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Gregorian Calendar

365.242189 days (reality)

365
365 + 1/4 = 365.25 (for leap day)
365 + 1/4 - 1/100 = 364.24 (don't leap every 100 years)

365+ 1/4 - 1/100 + 1/400  (don’t don't leap on multiples of 400)

365.2425 days (Gregorian)



What isit| do?



| flip coins for a living!




To do high dimensional integration

The chance that a uniform
draw from the blue area lands
inside the green area is

green area
blue area




Just like flipping a coin!

» Heads if you land in the green area
» Tails if you don't



Monte Carlo high dimensional integration

1. Using repeated uniform draws
from the blue area...

2. estimate p, the chance a draw
falls in the green area by p...

3. and return blue area - p as
estimate for green area.




Today

An estimator p for the probability of heads p of a




Applications

\{

# P complete problems
» Example: how many independent sets of a graph are there?

\4

Entropy for statistical physics models
Exact p-values

v

v

Normalizing constants of posterior distributions

\{

Bayes’ Factors for hypothesis testing



Relative Error
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Some reasons you might need
relative error



1. Unitless quantity



2. Normalizing constants of high
dimensional distributions grow
exponentially in input size



3. Bayes’ Factors are ratios of
quantities, both of which should
have relative error tolerances



4. Importance sampling
effectiveness measured by
coefficient of variation = relative
standard deviation



5. Intheoretical computer science,
gives randomized approximation
scheme for # P complete problems.



Randomized approximation scheme

Definition
An estimate @ for a is an (e, §)-randomized approximation scheme if
the probability that the relative error is at least € is at most 9, so

a




Coins as information

A bitis a number that is o or 1.

The smallest unit of information in a digital world.



A coin flip

Gives one bit of information

The bit is random



Calling the coin

» England: Heads or Tails

» Ancient Rome: Navia aut Caput (Ship or Head)
» Argentina: Cara o Cruz (Face or Cross)

» Russia: open, pewka (Eagle or Reshka)



1/30/2016 tail, n.1: Oxford English Dictionary

h. The reverse side of a coin; esp. in phr. head(s) or tail(s): see HEap n.'
4b.

1684 T.Otway Atheist 11. 17 As the Boys do by their Farthings..go to Heads or Tails for 'em.

1767 T. Brinces Homer Travestie (ed. 2) I. 11. 101 'Tis heads for Greece, and tails for Troy... Two
farthings out of three were tails.

1801 J. StrutT Sports & Pastimes 1v. ii. 251 The reverse to the head being called the tail without
respect to the figure upon it.

1884 Punch 16 Feb. 73/1 A sovereign, a half sovereign,..or farthing, so long as it has a ‘head’ one
side, and..a ‘tail’ the other.

1893 F. W. L. Apams New Egypt 267 The goddess who sits on the ‘tails’ side of our bronze currency.

i. The lower, inner, or subordinate end of a long-shaped block or brick;
the bottom or visible part of a roofing slate or tile.

1793 J. Smeaton Narr. Edystone Lighthouse (ed. 2) §82 The tail of the header was made to..bond with
the interior parts.
1856 S. C. Breks Terms & Rules Archit. Tail,..the lower end of the slate or tile.




The problem

Let p be the probability of heads
Can flip coin as often as | want

Estimate p



Basic estimate

Basic estimate p,,:
1. Flip coin n times (Draw X7, ..., X,, < Bern(p) iid.)

2. Let p, be fraction of time coin came up heads.

A~

X +---4+ X
5, o LI

n



Example: Flip coin 5 times

4 out of 5 heads makes p; = 4/5 = 0.8000.



The basic estimate has lead to some great statistics

Jacob Bernoulli took 20 years
to prove that Law of Large
Numbers holds for {0, 1}
random variables. (Published




Strong Law of Large Numbers

lim p,, = p with probability 1

n—oo



How accurate is the basic estimate?

Abraham de Moivre
proved in 1733 an early
version of the Central Limit
Theorem in order to study
how the simple estimate



Relative Error
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Example

Suppose p = 20% and p = 22%. Relative error is:

22%
20%

—1=11-1=10%.



Relative error using CLT

Use Central Limit Theorem to get rel error at most €
with probability at least 1 — ¢, need

2¢ 2p (1 —p)In(67 1)

samples.



Problem

» Do not know p
» CLT inaccurate when ¢, 6 small



Relative error for Basic estimate

Relative error depends both on p and n

Example: n = 5:

7 1 2 4
})5—16{0—1,—1,—1,3—1,—1,5—1}
D op 5p 5p 5p 5p

No way is relative error for basic estimate independent of p



Properties of a known relative error estimate

Theorem (H. 2016)
Let p be an nonnegative estimator for p such that the distribution of
p/p does not depend on p € (0, 1]. Then
1. pcan have positive probability of being o, but P(p = a) = 0 for
alla > 0.
2. pisunbounded: foralla > 0, P(p > a) > 0.

Note: in particular, P(p > 1) > 0

There are applications where allowing p > 1 isimportant!



The New Algorithm



Point process

Definition
A point process is a collection of a random number of points N drawn
fromaregion 4,50 {X3,...,Xn} C A.

— 2 —




Poisson point process

Definition

A point process is Poisson if there is a parameter A such that for any
interval of length a, the average number of points of the process
that fall into the interval is Aa.

1 1 —OO f O 1

Expected number in interval of length 2 is 2\



Example: Collins Dining Hall

Suppose students arrive at Collins as a Poisson point process
A =90/hour.

Average number of customers that arrive in the first half-hour is

90 1
A(1/2)hour = ror 3 hour = 45.



Two ways to change the rate

The rate A can be changed by using

1. Thinning

2. Scaling

By combining these effects, can make p disappear
from p/p!



Changing the rate through thinning

Suppose each student arriving has a 26% chance of being a senior.

Then the rate at which seniors arrive is

90 23.4
0.26) = .
hour( ) hour
ns ns ns ns
O O O—CO O O
senior senior

Process called thinning



Changing the rate through thinning

Suppose for each point flip Bern(p)
Only keep points that get heads

tails tails tails tails
O O O—CO O O
heads heads

Old expected number in interval [a, b] is A(b — a)
Expected number in interval [a, b] is Ap(b — a)

New effective rate: Ap



Changing the rate by scaling

Suppose customers arrive McDonald's at rate go/hour
First customer arrives at time 0.4 hour

Change to minutes:

90/hour — (90/60) = 1.5/minute
0.4 hour — (0.4)(60) = 24 minutes



Changing the rate by scaling

Start with Poisson point process rate A over [a/c, b/c]

a/c b/c

Now scale by multiplying by ¢

I

T A A A A

a

Average # of pts. in [a, b] in new is average # in [a/c, b/c] in old

Ab/c—a/c) = (Nc)(b—a).



Changing the rate by scaling

For a Poisson point process of rate \:
P, Py P, ...
and any constant c:

P — ch
A= A e



Time between points are exponentially distributed

Distances between points are iid exponential r.v.’s of rate A

A Ay As Ad As Ag

f O O OO

o

o

Al,AQ,Ag, 000 RY EXp()\) iid



Drawing P, ~ Exp(p)

tails tails

O—CO
) heads

» Generate Poisson process of rate 1 on [0, 1]

» Thin it using the p-coin
Time until first head is Exp(p)!



Gamma Bernoulli Approximation Scheme

New estimate for p:
» Run Poisson point process of rate 1 forward in time from o
» Thin the process as it is run forward using p-coin
» Continue until reach k£ heads
» Let P, be time of the kth head

I
i

0 P Py

[P has a gamma distribution with parameters k and p]



The Algorithm
1. Decide what value of k£ you want to use
2. Flip p-coin until get k heads. Say it takes N flips
3. Generate Ay, ..., Ay iid Exp(1) random variables
4. Estimateisp = (k—1)/(A1 + -+ Apn).



The Algorithm
1. Decide what value of k£ you want to use
2. Flip p-coin until get k heads. Say it takes N flips
3. Generate Ay, ..., Ay iid Exp(1) random variables
4. Estimateisp = (k—1)/(A1 + -+ Apn).

An Example



The Algorithm

1.
2. Flip p-coin until get k heads. Say it takes N flips
3.

4. Estimateisp = (k—1)/(A1 + -+ Apn).

Decide what value of k you want to use

Generate Ay, ..., Ay iid Exp(1) random variables

An Example
1. Decide that k = 4 is sufficient



The Algorithm

1.
2. Flip p-coin until get k heads. Say it takes N flips
3.

4. Estimateisp = (k—1)/(A1 + -+ Apn).

Decide what value of k you want to use

Generate Ay, ..., Ay iid Exp(1) random variables

An Example
1. Decide that k = 4 is sufficient
2. Suppose it takes 22 flips to get 4 heads



The Algorithm

1.
2. Flip p-coin until get k heads. Say it takes N flips
3.

4. Estimateisp = (k—1)/(A1 + -+ Apn).

Decide what value of k you want to use

Generate Ay, ..., Ay iid Exp(1) random variables

An Example
1. Decide that k = 4 is sufficient
2. Suppose it takes 22 flips to get 4 heads
3. Generate Ay, ..., Ay iid Exp(1)



The Algorithm

1. Decide what value of k£ you want to use
2. Flip p-coin until get k heads. Say it takes N flips
3. Generate Ay, ..., Ay iid Exp(1) random variables
4. Estimateisp = (k—1)/(A1 + -+ Apn).
An Example
1. Decide that k = 4 is sufficient

2. Suppose it takes 22 flips to get 4 heads
3
4. Finalestimate (4 —1)/(A1 +--- + Ag) = 0.1823. ..

Generate Ay, ..., Ay iid Exp(1 )



Easy to implement

Six lines of pseudocode

GBAS Input: k > 2

1) R+ 0,5«0

2) Repeat

3) X <« Bern(p), A < Exp(1)
4) S+ S+X, R« R+ A
5) UntilS =k

6) p« (k—1)/R




The cool part

Consider the relative error
D k—1
L . 1
P Prp

But Pyp is the equivalent of scaling time by a factor of p

» Started with rate 1 process
» Thinned to get rate p process
» Scaling time by p gives rate p/p = 1 process again!

Relative error does not depend on p!



Distribution of relative error known exactly

Adding exponentials

» WhenTy,..., T ~ Exp(}N)...

» .11+ + T ~ Gamma(k, \)
So pPy, ~ Gamma(k, 1)
» If X ~ Gamma, 1/X ~ InvGamma

v

~ InvGamma(k,1/(k — 1))

T I3

\{

E@®/p) =1/[(k = 1)/(k=1)] =1)



As k increases, relative error concentrates about zero




Benefits

Since we know distribution of p/p exactly
» Get exact confidence intervals for p easily

» Yields faster randomized approximation
schemes

» Theory gives first order same as CLT



Does it work well in practice? YES!

If we knew p exactly
» Exactly find probabilities of tails of binomial distribution
» Use this to find the exact n needed for the basic estimate to be
an (e, d) approximation
The results

» Suppose | want an estimate with absolute relative error at most
10% with probability at least 95%

e=0.1,8 =0.05
D Exactn E[T,] E[T,]/n

1/20 7219 7700 1.067
1/200 37545 38500  1.025




Why we might want to allow p > 1

M. L. Huber and R. L. Wolpert, Likelihood-based inference for
Matérn type-Ill repulsive point processes, Advances in

Applied Probability, 41(4), pages 958-977, 2009
Created an MLE by finding likelihood as product of several p;:

C=pip2--pn
Say p; € [0.4,0.6]. Then estimators might be something like:
¢ = (0.55)(1.3)(0.45) - - - (1.2).

Rounding 1.3 to 1 throws off estimate!



Poisson



Can we do the same thing for Poisson?

Definition
Say that X is a Poisson random variable with mean p, write
X ~ Pois(p) if

P(X =) = exp(—,u)% fori € {1,2,3,...}.



Why is the Poisson point process called Poisson?

For a Poisson point process { P; } of rate A, the number of points that
fall into [a, b] satisfies:

Nigp) = #{ P} N [a,b])
E[N ] = A(b—a)
N[a,b} ~ POiS()\(b — CL))



Conditioning on number of points

Suppose we know N 1 = 3.
Say {a,b,c} = {P;} N[0,1]

Then a, b, and c are iid uniform over [0, 1]

Ay Ao As LAY




How to get A,

Generate Poisson point process on [1, 2]:

A As

CJ

]

Ag=Aj+ A



Convert Poisson to Exp

Start with y
N[O,l]a N[1,2},N[2,3]a R Pois (1),
end with

A, Az, As, ... % Exp(p)



Conversion Rates

On average

~ Bem(p) = 1 Exp()
1 Pois(p) = v Exp(p)

To get k Exp random variables, need on average:




Application

The Tootsie Pop Algorithm (TPA)

M. L. Huber and S. Schott. Random construction of
interpolating sets for high dimensional integration. Journal
of Applied Probability, 51(1), pages 92—105, 2012

turns the problem of integrating a very general class of problems
(including finding the partition function of a Gibbs distribution) into
a problem of estimating the mean of a Poisson random variable.
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