) = 0.5, and we know thatA andB are independent. What
is P(A|B)?
Solution Since A and B are independent,

P(A|B) =
P(AB)

P(B)
=

P(A)P(B)

P(B)
= P(A) = 0.3000 .

6.5 Let X ∼ Unif({1, 2, 3, 4, 5, 6}).

a) What is P(X = 5|X ≥ 3)?
b) What is P(X = 5|X ≥ 6)?

Solution

a) Using the rule that P(A|B) = P(A and B)/P(B),

P(X = 5|X ≥ 3) =
P(X = 5, X ≥ 3)

P(X ≥ 3)

=
P(X = 5)

P(X = 3) + P(X = 4) + P(X = 5) + P(X = 6)

=
1/6

1/6 + 1/6 + 1/6 + 1/6

=
1

4
= 0.2500 .

b) Similar to the last part:

P(X = 5|X ≥ 6) =
P(X = 5, X ≥ 6)

P(X ≥ 3)

But here X cannot both be 5 and be at least 6 at the same time! So P(X = 5, X ≥
6) = 0, so the overall probability is 0 .
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6.7 Let X ∼ Unif(Ω), where Ω is a finite set. Let A ⊆ Ω. Let Y have the same distribution
as X conditioned on X ∈ A. Prove that Y ∼ Unif(A).
Solution To show that Y ∼ Unif(A), it suffices to show that (∀a ∈ A)(P(Y = a) =
1/#(A)).
Proof. Let a ∈ A. Then

P(Y = a) = P(X = a|X ∈ A)

=
P(X = a,X ∈ A)

P(X ∈ A)

=
1/#(Ω)

#(A)/#(Ω)

=
1

#(A)
,

which completes the proof. .

6.9 A lab occasionally has small leaks of chemicals in the experimental space. Each leak is
independent of the others and has a 90% chance of being benign, and a 10% chance of
being toxic. The lab director has two drones at her disposal. The first drone can detect
whether or not any toxic leaks are in the lab. The second drone can count the number of
leaks present in the lab.
The drones are sent in: the first reports that yes, there is at least one toxic leak in the lab.
The second drone reports there are exactly three leaks in the lab.
Conditioned on this information, what is the chance that there is exactly one toxic leak,
and two benign leaks?
Solution The second drone reported that there are three anomalies. Let X1, X2, X3 ∼
Bern(0.1) be iid. Then Xi = 1 indicates that leak i is toxic, while Xi = 0 indicates that
it is benign.
Then the question is: what is P(X1 +X2 +X3 = 1|X1 +X2 +X3 ≥ 0)? We use the
conditional probability formula: P(A|B) = P(A,B)/P(B). In this case,X1+X2+X3 =
1 implies X1 +X2 +X3 ≥ 0, so

P(X1 +X2 +X3 = 1|X1 +X2 +X3 ≥ 0) =
P(X1 +X2 +X3 = 1)

P(X1 +X2 +X3 ≥ 0)

=

(
3
1

)
(0.1)1(0.9)2

1− P(X1 +X2 +X3 = 0)

=
3(0.1)1(0.9)2

1− (0.9)3

≈ 0.8966 .

6.11 For U ∼ Unif([2, 10], what is P(U ≤ 3|U ≤ 5)?

Solution Using our formula

P(U ≤ 3|U ≤ 5) =
P(U ≤ 3, U ≤ 5)

P(U ≤ 5

=
(3− 2)/(10− 2)

(5− 2)/(10− 2)
=

1

3
≈ 0.3333 .



312 CHAPTER 46. WORKED PROBLEMS

7.1 Suppose X ∼ Bin(10, 0.2). What is P(X ≥ 2)?

Solution This is a case where using the complement helps:

P(X ≥ 2) = 1− P(X ≤ 1)

= 1− P(X = 0)− P(X = 1)

= 1−
(
10

0

)
0.200.810 −

(
10

1

)
0.210.89

≈ 0.6241 . . .

7.3 a) What is 5 choose 2?

b) How many ways are there to arrange the letters AABBB?

Solution

a) Following our formula, this is(
5

2

)
=

5!

2!3!
=

5 · 4
1 · 2

= 10 .

b) We have to choose which two out of the five spaces receive the letter A, which is 5
choose 2, or 10 as before.

7.5 How many sequences using letters F and S are of length 10 and have exactly 8 S letters?

Solution This is just the binomial coefficient 10 choose 8. Note that when writing the
factorials, lots of factors cancel, which makes things easier in the calculation.(

10

8

)
=

10 · 9 · 8 · 7 · 6 · 5 · 4 · 3 · 2 · 1
8 · 7 · 6 · 5 · 4 · 3 · 2 · 1 · 2 · 1

=
10 · 9
2 · 1

= 5 · 9 = 45 .

I can check this in Wolfram Alpha by using 10 choose 8.

7.7 Suppose N ∼ Bin(10, 0.3). What is P(N = 8)?

Solution Using our formula for binomial probabilities,

P(N = 8) =

(
10

8

)
0.38(0.7)10−8 ≈ 0.001446 .

I can check this answer in R with dbinom(8,10,0.3).

7.9 Suppose that [X|N ] ∼ Unif({1, 2, 3, . . . , N}) and N ∼ Unif({1, 2, 3, 4, 5, 6}). What is

P(N = 3|X = 2)?

Solution Using Bayes’ Rule, this is

P(N = 3|X = 2) =
P(X = 2|N = 3)P(N = 3)

P(X = 2)
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The numerator is (1/3)(1/6), while the denominator is

P(X = 2) = P(X = 2|N = 1)P(N = 1) + P(X = 2|N = 2)P(N = 2) + · · ·+
P(X = 2|N = 6)P(N = 6)

= 0 + (1/2)(1/6) + (1/3)(1/6) + (1/4)(1/6) + (1/5)(1/6) + (1/6)(1/6).

Canceling the 1/6 factors, the solution is

P(N = 3|X = 2) =
(1/3)

(1/2) + (1/3) + · · ·+ (1/6)

=
20

87
≈ 0.2298 .

7.11 Autotomic Industries produces two types of pain relievers that here we will call A and
B for simplicity. Type A relieves pain in 40% of patients, while type B relieves pain in
20% of patients.
A patient takes one of the painkillers (they do not know which type) and relieves their
pain. What is the chance that they used type A?
Solution Let P be the event that the pain is relieved. Then

P(P |A) = 0.4, P(P |B) = 0.2.

So by Bayes’ Rule,

P(A|P ) =
P(P |A)P(A)

P(P )

=
P(P |A)P(A)

P(AP ) + P(BP )

=
P(P |A)P(A)

P(P |A)P(A) + P(P |B)P(B)

Since we have no information indicating otherwise, assume that the person was equally
likely to have taken either A or B,

P(A|P ) =
(0.4)(1/2)

(0.4)(1/2) + (0.2)(1/2)

=
2

3
= 0.6666

7.13 Bets on red and black on a roulette table pay even odds, which means if you bet x dollars
and win, you get back your x dollar bet plus x more dollars. If you lose, then you lose
your x dollar bet.
Suppose you repeatedly bet the same amount of money on red at a roulette table for
twenty spins of the wheel. On an American Roulette wheel there are 18 out of 38 spaces
that are red, and the ball is equally likely to land in any of the spaces.
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a) Find the probability that at the end of the twenty games you are ahead (so you have
more money than when you started.)

b) Find the probability that at the end of the twenty games you are behind (so you
have less money than when you started.)

c) Find the probability that at the end of the twenty games you have broken even.

Solution

a) LetB be the number of times you win. Then since each space is equally likely, there
is an 18/38 chance of winning, which means B ∼ Bin(20, 18/38). In order to be
ahead, you must have won more than 10 games, so

P(B > 10) = 1− P(B ≤ 10) = 0.3223 (from R).

b) To be behind, you must have won at most 9 games, and

P(B ≤ 9) ≈ 0.5062 (from R).

c) Last but not least, to break even you must have won exactly 10 games, which occurs
with probability

P(B = 10) ≈ 0.1713 (from R).

8.1 Suppose X =
√
U where U ∼ Unif([0, 1]). Find the density of X .

Solution First find the cdf: U ∈ [0, 1] ⇒ X ∈ [0, 1], so cdfX(a) = 0 for a < 0 and
cdfX(a) = 1 for a > 1. In both these regions, differentiating gives 0.
Let a ∈ [0, 1]. Then

P(X ≤ a) = P(
√
U ≤ a)

= P(U ≤ a2)

= a2.

Therefore, the density for a ∈ [0, 1] is [a2]′ = 2a. The overall answer is then

fX(a) = 2a1(a ∈ [0, 1])

8.3 Suppose fX(s) = exp(−s)[1− exp(−2)]−11(s ∈ [0, 2]).

a) What is P(X ≥ 1.1)?
b) What is P(X ≤ −0.5)?
c) Graph FX , the cdf of X .

Solution

a) This is found by the integral

P(X ≥ 1.1) =

∫ ∞

1.1

exp(−s)

1− exp(−2)
1(s ∈ [0, 2]) ds

=

∫ 2

1.1

exp(−s)

1− exp(−2)
ds

=
exp(−1.1)− exp(−2)

1− exp(−2)
≈ 0.2284
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b) Once the indicator function is included, the integral disappears! So the answer is 0.

P(X ≤ −0.5) =

∫ ∞

1.1

exp(−s)

1− exp(−2)
1(s ∈ [0, 2]) ds = 0

c) In fact, for any a < 0, FX(a) = 0. For any a > 2,

P(X ≤ a) =

∫ a

−∞

exp(−s)

1− exp(−2)
1(s ∈ [0, 2]) ds

=

∫ 2

0

exp(−s)

1− exp(−2)
ds = 1.

For a ∈ [0, 2],

P(X ≤ a) =

∫ a

−∞

exp(−s)

1− exp(−2)
1(s ∈ [0, 2]) ds

=

∫ a

0

exp(−s)

1− exp(−2)
ds =

1− exp(−a)

1− exp(−2)
.

So the graph of the cdf looks like

-1 0 1 2 3

1

8.5 SupposeW has density fW (x) = 3x21[x ∈ [0, 1]). What is the density of Y = 3W +2?
Solution The random variable Y is a shifted and scaled version of W . Hence we use
the shifting and scaling result. Note that we have to figure out both the new functional
form and solve inside the indicator function. Recall that x ∈ [0, 1] is the same event as
0 ≤ x ≤ 1.

f3W+2(x) = fW ((x− 2)/3)

= (1/|3|)3((x− 2)/3)21(0 ≤ (x− 2)/3 ≤ 1)

= [(x− 2)2/9]1(0 ≤ x− 2 ≤ 3)

= [(x− 2)2/9]1(2 ≤ x ≤ 5).

Remark: the indicator reflects the fact that if I take a random variable that is somewhere
in [0, 1], multiply it by 3 and add 2, then the resulting number is somewhere in [2, 5].

8.7 Suppose X has density fX(x) = C/(1 + x2). What is C?
Solution Recall that the antiderivative of 1/(1 + x2) is arctan(x). Hence

P(X ∈ (−∞,∞)) =

∫ ∞

−∞

C

1 + x2
dx

= C arctan(x)|∞−∞ = C[τ/4− (−τ/4)],

So Cτ/2 = 1, and C = 2/τ ≈ 0.3183 .
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8.9 Suppose fT (t) = 2 exp(−2t)1(t ≥ 0). Find the density of 2T + 1.
Solution From the density formula, divide by |2| = 2, and replace t with (t − 1)/2
everywhere it appears:

f2T+1(t) =
1

2
2 exp(−2(t− 1)/2)1((t− 1)/2 ≥ 0)

= exp(−(t− 1)))1(t ≥ 1) .

8.11 Let U ∼ Unif([−2, 2]).

a) Let T = U3. What is the density of T ?
b) Let V = U4. What is the density of V ?

Solution

a) First find the cdf:

FT (a) = P(T ≤ a)

= P(U3 ≤ a)

= P(U ≤ a1/3).

When a1/3 ∈ [−2, 2], then a ∈ [−8, 8]. For a ∈ [−8, 8] P(U ∈ [−2, a1/3]) =
(a1/3 − (−2))/(2− (−2)). So

FT (a) = (1/4)(2 + a1/3)1(a ∈ [−8, 8]) + 1(a > 1).

Now differentiate to get the density

fT (a) = (1/12)a−2/31(a ∈ [−8, 8]) .

b) Again we begin by finding the cdf of V :

FT (a) = P(V ≤ a)

= P(U4 ≤ a)

= P(−a1/4 ≤ U ≤ a1/4)

= FU (a
1/4)− FU (−a1/4)

Now differentiate both sides to get:

fV (a) = fU (a
1/4)(1/4)a−3/4 − fU (−a1/4)(−1/4)a−3/4.

The density of the uniform is fU (b) = (1/4)1(b ∈ [−2, 2]), so

fV (a) = [(1/4)(1/4)a−3/4 + (1/4)(1/4)a−3/4]1(−a1/4 ∈ [−2, 2])

= (1/16)a−3/41(a ∈ [0, 16]) + (1/16)a−3/41(a ∈ [0, 16]

= (1/8)a−3/41(a ∈ [0, 16])
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8.13 Show that if T has an exponential distribution with rate λ, then ⌊T ⌋+ 1 has a geometric
distribution and find the parameter p of the geometric as a function of λ.
Solution First solve for T , then simplify, then compare to the probabilities for the
geometric random variable:

P(⌊T ⌋+ 1 = i) = P(⌊T ⌋ = i− 1)

= P(i− 1 ≤ T < i)

= P(T < i)− P(T ≤ i− 1)

= (1− e−iλ)− (1− e−(i−1)λ)

= eλ(i−1)[1− e−λ]

= [1− e−λ](eλ)i−1

when i ∈ {1, 2, 3, . . .}. This is the same as a geometric random variable when
p = 1− e−λ.

9.1 For X with density fX(i) = 0.31(i = 1) + 0.71(i = 4), what is P(X ≤ 2)?
Solution Here the density is with respect to counting measure, and so P(X ≤ 2) =
P(X = 1) = 0.3000 .

9.3 Let U1 and U2 be iid Unif({1, 2, 3, 4}). Find the density of U1 + U2.
Solution Since U1 and U2 are (with probability 1) always in Ω = {1, 2, 3, 4}, their sum
will be in the set of numbers {2, . . . , 8}.
Now consider i ∈ {2, . . . , 8}, for instance, i = 4. There are three ways that this event
could occur:

{i = 4} = {U1 = 1, U2 = 3} ∪ {U1 = 2, U2 = 2} ∪ {U1 = 3, U2 = 1}.

There are sixteen possible outcomes for U1 and U2, so P(i = 4) = 3/16. The other
probabilities can be calculated in the same fashion, which gives:

fU1+U2(i) =
1

16
[1(i = 2) + 21(i = 3) + 31(i = 4) + 41(i = 5)

+ 31(i = 6) + 21(i = 7) + 1(i = 8)]

9.5 Suppose X ∼ Unif({1, . . . , 10}. What is the mode set of X?
Solution The density ofX is 1/10 for i ∈ {1, . . . , 10} and 0 otherwise. Hence the mode
set is just {1, . . . , 10} .

9.7 Suppose X has density x2 exp(−x)1(x ≥ 0). Find the mode(s) of X .
Solution For x < 0, fX(x) = 0, so the mode(s) cannot be there.
For x ≥ 0,

[fX(x)]′ = [x2 exp(−x)]′ = [x2]′ exp(−x) + x2[exp(−x)]′ = exp(−x)(2x− x2).
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Since exp(−x) > 0 for all x, this expression is positive when 2x− x2 = x(2− x) > 0
and negative when 2x−x2 < 0. So it is positive for x < 2 and negative for x > 2. Hence
the unique maximum (and so mode) is at 2 .

9.9 Suppose X ∼ Exp(1) and Y ∼ Exp(2) are independent.

a) Find the survival function of X .

b) Find the survival function of Y .

c) Find P(min(X,Y ) ≥ 2).

Solution

a) This is

SX(a) = P(X > a)

= P(− ln(U) > a)

= P(U < exp(−a))

which is 1 for a < 0 and exp(−a) for a ≥ 0. Hence

SX(a) = 1(a < 0) + exp(−a)1(a ≥ 0).

b) This is similar to the X calculation:

SY (a) = P(Y > a)

= P(− ln(U)/2 > a)

= P(U < exp(−2a))

which is 1 for a < 0 and exp(−2a) for a ≥ 0. Hence

SY (a) = 1(a < 0) + exp(−2a)1(a ≥ 0).

c) Note that since X and Y are continuous, so is min(X,Y ), and

P(min(X,Y ) ≥ 2) = P(min(X,Y ) > 2) = Smin(X,Y )(2).

Using
Smin(X,Y )(a) = SX(a)SY (a)

gives

P(min(X,Y ) ≥ 2) = exp(−2) exp(−2 · 2) = exp(−6) ≈ 0.002478 .

10.1 Given that P(Y = 2) = 0.4 and P(Y = −1) = 0.6, what is E[Y ]?

Solution Sum the product of the outcomes times the probability of those outcomes to
get

E[Y ] = (2)(0.4) + (−1)(0.6) = 0.2000 .
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10.3 Suppose P(X = 2) = 0.3, P(X = 4) = 0.2 and P(X = 5) = 0.5. What is E[X]?
Solution Since X is a discrete random variable we sum the product of the different
outcomes with the probabilities formed by those outcomes:

E[X] =
∑

x∈{2,4,5}

xP(X = x) = (2)(0.3) + (4)(0.2) + (5)(0.5) = 3.900 .

10.5 Suppose E[X] = 34. What is E[2X − 5]?
Solution By the linearity of expectations, this is 2E[X]− 5, or 63 .

10.7 Say X ∼ Unif({−2,−1, 0, 1, 2}). What is E[X]?
Solution Since this distribution is symmetric about 0, and

∑2
i=−2 iP(X = i) is finite,

the mean is 0 .

10.9 Say E[R] = 3 and E[S] = 6. What is E[R− S]?
Solution By linearity, this is

E[R− S] = E[R]− E[S] = 3− 6 = −3 .

10.11 Suppose U1, U2, . . . ∼ Unif({1, 2, 3, 4}). Show that limn→∞(U1 + · · · + Un)/n = 2.5
with probability 1.
Solution Note

E[U ] = (1/4)(1) + (1/4)(2) + (1/4)(3) + (1/4)(4) = 10/4 = 2.5.

Since each Ui has mean 2.5, the Strong Law of Large Numbers immediately gives us that

lim
n→∞

U1 + · · ·+ Un

n
= 2.5

with probability 1.

11.1 For X with density 12s2(1− s)1(s ∈ [0, 1]), find E[X].
Solution This is

E[X] =

∫ ∞

−∞
sfX(s) ds

=

∫ ∞

−∞
s · 12s2(1− s)1(0 ≤ s ≤ 1) ds

=

∫ 1

0
12(s3 − s4) ds

= 12(s4/4− s5/5)

= 12/20 = 0.6000 .

11.3 Suppose U1, U2, . . . ∼ Unif([0, 4]). Show that limn→∞(U1 + · · · + Un)/n = 2 with
probability 1.
Solution Since each Ui has mean 2, the Strong Law of Large Numbers immediately
gives us that

lim
n→∞

U1 + · · ·+ Un

n
= 2

with probability 1.
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11.5 For Z with density
fZ(z) = τ−1/2 exp(−z2/2),

verify using the integral that E[Z] = 0.
Solution Here

E[Z] =

∫ ∞

z=−∞
zτ−1/2 exp(−z2/2) dz

= lim
a→−∞

lim
b→∞

∫ b

a
τ−1/2z exp(−z2/2) dz

= lim
a→−∞

lim
b→∞

τ−1/2(− exp(−z2/2))|ba

= lim
a→−∞

lim
b→∞

τ−1/2(exp(−a2/2)− exp(−b2/2))

= 0

and the result is shown.

11.7 Suppose P(X = −1) = 0.3 and P(X = 1) = 0.7. What is E[X2]?
Solution This is (−1)2(0.3) + 12(0.7) = 1 . Of course, since X2 always equals 1, this
is trivially true!.

11.9 Let X have density s exp(−s2/2)1(s ≥ 0). Find E[X2].
Solution The integral is

E[X2] =

∫
s∈R

s2 · s exp(−s2/2)1(s ≥ 0) ds =

∫
s≥0

s3 exp(−s2/2) ds

To solve, first we want to get rid of the nonlinearity inside the exponential function. So
let t = s2/2, then dt = s ds, and

E[X2] =

∫
t≥0

s2 exp(−t) dt

=

∫
t≥0

2t exp(−t) dt

= 2

∫
t≥0

t exp(−t) dt.

We could use integration by parts at this point on this last integral , or we could recognize
that this is the expected value of an exponential random variable of rate 1, so the overall
answer is 2 .

11.11 Build a random variable W such that E[W ] = I , where

I =

∫ 1

−1
2x2 dx.

Solution Let U ∼ Unif([−1, 1]). Then fU (x) = (1/2)1(x ∈ [−1, 1]). So

E[4U2] =

∫ 1

−1
(4x2)(1/2) dx = I.

Hence 4U2 works here.
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11.13 For a random variable A, the mean absolute deviation of A is defined as

MAD(A) = E [|A− E[A]|] .

Let A ∼ Exp(λ). FindMAD(A).
Solution The density of A is λ exp(−λa)1(a ≥ 0) and these random variables have
mean 1/λ. Hence

MAD(A) =

∫
s∈R

|s− 1/λ|λ exp(−λs)1(s ≥ 0) ds

Since |s− 1/λ| = s− 1/λ for s ∈ [1/λ,∞), and |s− 1/λ| = 1/λ− s for s ∈ [0, 1/λ),
we have

MAD(A) = I1 + I2,

I1 =

∫
s∈[0,1/λ]

(1/λ− s)λ exp(−λs) ds,

I2 =

∫
s∈[1/λ,∞)

(s− 1/λ)λ exp(−λs) ds.

Using integration by parts on I1 gives

I1 =

∫
s∈[0,1/λ]

(1/λ− s)[− exp(−λs)]′ ds

=

∫
s∈[0,1/λ]

[(1/λ− s)(− exp(−λs))]′ − [(1/λ− s)]′[− exp(−λs)] ds

=

∫
s∈[0,1/λ]

[(1/λ− s)(− exp(−λs))]′ − exp(−λs) ds

= [(1/λ− s)(− exp(−λs)) + exp(−λs)/λ] |1/λ0

= s exp(−λs))|1/λ0

= exp(−1)/λ.

Using Integration by parts on I2:

I2 =

∫
s∈[1/λ,∞)

−(1/λ− s)λ exp(−λs) ds

= −s exp(−λs))|∞1/λ
= exp(−1)/λ.

Note that we did not need to work through the antiderivative again because the integrand
was the negative of the integrand that we found to compute I1.
Putting it together, we get

MAD(A) = 2λ−1 exp(−1)

11.15 Three zombies are chasing you. Each runs at a speed that is independent of the other,
and a continuous uniform between 6.0 and 11.0 miles per hour.
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a) If you can run at 10.0 miles per hour, what is the chance that you will get away
from the zombies?

b) What is the expected speed of the fastest zombie?

Solution

a) If Z1, Z2, Z3 are iid Unif([6, 11]), then

P(max{Z1, Z2, Z3} < 10) = P(Z1 < 10, Z2 < 10, Z3 < 10)

= P(Z1 ≤ 10)P(Z2 ≤ 10)P(Z3 ≤ 10)

=

(
10− 6

11− 6

)3

= 0.5120 .

b) It will be easier if we make
Zi = 5Ui + 6,

where U1, U2, U3 are iid Unif([0, 1]). Then

max{Z1, Z2, Z3} = max{5U1 + 6, 5U2 + 6, 5U3 + 6} = 5max{U1, U2, U3}+ 6.

Linearity of expectation gives

E[max{Z1, Z2, Z3}] = 5E[max{U1, U2, U3}] + 6.

Now Y = max{U1, U2, U3} has cdf

cdfY (a) = P(Y ≤ a) = P(U1 ≤ a)3 = a3

for a ∈ [0, 1]. Hence the derivative is

pdfY (a) = 3a21(a ∈ [0, 1]),

and the expected value is

E[Y ] =

∫
R
a · 3a21(a ∈ [0, 1]) da =

∫ 1

0
3a3 da =

3

4
a4|10 =

3

4
.

Therefore,
E[max{Z1, Z2, Z3}] = 5 · 34 + 6 = 9.750

11.17 Let U ∼ Unif([0, 2]).

a) Find the cdf of X = U3.

b) Find the density of X .

c) Find E[X].

Solution
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a) The cdf of X is

cdfX(a) = P(X ≤ a) = P(U3 ≤ a) = P(U ≤ a1/3)

=
a1/3

2− 0
1(a1/3 ∈ [0, 2]) + 1(a1/3 > 2)

=
a1/3

2
1(a ∈ [0, 8]) + 1(a > 8).

b) Differentiating gives the density

pdfX(a) =
1

6
a−2/31(a ∈ [0, 0.8]) .

c) Once you set up the integral, it becomes a question of Calculus.

E(X) =

∫
R
a · 1

6
a−2/31(a ∈ [0, 8]) da

=

∫ 8

0

1

6
a1/3 da

=
1

6

a4/3

4/3

∣∣∣∣∣
8

0

=
1

8
84/3 = 81/3 = 2 .

11.19 Suppose A ∼ Exp(3), so A has density

fA(s) = 3 exp(−3s)1(s ≥ 0).

The density of an exponential is the multiplicative inverse of the rate, so E[A] = 1/3.

a) What is E[2A− 1]?
b) What is E[exp(1.5A)]?
c) What is the density of 2A− 1?

Solution

a) Using linearity 2(1/3)− 1) = −1/3 = −0.3333 . . . .
b) Using the law of the unconscious statistician

E[exp(1.5A)] =

∫ ∞

−∞
exp(1.5a)3 exp(−3a)1(a ≥ 0) da

=

∫ ∞

0
3 exp(−1.5a) da

= −(3/1.5) exp(−1.5a)|∞0 = 2 .

c) Using the rules for shifting and scaling:

f2A−1(s) = (1/|2|)fA((s− (−1))/2).

Note 1((s+ 1)/2 ≥ 0) = 1(s ≥ −1), so

f2A−1(s) = (3/2) exp(−(3/2)(s+ 1))1(s ≥ −1)
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12.1 Suppose that B1, B2 are iid Bern(0.3). Say P(N = 1) = 0.6 and P(N = 2) = 0.4.

a) Find the density of

S =
N∑
i=1

Bi.

b) Find E[S] using the density.
c) Find E[S] using the Fundamental Theorem of Probability.

Solution

a) Adding one or two Bernoulli’s gives either 0, 1, or 2. Hence we need to find P(S = i)
for 0, 1, or 2. Breaking up the cases gives

P(S = 0) = P(N = 1)P(B1 = 0) + P(N = 2)P(B1 = B2 = 0)

= (0.6)(0.7) + (0.4)(0.7)2 = 0.616

P(S = 1) = P(N = 1)P(B1 = 1) + P(N = 1)P(B1 +B2 = 1)

= (0.6)(0.3) + (0.4)(2(0.3)(0.7)) = 0.348

P(S = 2) = P(N = 2)P(B1 = B2 = 1)

= (0.4)(0.3)2 = 0.036

Hence S has density

fS(i) = 0.616 · 1(i = 0) + 0.348 · 1(i = 1) + 0.036 · 1(i = 2) .

b) That makes the mean

0.616(0) + 0.348(1) + 0.036(2) = 0.4200 .

c) Note E[Bi] = 0.3, so E[S|N ] = 0.3N. Hence

E[S] = E[E[S|N ]]

= E[0.3N ]

= 0.3(1(0.6) + 2(0.4))

= 0.4200 .

12.3 A party has either low attendance (20% chance), medium attendance (40% chance) or
high attendance (40% chance). With low attendance the average revenue for the party is
−$300, with medium $500, and with high $1000.
Draw an expectation tree to calculate the average revenue from the party.
Solution The tree looks like this:

E[T ]

−$300

$500

$1000

0.2

0.4

0.4
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This makes the average revenue

(−300)(0.2) + (500)(0.4) + (1000)(0.4) = 540 .

12.5 Suppose the time until arrival of a customer (call it T ) is an exponential random variable
with rate parameter A (so [T |A] ∼ Exp(A).) A is a random variable that is uniform over
the interval [5, 10]. What is E[T ]?
Solution Here E[T |A] = 1/A, Hence

E[T ] = E[E[T |A]]

= E[1/A]

=

∫
a∈R

(1/a)(1/5)1(a ∈ [5, 10]) da

=

∫ 10

5
1/(5a) da

= ln(10)− ln(5) = ln(2) ≈ 0.6931 . . . .

13.1 Suppose (X,Y ) has density (1/60)(x+ 2y)1(x ∈ [0, 2], y ∈ [0, 5]).

a) Find the marginal density of X .
b) Find the marginal density of Y .
c) Find E[XY ].

Solution

a) To find this, we integrate out y from the joint density:

fX(x) =

∫
y∈R

(1/60)(x+ 2y)1(x ∈ [0, 2], y ∈ [0, 5]) dy

=

∫ 5

y=0
(1/60)(x+ 2y)1(x ∈ [0, 2]) dy

= (1/60)(xy + y2)1(x ∈ [0, 2])|50
= (1/60)(5x+ 25)1(x ∈ [0, 2])

= (1/12)(x+ 5)1(x ∈ [0, 2]) .

b) To find this, we integrate out x from the joint density:

fY (y) =

∫
x∈R

(1/60)(x+ 2y)1(x ∈ [0, 2], y ∈ [0, 5]) dy

=

∫ 2

x=0
(1/60)(x+ 2y)1(y ∈ [0, 5]) dx

= (1/60)(x2/2 + 2yx)1(y ∈ [0, 5])|20
= (1/60)(2 + 4y)1(y ∈ [0, 5])

= (1/30)(1 + 2y)1(y ∈ [0, 5]) .
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c) This integral is

E[XY ] =

∫
(x,y)∈R2

xy · (1/60)(x+ 2y)1(x ∈ [0, 2], y ∈ [0, 5]) dR2.

In this case, the integrand in always nonnegative, and so Tonelli allows us to break
this into iterated integrals:

E[XY ] =

∫
x∈[0,2]

∫
y∈[0,5]

(1/60)(x2y + 2xy2) dy dx

= (1/60)

∫
x∈[0,2]

x2y2/2 + (2/3)(xy3)|50 dx

= (1/60)

∫
x∈[0,2]

(25/2)x2 + (250/3)x dx

= (1/60)
[
(25/6)x3 + (125/3)x2

]∣∣2
0

= (1/60) [(100/3) + (500/3)]

= (1/60)(600/3) = 10/3 ≈ 3.3333

13.3 Suppose (X,Y ) has density

fX,Y (x, y) = (1/1260)x3y21(x ∈ {1, 2, 3})1(y ∈ {1, 3, 5}.

a) Prove that X and Y are independent.
b) What is P(X = 2)?

Solution

a) Note that

fX,Y (x, y) =
1

1260
x3y21(x ∈ {1, 2, 3})1(y ∈ {1, 3, 5}

=

[
x3

36
1(x ∈ {1, 2, 3})

] [
y2

35
1(y ∈ {1, 3, 5})

]
.

Since each factor inside brackets is a density, one only involving x and the other
only involving y, then X and Y must be independent.

b) From the density of X , this is 23/36 = 2/9 = 0.2222 . . . .

13.5 Suppose (X1, X2) = (7.314, 2.103). What are the order statistics?
Solution These will be

X(1) = 2.103, X(2) = 7.314 .

13.7 Suppose (X1, X2) = (5.623, 5.623). What are the order statistics?
Solution These will be

X(1) = 5.623, X(2) = 5.623 .
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13.9 Suppose the order statistics X(1) = 1.3 and X(2) = 3.4. What possible states could the
original vector (X1, X2) take on?

Solution The original vector could have been either of the two permutations of the
numbers, so

{(1.3, 3.4), (3.4, 1.3)} .

14.1 Let v = (−1,−1, 2) and w = (5, 2,−3).

a) What is v · w?

b) What is ∥v∥?

Solution

a) This is
(−1)(5) + (−1)(2) + (2)(−3) = −5− 2− 6 = −13 .

b) This is √
(−1)2 + (−1)2 + (2)2 =

√
6 = 2.449 . . . .

14.3 Say X is discrete with density fX(1) = 0.7, fX(5) = 0.2, fX(10) = 0.1.

a) Find E[X].

b) Find SD[X].

Solution

a) This is
E[X] = (0.7)(1) + (0.2)(5) + (0.1)(10) = 2.700 .

b) We need the second moment:

E[X2] = (0.7)(1)2 + (0.2)(5)2 + (0.1)(10)2 = 15.7

Hence the standard deviation is

SD(X) =
√

15.7− 2.72 = 2.900 .

14.5 Suppose U ∼ Unif([0, 10]).

a) What is the centered random variable Uc as a function of U?

b) What is the variance of Uc?

Solution

a) Themean of a uniform over an interval is the average of the endpoints of the interval,
so (0 + 10)/2 = 5. That makes the centered random variable Uc = U − 5 .
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b) Note the variance ofUc is the same as the variance ofU . The variance is the expected
value of the square of the random variable minus the square of the expected value.
Here

E[U2] =

∫
x∈R

x2(1/10)1(x ∈ [0, 10]) dx = 103/[3(10)] = 100/3

so

V(U) = 100/3− 52 = 25/3 = 8.333 . . .

14.7 Let (X,Y ) be uniform over

A = {(x, y) : x ≥ 0, y ≥ 0, x+ y ≤ 1}.

Find Cov(X,Y ).

Solution To solve this, we need E[XY ], E[X] and E[Y ]. This leads to four integrals.

The first integral is needed to find the measure of the set A.

ℓ(A) =

∫
(x,y)

11(x ≥ 0, y ≥ 0, x+ y ≤ 1) dR2

=

∫
x∈[0,1]

∫
y∈[0,1−x]

1 dy dx

=

∫
x∈[0,1]

1− x dx

= x− x2/2|10 = 1/2,

therefore the joint density of X and Y is

f(X,Y )(x, y) = 2 · 1((x, y) ∈ A).

Now to find the expectations.

E[XY ] =

∫
(x,y)

xy · 21(x ≥ 0, y ≥ 0, x+ y ≤ 1) dR2

=

∫
x∈[0,1]

∫
y∈[0,1−x]

2xy dy dx

=

∫
x∈[0,1]

xy2|1−x
0 dx

=

∫
x∈[0,1]

[x− 2x2 + x3] dx

= 1/2− 2/3 + 1/4 = 1/12.
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The next integral is

E[X] =

∫
(x,y)

x · 21(x ≥ 0, y ≥ 0, x+ y ≤ 1) dR2

=

∫
x∈[0,1]

∫
y∈[0,1−x]

2x dy dx

=

∫
x∈[0,1]

2x(1− x) dx

=

∫
x∈[0,1]

2x− 2x2 dx

= 1− 2/3 = 1/3.

The last integral is

E[Y ] =

∫
(x,y)

y · 21(x ≥ 0, y ≥ 0, x+ y ≤ 1) dR2

=

∫
x∈[0,1]

∫
y∈[0,1−x]

2y dy dx

=

∫
x∈[0,1]

(1− x)2 dx

= (1− x)3/(−3)|10 dx
= 1/3.

Hence the covariance is

1

12
− 1

9
= − 1

36
= −0.02777 . . . .

14.9 True or false: a random variable with finite mean always has a finite standard deviation.
Solution This is false . Consider X = 1/

√
U , where U ∼ Unif([0, 1]). Then

E[X] =

∫
u∈R

u−1/21(u ∈ [0, 1]) du

=

∫ 1

0
u−1/2 du = u1/2/(1/2)|10 = 2.

However,

E[X2] =

∫
u∈real

(u−1/2)21(u ∈ [0, 1]) du

=

∫ 1

0
u−1 du = ln(u)|10 = ∞.

So while the mean is finite, the standard devation of X is not.
One note: it is true that whenever X has finite mean, the mean absolute deviation
E[|X − E[X]] will be finite.
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14.11 For a random variable with finite mean µ, finite standard deviation σ, and finite third
moment E[X3], the skewness of the random variable is defined as

skew(X) = E
[
(X − µ)3

σ3

]
.

a) If X has skewness 3, what is the skewness of 2X?
b) What is the skewness of −2X?

Solution

a) The mean of 2X is 2µ, and the standard deviation is |2|σ = 2σ. Hence the skewness
is

skew(2X) = E
[
(2X − 2µ)3

(2σ)3

]
= E

[
(X − µ)3

σ3

]
= 3 .

b) Here E[−2X] = −2µ, and the standard deviation is | − 2|σ = 2σ, so

skew(−2X) = E
[
(−2X + 2µ)3

(2σ)3

]
= −E

[
(X − µ)3

σ3

]
= −3 .

14.13 Find the skewness of U ∼ Unif([0, 1]).

Solution The skewness is

E

[(
U − µ

σ

)3
]
= σ−3E[(U − µ)3].

For a uniform on [0, 1], µ = 1/2 and σ = 121/2. Also, Y = (U − 1/2) ∼
Unif([−1/2, 1/2]) so

12−3/2E[Y 3] = 12−3/2

∫ 1/2

−1/2
s3 ds = 12−3/2s4/4|1/2−1/2 = 12−3/2[2−5 − 2−5] = 0 .

The skewness is 0 because the uniform distribution is symmetric around its mean.

14.15 Topper Building Co. suffers a number of delays that is uniform over {0, 1, 2, 3, 4}. Each
delay costs the builder an amount of time that is exponential with parameter 0.3 per
month. Find the expectation and variance of the total delay time.

Solution There are two random variables of interest here:

N := the number of delays
T := the total sum of the delays.
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The problem states that N ∼ Unif({0, 1, 2, 3, 4}). Given N , T is the sum of N indepen-
dent exponential random variables. This gives a gamma distribution:

[T |N ] ∼ Gamma(N, 0.3).

To find E[T ], condition on N and then undo the conditioning by taking the expectation
again:

E[T ] = E[E[T |N ]]

= E[N/0.3]

= (1/0.3)E[N ]

= 2/0.3 ≈ 6.667 .

To find the variance requires E[T 2]. Another fact that comes in handy here is that for
any random variable X , E[X2] = V(X) + E[X]2.

So

E[T 2] = E[E[T 2|N ]]

= E[V(T |N) + E[T |N ]2]

= E[N/0.32 + (N/0.3)2]

= (1/0.3)2E[N +N2]

= (1/0.3)2[2 + (1/5)02 + (1/5)12 + (1/5)22 + (1/5)32 + (1/5)42]

= 88.89.

Then
V(T ) = E[T 2]− E[T ]2 ≈ 44.44 .

15.1 For (X,Y ) ∼ Unif({(0, 0), (0, 2), (1, 2)}), find the correlation between X and Y .
Solution We need E[XY ], E[X], E[Y ], E[X2] and E[Y 2] to solve this problem.

E[XY ] = (1/3)[(0)(0) + (0)(2) + (1)(2)] = 2/3

E[X] = (1/3)[(0) + (0) + (1)] = 1/3

E[Y ] = (1/3)[(0) + (2) + (2)] = 4/3

E[X2] = (1/3)[(0)2 + (0)2 + (1)2] = 1/3

E[Y 2] = (1/3)[(0)2 + (2)2 + (2)2] = 8/3

Hence

Cor(X,Y ) =
(2/3)− (1/3)(4/3)√

(1/3)− (1/3)2 ·
√

(8/3)− (4/3)2
= 1/2 = 0.5000 .

15.3 For (A,B) with density

f(A,B)(a, b) = (2/3)(a+ 2b)1(a ∈ [0, 1])1(b ∈ [0, 1]),
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find Cor(A,B).
Solution We need E[AB], E[A], E[B], E[A2] and E[B2] to solve this problem. Fortu-
nately, these integrands are all positive, and so Tonelli can be used to do the calculations
with iterated integrals.

E[AB] =

∫ 1

a=0

∫ 1

b=0
(ab)(2/3)(a+ b) db da = 1/3

E[A] =

∫ 1

a=0

∫ 1

b=0
a(2/3)(a+ b) db da = 5/9

E[B] =

∫ 1

a=0

∫ 1

b=0
b(2/3)(a+ b) db da = 11/18

E[A2] =

∫ 1

a=0

∫ 1

b=0
a2(2/3)(a+ b) db da = 7/18

E[B2] =

∫ 1

a=0

∫ 1

b=0
b2(2/3)(a+ b) db da = 4/9

Hence

Cor(X,Y ) =
1/3− (5/9)(11/18)√

(7/18)− (5/9)2 ·
√

(4/9)− (11/18)2
= −0.08178 . . . .

15.5 Consider random variables X and Y with joint density

f(X,Y )(x, y) = C exp(−x− xy − y)1(x ≥ 0, y ≥ 0).

a) Numerically find the covariance of X and Y ?
b) Numerically find is the correlation of X and Y ?

Solution Before finding the expected values needed for parts a and b, it is necessary to
find C . The integrand is positive, so by Tonelli’s theorem,

C−1 =

∫ ∞

x=0

∫ ∞

y=0
exp(−x− xy − y) dy dx.

This integral does not have a solution with elementary functions, but with the exponential
integral function, it evaluates to −eEi(−1), so

C ≈ 1.67688.

Now numerically solve the integrals needed for the problem.

a) The integrals needed for this problem are as follows (all solved via Wolfram Alpha)

E[XY ] =

∫ ∞

x=0

∫ ∞

y=0
xy1.67688 exp(−x− xy − x) dx dy ≈ 0.323126

E[X] =

∫ ∞

x=0

∫ ∞

y=0
x1.67688 exp(−x− xy − x) dx dy ≈ 0.676877

E[Y ] =

∫ ∞

x=0

∫ ∞

y=0
y1.67688 exp(−x− xy − x) dx dy ≈ 0.676877

So
Cov(X,Y ) ≈ 0.323126− (0.676877)2 ≈ −1.350 .
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b) For the correlation, we need a few more facts..

E[X2] =

∫ ∞

x=0

∫ ∞

y=0
x21.67688 exp(−x− xy − x) dx dy = 1

E[Y 2] =

∫ ∞

x=0

∫ ∞

y=0
y21.67688 exp(−x− xy − x) dx dy = 1

Hence SD(X) = SD(Y ) = (1− 0.6768772)1/2, which makes the correlation

Cor(X,Y ) =
−1.35037

1− 0.6768772
≈ −0.2492 .

16.1 Let A ∼ Unif([0, 1]) and B ∼ Unif([0, 2]) be independent. Find the density of A+B.

Solution Here fA(a) = 1(a ∈ [0, 1]), and fB(b) = (1/2)1(b ∈ [0, 2]). Hence the
convolution of the densities is

fA+B(s) =

∫
a
fA(a)fB(s− a) da

=

∫
a
(1/2)1(s− a ∈ [0, 2], a ∈ [0, 1]) da

=

∫
a
(1/2)1(a ≤ s, a ≥ s− 2, a ∈ [0, 1]) da.

When s ≤ 0 or s ≥ 3 the indicator is always 0. When s ∈ [0, 1],

1(a ≤ s, a ≥ s− 2, a ∈ [0, 1]) = 1(a ∈ [0, s])

and the integral is s/2.

When s ∈ (1, 3],

1(a ≤ s, a ≥ s− 2, a ∈ [0, 1]) = 1(a ∈ [s− 2, 1])

and the integral is [1− (s− 2)]/2 = (3− s)/2. Therefore the final density is

fA+B(s) = (s/2)1(s ∈ [0, 1]) + [(3− s)/2]1(s ∈ (1, 3]).

16.3 SupposeX ∼ Unif({1, 2, 3}) and Y ∼ Unif({3, 5}) are independent. What is the density
of X + Y ?

Solution This will be

[f ∗ g](i) =
∑
j

fX(j)fY (i− j)

=
∑

j∈{1,2,3}

(1/3)1(j ∈ {1, 2, 3})(1/2)1(i− j ∈ {3, 5})

= (1/6)[1(i− 1 ∈ {3, 5})) + 1(i− 2 ∈ {3, 5}) + 1(i− 3 ∈ {3, 5})]

= (1/6)(1(i = 4) + 1(i = 5) + 21(i = 6) + 1(i = 7) + 1(i = 8))
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16.5 SupposeR andG are discrete random variables whereR ∼ Bern(0.3) andG ∼ Geo(0.6).
So

fR(i) = (0.3)1(i = 1) + (0.7)1(i = 0), fG(i) = (0.6)(0.4)i−11(i ∈ {1, 2, . . .}.

Find the density of R+G.
Solution We know R+G has density equal to the convolution of their densities:

fR+G(i) = [fR ∗ fG](i)

=
∑
a

fR(a)fG(i− a)

=
∑

a∈{0,1}

[0.31(a = 1) + 0.71(a = 0)](0.6)(0.4)i−a−11(i− a ∈ {1, 2, . . .})

= fa=0(i) + fa=1(i),

where

fa=0(i) = (0.3)(0.6)(0.4)i−21(i ∈ {2, 3, . . .})
fa=1(i) = (0.7)(0.6)(0.4)i−11(i ∈ {1, 2, 3, . . .}.

Note fa=0(1) = 0, and fa=1(1) = (0.7)(0.6) = 0.42, so

fR+G(i) = 0.421(i = 1) + h(i)1(i ∈ {2, 3, . . .}),

where for i ∈ {2, 3, . . .},

h(i) = (0.3)(0.6)(0.4)i−2 + (0.7)(0.6)(0.4)i−1

= (0.3)(0.6)(0.4)i−2 + (0.7)(0.6)(0.4)(0.4)i−2

= 0.348(0.4)i−2.

Putting this all together gives

fR+G(i) = 0.421(i = 1) + 0.348(0.4)i−21(i ∈ {2, 3, . . .}).

17.1 Suppose P(X = 1) = P(X = 2) = 0.5. What ismgfX(t)?
Solution This is

E[exp(tX)] = (1/2)et + (1/2)e2t .

17.3 Suppose X has moment generating function

mgfX(t) = 0.1 exp(10t) + 0.9 exp(−5t).

What is the density of X?
Solution Here X ∈ {−5, 10} since there is an exp(−5t) and exp(10t) term. The
coefficients then give the probabilities for a density of

fX(i) = 0.91(i = −5) + 0.11(i = 10).
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17.5 Let Z1, Z2, . . . , Zn be iid N(0, 1). Recall for Z ∼ N(0, 1), mgfZ(t) = exp(t2/2).

a) What is the the moment generating function of Z1 + Z2?

b) What is the moment generating function of:

Z1 + · · ·+ Zn

n
.

c) What is the moment generating function of:

Z1 + · · ·+ Zn√
n

.

Solution

a) Use the fact that

mgfZ1+Z2
(t) = mgfZ1

(t)mgfZ2
(t) = exp(t2/2) exp(t2/2) = exp(t2) .

b) Consider the moment generating function of a scaled random variable:

mgfαX(t) = E[etαX ] = mgfX(αt).

So for our problem:

mgfZ1/n(t) = mgfZ1
(t/n) = exp((t/n)2/2) = exp(t2/2n2).

Now add n of them together:

mgf(Z1/n)+···(Zn/n)(t) = mgfZ1/n(t)
n = mgfZ1

(t/n)n = [exp(t2/2n2)]n

= exp(t2/2n) .

c) The same as (b), but scaling by 1/
√
n:

mgf(Z1/
√
n)+···(Zn/

√
n)(t) = mgfZ1/

√
n(t)

n = mgfZ1
(t/

√
n)n = exp(t2/2n)n

= exp(t2/2) .

This means when you add up n normal random variables with mean 0 and standard
deviation 1, and divide by

√
n, you get a normal random variable with mean 0 and

standard deviation 1. A normal random variable is a fixed point with respect to this
operation.
The CLT says that if you add up any n random variables with mean 0 and standard
deviation 1, and divide by

√
n, you get approximately a normal random variable

with mean 0 and standard deviation 1. This is because such operations tend to
converge to the fixed point, in this case, normal.

17.7 Suppose that X has the following density:

fX(r) =
3

8
(r3 − 8r2 + 19r − 12)1(r ∈ [1, 3]).



336 CHAPTER 46. WORKED PROBLEMS

a) Find the mode(s) of X .
b) Find the median(s) of X .
c) Find the mean of X .
d) Find E[etX ].

Solution A plot of fX(r) is:

x
1 3

Note that it is skewed towards the left, this should make the mean, mode, and median a
little to the left of 2 (because that is the middle of the interval [1, 3] where the density is
positive.)

a) To find the mode, maximize. The derivative of fX(r) with respect to r is (9/8)r2 −
6r+ (57/8) which is a quadratic with exactly one zero in [1, 3]. This zero occurs at
1.785 , and since fX(r) is zero at r = 1 and r = 3, and positive at r = 1.785, this
must be a maximum, and so is the mode.

b) The median will occur at the point where half the area under the density lies to
the left of the point, and half lies to the right. There are many packages that do
integrations and root finding, as well as most calculators. For Wolfram Alpha, the
command:

1/2 = integrate (3/8)*(r^3-8*r^2+19*r-12) from 1 to a

yields a ≈ 0.42551 and a ≈ 1.878. Since the median must be in [1, 2], 1.878 is
the answer.

c) The mean is even easier, since it just involves one integration:∫ 3

1
r(3/8)(r3 − 8r2 + 19r − 1) dr.

which yields 1.900 as the answer.
Summarizing these first three parts:

(a) mode 1.785

(b) median 1.878

(c) mean 1.900

They are different because the density is not symmetric as in the case of a normal
density.

d) The integral to be computed is∫ 3

1
ert(3/8)(r3 − 8r2 + 19r − 12) dt.
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Wolfram Alpha returns the result

mgfX(t) =
9 + 15t+ 9ett2 + e3t(3t2 + 3t− 9)

4t4
.

Note that the Taylor series expansion of this expression is:

1 +
19

10
t+

19

10
t2 + · · · ,

and so the value of 19/10 = 1.9 matches the mean found earlier.

18.1 For Z a standard normal, find
P(Z ∈ [−2, 2]).

Solution This is ∫ 2

−2

1√
τ
exp(−s2/2) ds

which can be approximately evaluated by WolframAlpha to be 0.9545 .

18.3 The Digital Life conference draws a number of attendees each year that is normally
distributed with mean 59 000 and standard deviation 10 000. Independently, E3 draws a
number of attendees that is normally distributed with mean 75 000 and standard deviation
5 000.

a) Suppose I average the two numbers. What is the distribution of the average?
b) What is the chance that the average of the two conferences is greater than 70 000?
c) What is the distribution of the number attending Digital Life minus the number

attending E3?
d) What is the chance that more people attend Digital Life than E3?

Solution

a) LetA be the number of attendees at the Digital Life Conference, andB the number of
attendees at E3. Then because they are independent normals, their sum and average
and difference will also be normal. For convenience, we represent everything in
units of 1000’s. Then

A+B

2
∼ N((59 + 75)/2, (102 + 52)/4) ∼ N(67, 31.25) .

b) If we let C ∼ N(67, 31.25), then

P(C ≥ 70) = P(C − 67 ≥ 3)

= P
(
C − 67√
31.25

≥ 3√
31.25

)
= P

(
Z ≥ 3√

31.25

)
= 29.57% .
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c) For the difference, subtract the means (but still add the variances!)

A−B ∼ N(59− 75, 102 + 52) ∼ N(−16, 125).

d) For this to happen A−B ≥ 0.

P(A−B ≥ 0) = P(A−B + 16 ≥ 16)

= P
(
A−B + 16√

125
≥ 16√

125

)
= P(

(
Z ≥ 16√

125

)
= 7.620% .

18.5 Suppose thatW1, . . . ,Wn are iid standard normal random variables. What is the distri-
bution ofW1 + · · ·+Wn?
Solution Any sum of independent normal random variables is another normal random
variable. The new mean is the sum of n zero values, and the new variance is the sum of
n one values, so

W1 + · · ·+Wn ∼ N(0, n) .

19.1 Let D1, . . . , D8 be iid rolls of a fair eight-sided die. Approximate the probability that∑
Di ≥ 30 using the CLT.

Solution First we calculate the mean and variance:

E[Di] = (1 + 8)/2 = 4.5.

V[Di] = ((8− 1 + 1)2 − 1)/12 = 63/12.

Next we standardize the sum

P(
∑

Di ≥ 17) = P

(∑ Di − 4.5√
(8)(63/12)

≥ 30− (4.5)(8)√
(8)(63/12)

)

≈ P

(
Z ≥ 30− (4.5)(8)√

(8)(63/12)

)
= 0.8227

19.3 Suppose that R has density

fR(r) = 2r · 1(r ∈ [0, 1]).

a) What is the expected value of R?
b) What is the variance of R?
c) Say that R1, R2, . . . are independent random variables with the same distribution

as R. Using the CLT, approximately what is

P(R1 + · · ·+R100 ≥ 70)?
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d) What is the expected value of R conditioned on R ∈ [0.3, 0.5]?

Solution

a) This is

E[R] =

∫
r
r · 2r1(r ∈ [0, 1]) dr =

∫ 1

r=0
2r2 dr = 2/3 = 0.6666 . . . .

b) We will need the second moment of R for this:

E[R2] =

∫
r
r2 · 2r1(r ∈ [0, 1]) dr =

∫ 1

r=0
2r3 dr = 1/2.

Hence the variance is

E[R2]− E[R]2 =
1

2
−
(
2

3

)2

=
1

18
= 0.05555 . . . .

c) The CLT says that p = P(R1 + · · ·+R100 ≥ 70) is

p = P

(
R1 + · · ·+R100 − 100(2/3)√

1/18
√
100

=
70− 100(2/3)√

100 · 1/18

)
≈ P(Z ≥

√
2))

= 0.07864 . . . .

d) Conditioned to lie in [0.3, 0.5], the density becomes unnormalized.

fR|R∈[0.3,0.5](r) ∝ fR(r)1(r ∈ [0.3, 0.5]).

Normalizing gives

fR|R∈[0.3,0.5](r) =
fR(r)1(r ∈ [0.3, 0.5])∫

s∈[0.3,0.5] fR(s) ds
=

2r

0.16
1(r ∈ [0.3, 0.5]).

That makes the conditional expectation

E[R|R ∈ [0.3, 0.5]] =

∫
r
r · 2r

0.16
1(r ∈ [0.3, 0.5]) = 0.4083 . . . .

19.5 Let U1, U2, . . . , U12 be standard uniform random variables (so uniform over [0, 1].) Then
approximate

P(U1 + · · ·+ U12 < 7)

using the CLT.
Solution The mean of a standard uniform is

E[U ] =

∫
x1(x ∈ [0, 1]) dx =

∫ 1

0
x dx = 1/2,

while the second moment is

E[U2] =

∫
x21(x ∈ [0, 1]) dx =

∫ 1

0
x2 dx = 1/3.
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This makes the variance 1/3 − (1/2)2 = 1/12. Hence the variance of the sum is
12 · (1/12) = 1, and the mean is 12 · (1/2) = 6. Hence

P(U1 + · · ·+ U12 < 7) = P
(
U1 + · · ·+ U12 − 6√

1
<

7− 6√
1

)
≈ P(Z < 1)

= 0.8413 . . . .

20.1 Suppose X ∼ Bin(34, 0.23). What is E[X]?

Solution The mean of a binomial random variable is the product of the parameters, so
(34)(0.23) = 7.820 .

20.3 Let G ∼ Geo(0.38).

a) What is E[G]?

b) What is V[G]

Solution

a) The mean is 1/0.38 ≈ 2.631 .

b) The variance is (1− 0.38)/0.382 ≈ 4.293 .

20.5 Let N ∼ NegBin(20, 0.38).

a) What is E[N ]?

b) What is V[N ]

Solution

a) The mean is 20/0.38 ≈ 52.63 .

b) The variance is 20(1− 0.38)/0.382 ≈ 85.87 .

20.7 Suppose X ∼ Bin(13, 0.2) and Y ∼ Bin(27, 0.2) are independent. What is the distribu-
tion of X + Y ?

Solution X represents the number of successes on 13 independent trials (that are a
success with probability 0.2). Y represents the number of successes on 27 independent
trials (that are a success with probability 0.2). TogetherX + Y represents the number of
successes on 40 independent trials. So X + Y ∼ Bin(40, 0.2).

20.9 Let Y be a positive integer valued random variable with E[Y ] = 4.2, and [X|Y ] =
Bin(Y, 0.3). Then what is E[X]?

Solution Since E[X|Y ] = (Y )(0.3),

E[X] = E[E[X|Y ]] = E[0.3Y ] = 0.3(4.2) = 1.260 .
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20.11 Find E[G2] for a geometric random variable by conditioning on B1 and taking the
expectation again.
Solution By the FTP

E[G2] = E[E[G2|B1]]

= p(1)2 + (1− p)E[(1 +G)2]

= p+ (1− p)E[1 + 2G+G2]

= p+ (1− p)(1 + 2/p) + (1− p)E[G2].

Bringing the (1− p)E[G2] over to the other side and dividing by p gives

E[G2] = 1 +
1− p

p

(
1 +

2

p

)
=

2− p

p2
.

21.1 For P a PPP over [0,∞) of rate 2, what is the distribution of inf(P )?
Solution The infimum of a set of points is the closest one to 0. So this is the distance
from 0 to the first point, which is Exp(2) for this type of process.

21.3 Let P be a Poisson point process over [0,∞) of rate 1.8, and P1 = inf(P ). What is
P(P1 ≤ 1)?
Solution Since P1 ∼ Exp(1.8), this is∫ 1

0
1.8 exp(−1.8s)1(s ≥ 0) ds = − exp(−1.8s)|10 = 1− exp(−1.8) ≈ 0.8347 .

21.5 Suppose that times that a bus arrives at a stop over one hour is modeled as a Poisson
point process of rate 1.4/hr.

a) What is the chance that exactly one bus arrives in the hour?
b) What is the expected number of buses that arrive in the hour?
c) What is the expected number of buses that arrive in the first half hour?

Solution

a) The number of buses will be Poisson with parameter 1.4, hence the chance of exactly
one bus is

P(N = 1) = exp(−1.4)(1.4)1/1! ≈ 0.3452 .

b) The expected number in the first hour is 1(1.4) = 1.400 .

c) The expected number in the first half hour is (1/2)(1/4) = 0.7000 .

21.7 For a Poisson point process over [0,∞) of rate λ, let NA = #(P ∩ A). Then find
Cov(N[0,2), N[0,3)).
Solution Note that

N[0,3) = N[0,2) +N[2,3),



342 CHAPTER 46. WORKED PROBLEMS

so

Cov(N[0,2), N[0,3)) = Cov(N[0,2), N[0,2)) + Cov(N[0,2), N[2,3))

= V(N[0,2)) + 0 = 2λ .

22.1 Suppose N1 and N2 are independent Poisson random variables with means 2 and 3
respectively. What is the chance that N1 +N2 = 5?
Solution Their sum will be Poisson distributed with mean 5. Hence

P(N1 +N2 = 5) = exp(−5)
55

5!
= 0.1754 . . . .

22.3 EPA clean-up sites in a county are modeled as a Poisson point process of rate λ = 3/mi2.

a) If the region has an area of 9 square miles, what is the expected number of clean-up
sites?

b) If the region is known to have at least 25 clean up sites, what is the chance that it
has at least 30 such sites? (Probably want to use a computer for the calculations on
this one.)

Solution

a) The average number of clean-up sites will be the rate times the measure of the area,
or

3

mi2
· 9mi2 = 27 .

b) This is P(N ≥ 30|N ≥ 25), whereN ∼ Pois(27). Using the conditional probability
formula, this is

P(N ≥ 30, N ≥ 25)

P(N ≥ 25)
=

P(N ≥ 30)

P(N ≥ 25)
= 0.4535 . . . ,

where the last expression was evaluated in R using

(1 - ppois(29, 27))/(1 - ppois(24, 27))

22.5 Suppose that P ∼ Pois([0, 2], λ · ℓ), where λ > 0 is a constant and ℓ is Lebesgue measure.
If N[0,2] = 10, what is the chance that N[0,1] = 4?
Solution We know that

µ([0, 1]

µ[0, 2]
=

λ(1− 0)

λ(2− 0)
=

1

2
.

So
[N[0,1]|N[0,2] = 10] ∼ Bin(10, 1/2),

and

P(N[0,1]|N[0,2] = 10) =

(
10

4

)(
1

2

)4(1

2

)6

= 0.2050 . . . .

22.7 Outbreaks of a disease are modeled as coming from a Poisson point process with rate 2.3
per square mile.
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a) If the city is 3 square miles, what is the chance that there are exactly 6 outbreaks?
b) Suppose the part of the city west of the river is 1.2 square miles (leaving 1.8 square

miles east of the river). If there are exactly 8 outbreaks across the city, what is the
chance that at least 3 of them are on the west side of the river?

Solution

a) The number of points in the process will be Poisson with parameter 3 · 2.3 = 6.9.
Hence

P(N = 6) = exp(−6.9)6.96/6! ≈ 0.1510 . . . .

b) If X is the number on the west side and N is the total number then

[X|N = 8] ∼ Bin(8, 1.2/(1.2 + 1.8)).

Let p = 1.2/(1.2 + 1.8) = 0.4.

P(X ≥ 3|N = 8) = 1− P(X ∈ {0, 1, 2}|N = 8)

= 1−
(
8

0

)
(0.6)8 +

(
8

1

)
(0.4)1(0.6)7 +

(
8

2

)
(0.4)2(0.6)6

= 0.6846 . . . .

23.1 Suppose (X1, X2, X3) has joint density

f(X1,...,Xn) ∝ (x1 + x2)(x1 + x3)(x2 + x3)1((x1, x2, x3) ∈ [0, 1]3).

a) Find the normalized density.
b) Find the marginal density of X1.
c) Find the expected value of X1.

Solution

a) First ∫
x1∈[0,1]

∫
x2∈[0,1]

∫
x3∈[0,1

(x1 + x2)(x1 + x3)(x2 + x3) dx3 dx2 dx1

has value 5/4, so the normalized density is

4

5
(x1 + x2)(x1 + x3)(x2 + x3)1(x1, x2, x3 ∈ [0, 1]) .

b) To get the marginal density we need to integrate out the x2 and x3 variables which
gives:∫

x2∈[0,1]

∫
x3∈[0,1

(4/5)(x1 + x2)(x1 + x3)(x2 + x3)1(x1 ∈ [0, 1]) dx3 dx2,

which evaluates to

fX1(x1) =
2

15
(6x21 + 7x1 + 2)1(x1 ∈ [0, 1])
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c) We can either go back to the beginning and integrate with the density multiplied
by x1, so just the marginal density times x1 to get∫ 1

x1=0
x1

2

15
(6x21 + 7x1 + 2) dx1 =

29

45
= 0.6444 . . .

23.3 Suppose X1, . . . , Xn have joint density

(1/10)n1((x1, . . . , xn) ∈ [0, 10]n).

Show that the Xi are independent.
Solution Since

(1/10)n1((x1, . . . , xn) ∈ [0, 10]n) =

n∏
i=1

(1/10)1(xi ∈ [0, 10]),

the joint density is the product of n marginal densities (each of which is the density of a
uniform over [0, 10]), and the random variables are independent.

23.5 Suppose that X and Y have joint density:

f(X,Y )(x, y) = (3/4)xy21(x ∈ [0, 1])1(y ∈ [0, 2])

Show that X and Y are independent.
Solution Note that the density factors into a part that just depends on x, and a part that
just depends on y:

f(X,Y )(x, y) = [Cxx1(x ∈ [0, 1)][Cyy
21(y ∈ [0, 2])].

Hence X and Y are independent.

24.1 Suppose A ∼ Unif{1, 2, 3, 4, 5, 6} and [B|A] ∼ Exp(A). Given B = 3.6, what is the
distribution of A with the normalizing constant given to four sig figs?
Solution First let’s find the posterior density of A given B = b, where b ≥ 0:

fA|B=b(a) ∝ fA(a)fB|A=a(b)

= (1/6)1(a ∈ {1, . . . , 6})a exp(−ab).

∝ a exp(−ab)1(a ∈ {1, . . . , 6}).

The normalizing constant is

C =
6∑

a=1

a exp(−ab) = exp(−b)− 2 exp(−2b)− · · · − 6 exp(−6b).

For b = 3.6, this is C = 0.028804 . . .. Hence

fA|B=3.6(a) = 34.62a exp(−3.6a)1(a ∈ {1, . . . , 6}) .

24.3 Suppose X1 ∼ Unif([0, 10]) and X2 ∼ Unif([0, 20]). Let B ∼ Unif{1, 2}.
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a) Given XB = 15, what is the chance that B = 2?
b) Given XB = 7, what is the chance that B = 2?

Solution

a) Since P(X1 > 10) = 0, given XB = 15, the chance that B = 2 is 1 .
b) Given XB = 7, it is possible that B could be either 1 or 2. To Bayes’ Rule!

We want to find the density of B given the value of XB . So we will need the prior
density of B and the conditional density of XB|B. These are

fB(b) =
1

2
1(b ∈ {1, 2})

fXB |B=1(x) = (1/10)1(x ∈ [0, 10])

fXB |B=2(x) = (1/20)1(x ∈ [0, 20]).

We could also write this as

fXB |B=b(x) = 1/(a(b))1(x ∈ [0, a(b)]),

where a(1) = 10 and a(2) = 20. Then Bayes’ Rule says

fB|XB=7(b) ∝
1

a(b)
1(x ∈ [0, a(b)])

1

2
1(b ∈ {1, 2})

∝ 1

a(b)
1(b ∈ {1, 2}).

Then to find the constant of proportionality, we just integrate the right hand side
with respect to counting measure, which gives us the sum

C =
1

10
+

1

20
.

Hence

fB|Xb=7(b) =
1

a(b)

[
1

10
+

1

20

]−1

,

and

P(B = 2|Xb = 7) = fB|Xb=7(2) =
1

20

[
1

10
+

1

20

]
=

1

3
= 0.3333 . . . .

24.5 A drug company believes that a new treatment is effective on patients with probability p,
where p is uniform over [0, 1]. A drug trial keeps trying the drug on patients until it finds
four patients where the drug is effective. The study needed to enroll N = 21 patients
before they found four that the drug worked on.
Given this information, what is the new distribution of p?
Solution The posterior density is proportional to the prior density on p times the
likelihood. Here N |p = s is negative binomial with parameters 4 and s. Hence

fp(s) = 1(s ∈ [0, 1])

fN |p=s(i) =

(
i− 1

3

)
s4(1− s)i−41(i ∈ {4, 5, . . .})
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so the posterior is

fp|N=21(s) ∝
(
21

3

)
s4(1− s)171(s ∈ [0, 1])

This is the distribution of a beta random variable with parameters 5 and 18. Hence

[p|N = 21] ∼ Beta(5, 18) .

25.1 Suppose X is a random variable with mean 0.4, mean absolute deviation of 1.5, and
standard deviation of 2.

a) Give an upper bound on P(|X − 0.4| > 4) using Markov’s inequality.

b) Give an upper bound on P(|X − 0.4| > 4) using Chebyshev’s inequality.

c) Which is better? (Or equivalently, if you were asked to give the best upper bound
on P(|X − 0.4| > 4), what would you report?)

Solution

a) By Markov’s inequality

P(|X − 0.4| > 4) ≤ E[|X − 0.4|]
4

=
1.5

4
= 0.3750

b) By Chebyshev’s inequality

P(|X − 0.4| > 4) ≤ V(X)

42
=

22

42
= 0.2500

c) 0.2500 is the better upper bound since is the smaller of the two values.

25.3 A construction project will take an unknown amount of time. The builders believe that
the mean will be fifty days with a standard deviation of ten days.

a) Give an upper bound for the chance the project takes at least sixty days.

b) Give an upper bound for the chance the project takes at least one hundred days.

Solution Let T be the time needed for the construction project. Then T is nonnegative
and the standard deviation is finite, so both Markov and Chebyshev apply here.

a)

P(T ≥ 60) ≤ 50/60 by Markov
P(T ≥ 60) ≤ 1/12 by Chebyshev

So 0.8333 is the best upper bound.
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b)

P(T ≥ 100) ≤ 50/100 by Markov
P(T ≥ 100) ≤ 1/52 by Chebyshev

So 0.04000 is the best upper bound.

25.5 Outreach Solutions serves a number of clients each day that is uniform over {1, 2, 3, 4, 5}.
Let N be the total number of clients served in a week of seven days.

a) What is the expected value of N?
b) What is the standard deviation of N?
c) Using the fact that N is symmetric about its mean, give a lower bound on the

probability that N ≤ 26.

Solution

a) Let Ni be the number of clients served on day i. Then

N = N1 + · · ·+N7.

So

E[N ] = E[N1 + · · ·+N7] = E[N1] + · · ·+ E[N7] = 7E[N1]

= 7(1 + 5)/2 = 21 .

b) Similarly, since the Ni can be assumed to be iid:

V[N ] = V[N1+ · · ·+N7] = V[N1]+ · · ·+V[N7] = 7V[N1] = 7(52−1)/12 = 14.

Hence SD(N) =
√
14 ≈ 3.741 .

c) We need to find α such that P(N ≤ 26) ≥ α. But all we have are upper bounds?
So apply the function 1− x to both sides:

1− α ≤ 1− P(N ≤ 26) = P(N ≥ 27).

Using Markov’s inequality gives

P(N ≥ 27) ≤ E[N ]/27 = (7)(3)/27 = 21/27.

Using Chebyshev’s inequality (and taking advantage of symmetry) gives:

P(N ≥ 27) = P(N − 21 ≥ 6)

= (1/2)P(|N − 21| ≥ 6)

≤ (1/2)V(N)/62 = 7V(N1)/72.

Since N1 ∼ Unif({1, 2, 3, 4, 5}), we have V(N1) = (52 − 1)/12 = 2.
So 1− α = 7/36, which means α = 29/36 > 0.8055 .
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25.7 Suppose X has finite mean µ and standard deviation σ. All random variables have at
least one median. Show that there must be a median of X somewhere strictly between
µ−

√
3σ and µ+

√
3σ.

Solution

Proof. Since X has a finite mean and variance, Chebyshev’s inequality applies and

P(|X − µ| ≥
√
3σ) ≤ 1

3
.

In particular, letm ≥ µ+
√
3σ. Then

P(X > m) ≤ P(X ≥ µ+
√
3σ)

= P(X − µ ≥
√
3σ)

≤ P(|X − µ| ≥
√
3σ)

≤ 1/3 by Chebyshev’s inequality

So if m ≥ µ+
√
3σ, thenm is not a median.

Now supposem ≤ µ−
√
3σ. Then

P(X ≤ m) ≤ P(X ≤ µ−
√
3σ)

= P(X − µ ≤ −
√
3σ)

≤ P(|X − µ| ≥
√
3σ)

≤ 1/3 by Chebyshev’s inequality

So againm cannot be a median!
If there is no median in (−∞, µ −

√
3σ], and no median in [µ +

√
3σ,∞), then there

must be a median in (µ−
√
3σ, µ+

√
3σ), and the proof is complete.

25.9 A construction project time T has the following mean, standard deviation, mean absolute
deviation, and moment generating function at 0.5:

E[T ] = 100√
E[(T − E[T ])2] = 15

E(|T − E[T ]|) = 12

E(exp(0.5T )) = exp(63).

Using these facts together with Markov and Chebyshev, put as best an upper bound as
you can on P(T > 130). Be sure to show all your work!
Solution Note T ≥ 0 because it is measuring time. Markov’s inequality gives

P(T > 130) ≤ E[T ]/130 = 100/130 = 0.7692 . . . .

Not very good! Knowing the standard deviation allows us to use Chebyshev:

P(T > 130) = P(T − 100 > 30) ≤ P(|T − 100| > 30) ≤ 152

302
=

1

22
= 0.25.
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Next up is the mean absolute deviation, which Markov tells us gives

P(T > 130) = P(T−100 > 30) ≤ P(|T−100| > 30) ≤ E[|T − 100|]
30

=
12

30
=

2

5
= 0.4.

Finally,

P(T > 130) = P(exp(0.5T ) > exp(0.5 · 130)) ≤ exp(63)

exp(65)
= exp(−2) = 0.1353 . . . .

So our best upper bound is 0.1353 .

26.1 Suppose that X has moment generating function mgfX(t) = [(exp(t)− 1)/t]10. Bound
P(X ≥ 8) with Chernoff using t = 5.
Solution Chernoff says that

P(X ≥ 8) ≤ mgfX(t) exp(−8t)

for all t > 0. In particular, for the moment generating function for this problem and this
value of t,

P(X ≥ 8) ≤ [(e5 − 1)/5]10 exp(−8 · 5) ≈ 0.002108 . . .

26.3 Use Chernoff’s inequality to give the best upper bound you can on the probability that
the sum of 12 iid random variables uniform over [0, 1] is at least 9.
Solution A uniform over [0, 1] has moment generating function when t > 0

E[exp(tU)] =

∫ ∞

−∞
exp(tu)1(u ∈ [0, 1]) du

=

∫ 1

0
exp(tu) du

=
exp(tu)

t

∣∣∣∣1
0

=
exp(t)− 1

t
.

Therefore the sum of 12 iid uniforms over [0, 1] has moment generating function [(et −
1)/t]12.
Putting that into Chernoff’s bound gives

P(U1 + · · ·+ U12 ≥ 9) ≤ mgfU1+···+U12
(t) exp(−9t)

=

[
et − 1

t

]10
exp(−0.75t)12

=

[
e0.25t − e−0.75t

t

]12
Numerically minimizing the term inside the brackets gives 0.664554 . . ., which makes
the best upper limit 0.007419 . . . .
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27.1 For X ∼ Cauchy, find
P(X ∈ [0, 5]).

Solution The density of a Cauchy is (2/τ)(1 + s2)−1, so this is∫ 5

0

2

τ
· 11 + s2 ds =

2

τ
[arctan(5)− arctan(0)] ≈ 0.4371 .

27.3 Estimate ζ(2.5) to four significant figures.
Solution Note

ζ(2.5) =
n∑

i=1

1

i2.5
+

∞∑
i=n+1

1

i2.5
.

The key is figuring out how large n has to be to make our result accurate to four sig figs.
We can upper bound the sum using an integral.

∞∑
i=n+1

1

i2.5
=

∫ ∞

x=n+1
⌊x⌋−2.5 dx

≤
∫ ∞

x=n+1
(x− 1)−2.5 dx

= (2/3)n−1.5.

By setting n = 1645, we make this sum at most 0.00001, and so

ζ(2.5) ∈

[
1645∑
i=1

1

i2.5
,
1645∑
i=1

1

i2.5
+ 0.00001

]
= [1.34147, 1.34179],

so to 4 sig figs, ζ(2.5) ≈ 1.341 .

27.5 For X ∼ Zeta(α) with α > 1, prove that ln(X) always has finite mean.
Solution The sum for the mean of ln(X) is

E[ln(X)] =
∞∑
i=1

ln(i)
1

iα

=

∞∑
i=2

ln(i)/iα

since ln(1) = 0.
Note that for x ∈ [1, 2), ln(1 + x) ≥ ln(2) and 1/xα ≥ 1/2α. Similarly, for x ∈ [2, 3),
ln(1 + x) ≥ ln(3) and 1/xα ≥ 1/3α. Using this idea for all width 1 intervals gives

E[ln(X)] = ζ(α)−1
∞∑
i=2

ln(i)/iα

≤ ζ(α)−1

∫ ∞

1
ln(1 + x)/xα dx
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This is a tricky integral to solve. It can be made easier by noting that for x ≥ 1,

ln(1 + x)− ln(x) = ln(1 + 1/x) ≤ 1 + 1/x,

which means
ln(1 + x) ≤ ln(x) + 2

for x ≥ 1. So

E[ln(X)] = ζ(α)−1
∞∑
i=2

ln(i)/iα

≤ ζ(α)−1

∫ ∞

1
[2 + ln(x)]/xα dx

≤ 2 + ζ(α)−1

∫ ∞

1
ln(x)/xα dx.

To solve the integral now, integration by parts can be used

f(x) = ln(x), g′(x) = x−α, f ′(x) = 1/x, g(x) = −x−α+1/(α− 1),

so ∫ ∞

1
ln(x)/xα dx = − ln(x)x−α+1/(α− 1)|∞1 +

∫ ∞

1
1/xα dx = ζ(α).

Hence
E[ln(X)] ≤ 2 + 1/(α− 1).

which is finite no matter the value of α > 1!

28.1 A small plastic bucket contains tiles with the letters MISSISSIPPI. Four of these tiles are
drawn out of the bucket without replacement.

a) What is the chance that all four S tiles are drawn?
b) What is the chance that exactly two out of the four drawn tiles are S?

Solution

a) LetAi be the event that the ith tile is an S. Then we want P(A1A2A3A4). Note that

P(A1A2A3A4) = P(A1)P(A2|A1)P(A3|A1A2)P(A4|A1A2A3)

=
4

11
· 3

10
· 2
9
· 1
8

≈ 0.003030 .

28.3 In the prodction output of a factory for a day are 500 screws, 10 of which are below
standard.

a) If 5 of the screws are drawn uniformly at random without replacement from the
500 screws, what is the chance that this sample does not contain a below standard
screw?

b) What is the expected number of below standard screws in this sample of 5?
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Solution

a) This will be
490

500
· 489
499

· 488
498

· 487
497

· 486
496

= 0.9035 . . . .

b) This would be (10/500)(5) = 0.1000 . Note that Markov’s inequality means that
for Y the number sampled that are below standard,

P(Y ≥ 1) ≤ E[Y ]/1 = 0.1,

so P(Y = 0) ≥ 1− 0.1 = 0.9 which is a fair approximation to the true answer.

28.5 Fifteen hundred of a particular bird are living in an ecosystem. Twenty are sampled
without replacement, and five are found to be carrying a particular gene. What number
of birds out of the 1500 should have this gene so that the expected number found in the
sample would be 5? (This type of estimate is called a method of moments estimate.)
Solution If n birds carried the gene, the expected number found would be

n

1500
· 20.

Setting this equal to 5 and solving gives

n̂ = 5(1500)/20 = 375 .

29.1 Suppose (W1,W2,W3,W4) ∼ Multinom(10, 0.3, 0.2, 0.4, 0.1). What is

P((W1,W2,W3,W4) = (1, 3, 2, 4))?

Solution This is like when there are four answers to a question, and ten individuals are
surveyed. From our formula:

P((W1,W2,W3,W4) = (1, 3, 2, 4)) =

(
10

1, 3, 2, 4

)
(0.3)1(0.2)3(0.4)2(0.1)4

=
10!

1!3!2!4!
(0.3)1(0.2)3(0.4)2(0.1)4

= 0.0004838 . . . .

29.3 Suppose (X1, X2, X3) ∼ Multinom(30, 0.5, 0.1, 0.4).

a) What is the distribution of X1?
b) What is E[X1]?
c) Find Cov(X1, X3).

Solution

a) The marginals of a multinomial are binomial, so X1 ∼ Bin(30, 0.5) .

b) The mean of a binomial is the number of trials times the probability of success on
each trial, so 30 · 0.5 = 15 .
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c) The covariance between margins of a multinomial is the negative of the number of
trials times the probabilities for the marginals involved. In this case, 30 · 0.5 · 0.4 =
6 .

29.5 A research project is studying an animal population. There are 30 animals collected. Each
animal has a 10% chance of being genotype A, 20% of being genotype B, and 70% of
being genotype C. Let (NA, NB, NC) be the number of animals found of each genotype.

a) What is the distribution of (NA, NB, NC)?
b) What is E(NA)?
c) What is Cov(NA, NB)?
d) What is Cov(NA, NC)?

Solution

a) The numbers of each type will be multinomial. In this project:

Multinom(30, 0.1, 0.2, 0.7) .

b) The mean is the probability of picking on of that type times the number of samples
drawn. So

E(NA) = 0.1(30) = 3 .

c) The covariance is the negative of the product of the probabilities times the number
being drawn. So

Cov(NA, NB) = −30 · 0.1 · 0.2 = −0.6000 .

d) Similarly, this will be

Cov(NA, NC) = −30 · 0.1 · 0.7 = −2.100 .

30.1 Let Z1, Z2, Z3 be iid normal.
What is the distribution of

a) What is the distribution of Z1 + Z2 + Z3?
b) What is the distribution of 5− Z1 + 2Z2 + 4Z3?

Solution Remember that any linear combination of iid normals will be a normal family
distribution. Just match the mean and variance.

a) This will be N(0, 3) .

b) This will be N(5, 21) .

30.3 For Z1, Z2, Z3 iid normal let

W1 = Z1 + Z2 − 2Z3

W2 = −Z1 + Z3

W3 = Z3.
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a) Find Cov(W1,W3).

b) What is the distribution of (W1,W2,W3)?

Solution

a) Here

Cov(W1,W3) = Cov(Z1 + Z2 − 2Z3, Z3)

= Cov(2Ze, Z3)

= 2V(Z3) = 2 .

b) Since W = AZ , W has a multivariate normal (or multinormal) distribution. To
find the parameters, we take

AAT =

 1 1 −2

−1 0 1

0 0 1


1 −1 0

1 0 0

2 1 1

 =

 6 −3 −2

−3 2 1

−2 1 1


The mean is the 0 vector, soW1

W2

W3

 ∼ Multinorm


0

0

0

 ,

 6 −3 −2

−3 2 1

−2 1 1




30.5 Suppose that (X1, X2, X3) is a multivariate normal with mean 2.3, 1.8,−1.6) and co-
variance matrix 1.1 0 2.3

0 2.4 1.6

2.3 1.6 0.7


a) What is the distribution of X1?

b) What is Cov(X1, X3)?

Solution

a) This is N(2.3, 1.1) .

b) This is 2.300 .

31.1 Suppose X1, X2, X3 are iid with density f(s) = s/2 · 1(s ∈ [0, 2]).

a) What is the density of X(1)?

b) What is E[X(2)]?

Solution
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a) The density of X(1) is (from the order statistic formula):

fX(1)
(s) = 3

(
2

0

)
f(s)F (s)0(1− F (s))3−1.

The cdf of X1 is for s ∈ [0, 2]:

F (a) =

∫ a

−∞
f(s) ds =

∫ a

0
s/2 ds = a2/4.

When a > 2, then F (a) = 1, and for a < 0, F (a) = 0. Hence

fX(1)
(s) = 3(s/2) ·1(s ∈ [0, 2])(1− s2/4)2 = (3/2)s(1− s2/4)2 · 1(s ∈ [0, 2]) .

b) To find E[X(2)], we need the density. Again using the order statistics density
formula:

fX(2)(s) = 3

(
2

1

)
f(s)F (s)1(1− F (s))3−2 = 3s(s2/4)(1− s2/4) · 1(s ∈ [0, 2]).

This makes the expected value

E[X(2)] =

∫
R
sfX(2)(s) ds

=

∫
R
s · (3s3/4)(1− s2/4)1(s ∈ [0, 2]) ds

=

∫ 2

0
(3s4/4)(1− s2/2) ds

= 48/35 ≈ 1.371 .

31.3 Suppose P(X = 0) = 0.3, P(X = 1) = 0.5, and P(X = 2) = 0.2. Suppose that
X1, X2, X3 are iid with the same distribution as X .

a) What is the distribution of X(1)?

b) What is E[X(2)]?

Solution

a) Since X is not continuous, we cannot use the order statistic density formula. What
we can do is use our minimum idea from earlier in the course:

P(X(1) ≥ 0) = 13

P(X(1) ≥ 1) = 0.73

P(X(1) ≥ 2) = 0.23,

which leads to

P(X(1) = 0) = 0.6570, P(X(1) = 1) = 0.3350, P(X(1) = 2) = 0.008000.
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b) To find the expected value of X(2), it is necessary to find its distribution. This
number is 0 if at least two of the X1, X2, X3 are 0, and 2 if at least two of the
X1, X2, X3 are two. The fact that it is either 0, 1, or 2 then allows calculation of
the final part of the distribution:

P(X(2) = 0) =

(
3

2

)
0.320.7 + 0.33 = 0.216

P(X(2) = 3) =

(
3

2

)
s0.220.8 + 0.23 = 0.104

Hence
E[X(2)] = 0.216(0) + 0.68(1) + 0.104(2) = 0.8880 .

31.5 What is the chance that for three iid uniforms over [0, 1], that the middle of the three
numbers falls in the interval [1/3, 2/3]?
Solution Since the random variables are uniform, the middle of the three numbers (aka
the second order statistic) will have a beta distribution with parameters 1 and 1:

fU(2)
(s) =

s(1− s)

B(2, 2)
· 1(s ∈ [0, 1])

= s(1− s)
Γ(4)

Γ(1)Γ(1)
1(s ∈ [0, 1])

= 3!s(1− s) · 1(s ∈ [0, 1]).

So to find the probability this falls in [1/3, 2/3], just integrate over this interval:

P(U(2) ∈ [1/3, 2/3]) =

∫
[1/3,2/3]

P(U(2) ∈ du) =

∫ 2/3

1/3
6u(1− u) du =

13

27
≈ 0.4814 .

32.1 Suppose Ω1 = [0, 1] and Ω2 = {1, 2, 3}. Say The function Y : Ω1 → Ω2 is defined as

Y (y) = 1 + 1(y ∈ [0.4, 0.6]) + 1(y ∈ [0.5, 0.7]).

What is Y −1({2})?
Solution The question is asking what inputs y to the Y function result in an output of
2. The way the function is constructed using indicators, this happens when exactly one
of the statements y ∈ [0.4, 0.6] and y ∈ [0.5, 0.7] is true. This is exactly

y ∈ [0.4, 0.5) ∪ (0.6, 0.7] .

32.3 Suppose Ω1 = [0, 1], Ω2 = {1, 2, 3}, and

F2 = {∅, {1}, {2}, {3}, {1, 2}, {1, 3}, {2, 3}, {1, 2, 3}.

For Y : Ω1 → Ω2, let

Y (y) = 1 + 1(y ∈ [0.4, 0.6]) + 1(y ∈ [0.5, 0.7]).
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Thenwhat sets mustF1 (a sigma algebra overΩ1 contain in order for Y to be ameasurable
function?
Solution Look at the inverse under Y of each of the sets in F2.

Y −1(∅) = S0 = ∅
Y −1({1}) = S1 = [0, 0.4) ∪ (0.7, 1]

Y −1({2}) = S2 = [0.4, 0.5) ∪ (0.6, 0.7]

Y −1({3}) = S3 = [0.5, 0.6]

Y −1({1, 2}) = S4 = [0, 0.5) ∪ (0.6, 1]

Y −1({1, 3}) = S5 = [0, 0.4) ∪ [0.5, 0.6] ∪ (0.7.1]

Y −1({2, 3}) = S6 = [0.4, 0.7]

Y −1({1, 2, 3}) = S7 = [0, 1]

So the measure sets need to include all eight of these possibilities.

F1 = {S0, . . . , S7} .

32.5 Continuing with Y from earlier, if P1 over Ω1 is uniform, what is P(Y ≤ 2)?
Solution

P(Y ≤ 2) = P1(Y
−1({1, 2}))

= P1([0, 0.5) ∪ (0.6, 1])

= 0.9000 .

42.1 Prove that (∃x)(2x+ 3 ≥ 10).
Solution

Proof. Let x = 4. Then 2x+ 3 = 11 ≥ 10 .

42.3 Prove that (∀x)(∃y)(xy ≤ 0)

Solution

Proof. Let x ∈ R. Let y = −|x|. Suppose x ≥ 0, then y ≤ 0 so xy ≤ 0. Suppose x ≤ 0,
then y ≥ 0, so xy ≤ 0. Either way xy ≤ 0. .

42.5 Prove that if x > 3 then 2x > 6.
Solution

Proof. Let x > 3. Then multiplying by 2 gives 2x > 6.
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43.1 What is the counting measure of {1, 2, . . . , 10}?
Solution Since there are ten elements in the set, 10 .

43.3 a) What is {r, g, b} ∩ {g, b, y}?
b) What is {r, g, b} ∪ {g, b, y}?

Solution

a) The intersection of these sets consists of the elements that are in both sets, so
{g, b} .

b) The union of these sets consists of the elements that are in either one or two of
these sets, so {r, g, b, y} .

43.5 What is the counting measure of {r, g, b}?

Solution Since there are three elements of the set, #({r, g, b}) = 3 .

43.7 What is the counting measure of {1, 3, 5} × {7, 9}?
Solution The counting measure is the product of the individual measures, so 3 · 2 = 6 .

43.9 Let A = {r, g, b}. What is the counting measure of A×A×A×A?
Solution Using the multiplicative property of counting meausure for direct product, this
is

3 · 3 · 3 · 3 = 81 .

43.11 a) What is the Lebesgue measure of [2, 10]?
b) What is the Lebesgue measure of [−6, 2]?

Solution

a) This is the length of the interval 10− 2 = 8 .

b) This is the length of the interval 2− (−6) = 8 .

43.13 What is the Lebesgue measure of [3, 4.5]× [0, 6]?
Solution Since the first set has Lebesgue measure 4.5 − 3 = 1.5 and the second has
Lebegue measure (length) of 6 − 0 = 6, the Cartesian product has Lebesgue measure
(area) of (6)(1.5) = 9 .

43.15 De Morgan’s Laws say that

(A ∪B)C = AC ∩BC

(A ∩B)C = AC ∪BC .

Assume this law hold for two sets, and then prove that

(A ∪B ∪ C)C = AC ∩BC ∩ CC .

Solution Let R = A ∪B. Then

(A ∪B ∪ C)C = (R ∪ C)C = RC ∩ CC
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by the two set De Morgan’s law. Also by the two set De Morgan’s law, RC = AC ∩BC .
Putting this together gives

(A ∪B ∪ C)C = AC ∩BC ∩ CC

as desired.

44.1 Given a function f : {a, b, c} → {b, c, d}, answer the following.

a) What are the possible inputs to f?

b) What are the possible outputs from f?

Solution

a) Possible inputs are {a, b, c} .

b) Possible outputs are {b, c, d} .

44.3 Suppose g(a) = b, g(b) = b, and g(c) = d. Is g one-to-one?

Solution It is not one-to-one since there are two inputs that lead to the same output.

44.5 Consider the function f(x) = x2.

a) Say f : [0, 1] → [0, 1]. Is f onto? Is it 1-1?

b) Say f : [−1, 1] → [0, 1]. Is f onto? Is it 1-1?

c) Say f : [−1, 1] → [0, 2]. Is f onto? Is it 1-1?

Solution

a) Let y ∈ [0, 1]. Then √
y ∈ [0, 1] and f(

√
y) = y, so f is onto . If a2 = b2 then

|a| = |b| since
√
a2 = |a|. So for a and b both in [0, 1], a = b, so f is one-to-one .

b) If it was onto before, increasing the domain keeps the function onto . However, now
f(−1/2) = f(1/2) = 1/4, which shows (as a counterexample) that the function f
is not one-to-one .

c) If f(a) = 2, then a2 = 2, so |a| =
√
2 and a ∈ {−

√
2,
√
2}, neither of which is in

[−1, 1]. Hence f is not onto . The example f(−1/2) = f(1/2) = 1/4 still works
to show that it is not one-to-one .

45.1 Evaluate the following integrals:∫ 3

0
x3 dx,

∫ 0

−∞
x exp(x) dx,

∫ ∞

−∞
x exp(−x2/2) dx.

(Note, after you have worked problems like this out, I encourage you to use tools like
Wolfram Alpha to check your answers. For instance, type

integrate x^3 from 0 to 3
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at the website www.wolframalpha.com to check your answer to the first integral.)

Solution The antiderivative of x3 is x4/4, so using the Fundamental Theorem of Calculus
gives ∫ 3

0
x3 dx =

x4

4

∣∣∣∣3
0

=
81

4
= 20.25 .

The next integral requires integration by parts. Recall:∫ b

a
f(x)g′(x) dx = f(x)g(x)|ba −

∫ b

a
f ′(x)g(x) dx.

Setting f(x) = x and g′(x) = exp(x) gives f ′(x) = 1 and g(x) = exp(x), so∫ 0

−∞
x exp(x) dx = x exp(x)|0−∞ −

∫ 0

−∞
exp(x) dx

= x exp(x)|0−∞ − exp(x)|0−∞.

Recall you cannot just plug in negative infinity, you need to take the limit as the function
goes to negative infinity.

Also remember polynomials like x grow much more slowly than exponentials, and
x exp(−x) is just

x

exp(x)
.

So the numerator is growing polynomially, while the denominator is growing exponen-
tially, so this limit is 0. More generally, the rule is

logarithms ≪ polynomials ≪ exponentials ≪ factorials

Another way to tackle problems like this is with L’Hôpital’s Rule: suppose that
limx→a f(x) = limx→a g(x) and that limit is either 0 or infinity. L’Hôpital’s Rule
then states that if limx→a f

′(x)/g′(x) exists and is finite, then limx→a f(x)/g(x) =
limx→a f

′(x)/g′(x).

Now x exp(x) = x/ exp(−x), derivative of x is 1, and derivative of exp(−x) is
− exp(−x), so

lim
x→−∞

1

− exp(−x)
= 0,

which means limx→−∞ x exp(x) = 0 as well. Hence∫ 0

−∞
x exp(x) dx = x exp(x)|0−∞ − exp(x)|0−∞ = 0− 0− (1− 0) = −1 .

The third integral requires substitution. Recall that∫ b

a
f(g(x))g′(x) dx =

∫ g(b)

g(a)
g(y) dy.

www.wolframalpha.com
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In this case, g(x) = −x2/2 so g′(x) = −x. Now, that −x doesn’t quite match the x in
the integral, but just multiply and divide by -1 to get it in the right form:∫ b

a
x exp(−x2/2) dx =

∫ b

a

−x exp(−x2/2)

−1
dx

=

∫ −b2/2

−a2/2

exp(y)

−1
dy = − exp(y)|−b2/2

−a2/2
.

Hence∫ ∞

−∞
x exp(−x2/2)]dx = lim

a→−∞
lim
b→∞

− exp(−b2/2) + exp(−a2/2) = 0 .

45.3 Find ∫ 2

1
x ln(x) dx

by moving a derivative from x = [x2/2]′ over to ln(x) to get rid of it.
Solution Integration by parts gives us∫ 2

1
x ln(x) dx =

∫ 1

−1
[x2/2]′ ln(x) dx

=

∫ 2

1
−(x2/2)[ln(x)]′ + [x2 ln(x)/2]′ dx

=

∫ 2

1
−(x2/2)(1/x) + [x2 ln(x)/2]′ dx

=

∫ 2

1
−x/2 + [x2 ln(x)/2]′ dx

=

∫ 2

1
−[x2/4]′ + [x2 ln(x)/2]′ dx

= x2[ln(x)/2− (1/4)]21

= 4[ln(2)/2− (1/4)]− (1)[0− (1/4)] = 2 ln(2)− 3/4 ≈ 0.6362 .

We can check our answer by using integrate x*ln(x) from 1 to 2 in Wol-
fram Alpha.

45.5 Suppose

I =

∫ ∞

0

∫ x

0
|f(x, y)| dy dx < ∞

so Fubini can be applied. Replace the question marks with the appropriate function of y.

I =

∫ ∞

0

∫ ?

?
f(x, y) dx dy.

Solution In I , x can go anywhere from 0 to ∞, while y runs from 0 up to x. Writing
this as an inequality gives

0 ≤ y ≤ x.
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In terms of x, this means x ≥ y. There is no upper bound on x, so replacing the ?s with
functions of y gives:

I =

∫ ∞

0

∫ ∞

x
f(x) dx dy.

Note that ∞ is a constant function of y.
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multivariate normal, 191

Negative binomial distribution, 134
norm, 95
normal distribution, 119

outcome space, 4

partition, 47
Poisson point process (general), 145
Poisson point process in one dimension, 140
probabilities of random vectors, 151
probability distribution, 7
product measure, 88
proofs, 276

random variable, 33
random variables, 17
rotationally symmetric, 121

scaled, 56
set, 281
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standard deviation, 98
stochastic process, 132
Strong Law of Large Numbers (SLLN), 68
survival function, 61
symmetric functions, 68
symmetric random variable, 68

thinning Poisson point process, 147
Tonelli’s Theorem, 294

uncorrelated, 103
uniform, 18
uniform over continuous, 23

variance, 98
vector space, 95

Zeta, 172
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