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Mark Huber Notes on the Foundations of Data Science

Purpose These notes cover a one semester course in the foundations of data science.

Students will learn how to import and tidy data in preparation for analysis of the data.

They will then learn the basics of data modeling, including how to transform and visualize

data. Finally, they will learn how to communicate their �ndings to the outside world.

Organization The software used in this course is mostly R.

This course follows closely the book R for Data Science by Hadley Wickham and Garrett

Grolemund [WG17]. Their book is open access, and can be found at h�ps://r4ds.had.co.nz/.
Wickham and Grolemund have a companion book for teaching R, and so their book

assumes the reader has some basic knowledge of R, �le systems and programming.

This course also assumes that the student is familiar with the basics of programming in

a language such as Python. However, no knowledge of R or RStudio is assumed. Therefore

right o� the bat we begin with a simple introduction to R, followed by a short introduction

to R Markdown.

When I teach this course, I spend about two-thirds of my time lecturing, and about

one-third on self-guided explorations. I �nd that ensures that everyone can use packages

and R by the end. When I left such things to the homeworks it did not go well.

Most of the lectures are derived from Grolemund & Wickham’s book. Some of the

explorations also come from the book, others are rei�cations of blog posts and tutorials

that have been posted. The data science community is truly a wonderful place. The amount

of sharing that folks do is great, and contributes to the fast pace of growth.

The material in this book covers one semester for me, with each chapter (and exploration)

covering about 50 minutes.
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Chapter 1

Introduction to Data Science

Summary

• A data scientist can get data into an e�ective computer readable form, learn

about the data through transformation, visualization, and modeling, and com-

municate their results to the outside world.

• R is a statistical programming language.

• RStudio is an IDE for R that allows us to easily use R through the console,

scripts, and R Markdown.

This text follows closely the excellent text R for Data Science by Hadley Wickham and

Garrett Grolemund [WG17]. Their book is open access, and can be found at

h�ps://r4ds.had.co.nz/.

Their book can also serve as an extra resource for those reading this text.

The term data science is a relatively recent addition to the English language, going back

about seventy years. But data and its collection is nearly as old as humans themselves.

For instance, forty thousand years ago people used tally marks to record numbers. These

developed into symbols and true written languages around �ve thousand years ago, and

ever since humans have been recording events and observations into order to make better

and more e�ective decisions

De�nition 1
Data consist of observations recorded for later use.

Why is collecting and recording data so important? Typically we are trying to answer a

particular question or obtain some sort of knowledge from the data.

2 400
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De�nition 2
Data science consists of the methods and tools for collecting and studying data, with a

goal of making informed decisions.

Modern data science requires modern tools, and much of data science today involves

understanding computation with data sets with a goal of making these computations

as e�cient as possible. That is why modern data science is often seen as being at the

intersection of statistics whose tools are used to analyze data, and computer science whose

tools are used to record and carry out the computations suggested by the analysts e�ectively.

The data sets to be studied depend on the domain in which we are working. An analyst

studying images on the web will have very di�erent data from an economist studying

time series data of interest rates. That is why the third piece (after statistics and computer

science) of data science is domain knowledge, understanding data in the context of a speci�c

discipline.

Even with all the many di�erent types of data there are out there some common ideas

apply in all situations. The basic tasks that face any data scientist include the following.

1. Getting data into a form that can be read easily by a computer and other humans.

2. Understand what the data is telling us.

3. Communicate what the data says to the rest of the world.

The �rst step in a project is the collection of data. The time needed to get data can range

from years to almost instantaneous depending on the application.

Once we have the data, today computers are the most e�ective tool for analyzing that

data. The step of moving data into a computer for processing is called the import step.

There are certain conventions in mathematics and statistics. For instance, given variables

x and y, the variable x is usually plotted on the horizontal axis, and y is plotted on the

vertical. By using this convention, a mathematician makes it easier for their audience to

understand new material.

In the same way, there is a standard way to format and present data. Putting the data

into a form that follows these conventions we will call tidying the data.

Once we have the data imported and tidyied, we begin the task of understanding it. This

takes on several di�erent forms. Our brains are great at picking out visual patterns, and so

a popular �rst step for understanding how data behaves is to use visualization tools.

Another aspect of understanding data is building a mathematical model of the data. In

order to make the tasks of visualization and modeling easier, often we transform the data.

This can involve picking out the most important parts, or projecting the data onto a plane

or curve, or any activity that helps us to make sense of the data set.

These three activities are not done in isolation, but build o� of each other. An early

visualization might make a researcher realize that their data lies in a subspace of the

available variables. By transforming the data by projecting onto that subspace, a new

visualization might see further patterns that were hidden in the original data.
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A speci�c model might lead to a better visualization, which gives the user a transforma-

tion of the data that needs a new model. And so it goes, one technique feeding into the

other until the complexities of the data is understood.

At this point the goal is to be able to communicate what the data tells us to the rest of

the world, and communication is typically the �nal step in the process.

This can be summarized as

Collect Import Tidy Transform

Visualize

Model

Communicate

While the term Big Data has recently become popular, in fact the data sets studied by

statisticians have always been large, for instance census data from centuries ago could run

into millions of observations.

Today, Big Data is considered to be any data set that is impractical to bring within a

single workstation. Because of the issues that leads to, the methods needed for Big Data

are often somewhat di�erent that those used for smaller data sets. Still, the basic principles

are the same, it is mostly the computer science aspects that change.

Because the capabilities of workstations are continually growing, what counts as Big

Data is constantly changing. As computers grow in power, more and more data sets of

large size can be handled e�ectively without specialized tools. The tools used in this text

can be easily used on data sets with millions of observations.

1.1 R

The programming language for this text will be R. Most data science today is done in R,

Python, C, C++, and a few other languages. With proper package support, each is capable

on its own of handling most data analysis tasks. R and Python are good places to start

because they are languages that have a console where commands can be tested directly,

helping a user to build an intuitive understanding of the language.

De�nition 3
R is a programming environment designed for statistical analysis.

The R language interpreter can be downloaded for free from
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h�ps://cloud.r-project.org/

for Windows, Mac, and Linux. We will also be using an Integrated Development Environ-

ment (IDE) for R called RStudio. This IDE is also Open Source, and can be downloaded for

free from h�ps://www.rstudio.com/products/rstudio/download/.

De�nition 4
An Integrated Development Environment (aka IDE) is a software program that

brings together the tools you need to work with a programming environment e�ectively.

R fact 1
The most popular IDE for R is RStudio.

Rstudio allows the user to easily switch between entering commands one-at-a-time,

building up an ordered list of commands to form programs, viewing help, seeing graphical

output, and organizing �le structure. It helps make large projects managable.

Primarily, we will be using R through RStudio in two ways.

1. Console. You can type commands in R directly into the console the same way you

can in Python.

2. R Markdown. A markup language uses tags to create a professional looking docu-

ment. Markdown is a very simple document preparation system, and R Markdown

allows the user to easily incorporate R code into their document. The code chunks

inside can also be quickly transferred to the console and run. This makes this a

notebook system as well. These �les typically end in extension .Rmd.

1.2 Types of languages

Code is a term for the commands that we give to a computer.

De�nition 5
Computer code (aka computer program) is a set of instructions for a computing

environment.

There are several types of computer languages. The most basic (and di�cult to use)

is machine language which consists of commands that can be directly understood by a

computer’s processor.

De�nition 6
Machine language (aka machine code) consists of commands that can be directly

understood by the processing unit of a computer.
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In the early days of data science, machine language was used extensively, but today it

is quite rare. The reason is the development of interpreted languages and compiled
languages. Typically these languages are easily for humans to read. They require a method

of translation into machine language so that the computer can understand them.

De�nition 7
In a compiled language there exists a compiler that translates the program into machine

readable code, which can then be run without the need for the compiler.

De�nition 8
In an interpreted language, there is an interpreter which translates the program into

machine code every single time the program is run. The program cannot be executed

without the presence of the interpreter.

R fact 2
R is an interpreted language.

Both compiled and interpreted languages have several advantages over machine code.

The biggest is that the same code can be interpreted/compiled to run on many di�erent

machines. This is why there is a Windows, MacOS, and Linux version of R. The same

code can be used on any of these machines. Another advantage is readability. While the

language of R is not quite English or mathematical symbolism, it is much closer to being

directly readable by a person.

1.3 The R console

Interpreted languages lend themselves to the possibility of having a console.

De�nition 9
A console (aka shell aka command line interface (CLI)) in an interpreted program-

ming language accepts and executes commands one at a time.

When you �rst start RStudio, in the lower left corner will be the console. Before we

put commands together to form programs, in the console you can try out commands

individually. The assignment operator in R is <-, and (as its name implies) is used to assign

values to variables. So for instance the commands

x <- 4
y <- 5
x + y

returns

[1] 9
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The [1] indicates that we are started with the �rst number in the result. The 9 is the actual

result. Later on we will work with vectors where we might not start with the �rst number

in our output.

Some variables are already de�ned in R. So for instance, if you type

cars

into the console, it will give you all 50 lines of data from the cars data set. To get an idea

of what is in this data set, we can use the head command to get the �rst few lines of cars.

head(cars)

gives us the �rst 7 lines of data, together with the headings for the data, speed and dist.

The ? operator opens the help within R. Using

?cars

in Rstudio opens up the help in the lower right corner window (in the default setup) and

tells us that this variable represents speed and stopping distance data for a number of cars

from the 1920’s.

If we use

summary(cars)

we are treated to a basic statistical analysis of the data in the cars data set.

De�nition 10
A statistic is any function of the data.

In the cars data summary, we are told (for instance), the minimum speed value among

all the cars. This is 4.00 for cars. We are also told the sample mean, which is the sum of

the values divided by the number of values. This is 15.4, and is an example of a measure of
central tendency.

De�nition 11
The sample average of values x1, . . . , xn is

x̄ =
x1 + · · ·+ xn

n
.

The sample average of the speed of the cars is 15.4, and the average of the stopping time

is 42.98. What these statistics do not tell us is how the speed and stopping distance are

related.

To understand this, it is helpful to have a way of visualizing the relationship. This

simplest thing we can do is just make a plot of the distance values versus the speed values.

The $ operator allows us to pick out speci�c pieces of a data set. So the following command

plots the distance against the speed.

plot(cars$speed, cars$dist)
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The result looks like this:
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The beauty of a visualization like this is that it immediately makes apparent the rela-

tionship between the speed and the stopping distance: as the car goes faster, the stopping

distance tends to be greater.
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Chapter 2

R Markdown

Summary

• A R Markdown �le can be easily transformed into a standard, professional

looking document that includes R code execution. Use a .Rmd �le extension for

these �les.

• Inside RStudio, an R Markdown �le acts as a notebook, where code chunks

can be executed individually, and the results displayed.

If we had to type in our commands each and every time we wanted to execute them,

we would not get very far in the R environment. Fortunately, there are several ways to

combine our commands together in order to form programs.

2.1 R Markdown

The best way of doing so within RStudio is to create an R Markdown �le. Such a �le allows

us to accomplish several tasks.

• It allows us to record (in a human readable format) the commands we gave R in

analyzing our data.

• We can use the �le as a notebook, breaking our code into smaller groups called

code chunks that help us manage a large project by breaking it into smaller pieces.

• We can also knit the �le to create a professional looking document in a variety

of formats, including HTML (for web publishing), .pdf (for general reading), and

Microsoft Word (which can help with collaboration e�orts.)

Creating an R Markdown �le
Begin by creating an R Markdown �le. In RStudio, use
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File I New File I R Markdown

which will create a new document.

R fact 3
The default �le extension for R Markdown �les is .Rmd.

When you create a new �le, RStudio will ask for a title, the author name, and whether

or not you wish to create an HTML, LATEX, or Word document. We will stick with HTML

for now. RStudio will open a text editor and create a sample �le for you to get started.

For instance, if I put in Example for the title and Mark Huber for the author, the �le

created (as of 2019-09-02) will have a header that starts with three hyphens -- and ends

with three hyphens. If I erase everything that follows the header in the default �le, I will

have something that looks like this.

---
title: "Example"
author: "Mark Huber"
date: "September 2, 2019"
output: html_document
---

2.2 Adding code to an R Markdown file

To add code, we create a code chunk. This is indicated by typing three backticks ``` and

then putting {r} on the �rst line. Then type the commands you wish to execute, and then

on another line by itself, type three more backticks ```. For instance, I could create the

example from the last chapter using the following.

Figure 2.1: Screenshot from Windows version of RStudio.

Alert 1
The backtick character ` (aka back quote, acute, grave, left quote) is typically found on

the same key of U.S. keyboards as the tilde symbol (∼). It should not be confused with

the apostrophe ’.
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Note that the code chunk has been shaded. There is a little green arrow at the far right of

the code chunk. This stands for play, and when you press it the commands inside the code

chunk will be executed. The results of the commands will appear below the code chunk.

Figure 2.2: The result is as before when the commands were typed directly into the console.

You can also type descriptions in the text above or below a code chunk to describe what

is going on. In this way, you create a notebook of executable code.

2.3 Creating a document

You can do more with your R Markdown �les then just that, though. You can also turn the

result into a document for communicating your results to others. Good communication

exhibits the following properties.

1. Complete. Someone reading your work should be able to replicate what you did.

2. Compatible. You want to use a standard format, HTML, pdf, or Markdown to

communicate your results so that they can be viewed by the widest possible (perhaps

non tech-savvy) audience.

3. Professional. You want output that is neat, well-organized, and looks good.

To those ends, we use a process called typesetting to build a professional looking docu-

ment.

De�nition 12
Typesetting is the process of arranging text for publication.

We would like a way of typesetting our results that is pleasing to the eye. This is usually

accomplished using a markup language. This is a computer language that is quite di�erent

from the ones we considered earlier. The purpose of a markup language is to describe

how a document should be typeset. A markup language has commands that allow you

to emphasize words, add a bit of color, start new sections, subsections, and paragraphs.

Markup languages also can be used to create a list of bullet points or numbered points,

create references, add tables, and add images to the document.

De�nition 13
A markup language uses commands to determine the typesetting for a document.
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A word processor such as Microsoft Word is often called WYSIWYG which stands for

what you see is what you get. When you type commands into such a program, you directly

see what the output will be. Word processors are typically terrible at typesetting documents,

hiding what is going on from the user, and are di�cult to share.

On the other hand, in a markup language you enter simple text that could be typed using

only the standard keys on a typewriter. You use commands in order to indicate when a

word should be emphasized or is a section heading. The software then takes the result and

builds a typeset document for you according to the rules of typesetting for your document.

That way, if you change the rules later, the document is automatically reformatted for you

without you having to go back and change a bunch of details. Usually you do not see the

�nal typeset result until the software has completed its work.

The most commonly used markup language today is HTML, which stands for Hypertext
Markup Language and it the language that webpages are usually written in. All major web

browsers can interpret and display HTML �les.

De�nition 14
HTML (Hypertext Markup Language) is the primary markup language used for publish-

ing on websites. It is an interpreted language.

In mathematics and the sciences, another commonly used markup language is LATEX,

because it is very good at typesetting documents that include mathematics. This ebook

was typeset using LATEX.

De�nition 15
LATEX is a markup language that is extensively used in scienti�c and mathematical �elds.

It is a compiled language.

Most word processors have an internal markup language, but since the user usually

cannot see it, they cannot directly make changes. The advantage of a markup language is

that you can specify what you want to happen in a general sense, and then the language

takes care of the details. For instance, if you say you want a new chapter, the markup

language will take care of the numbering and table of contents for you without the need

for you to intervene and specify exactly the font and style of these types of elements.

2.4 What is Markdown?

Often the full control that comes with using a markup language is overkill. For this reason,

John Gruber created a light markup language that emphasized ease of use and readability

over the ability to do any possible thing. The result was Markdown. (Get it? Markdown
is a lighter version of a markup language. That’s computer science humor for you in a

nutshell.)
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De�nition 16
Markdown is a markup language that is designed with few commands to be easy to

use.

The markdown language has been implemented in many di�erent formats, the one that

we will use here is the version implemented by R, called R Markdown. If you want to learn

more about how R Studio incorporates R Markdown, go to h�ps://rmarkdown.rstudio.com/
Go ahead an open a new R Markdown �le. Then we see the default �le created by

RStudio. It has several interesting properties.

1. The heading at the beginning marked out by --- is called a YAML header. YAML

stands for YAML Ain’t Markup Language. This is an example of a recursive acronym.

The contents of the header such as title and author should be self-explanatory. As

the acronym tells us, YAML is not a markup language, instead it is considered a data
serialization language since the order of the data contained in the header can change

the e�ect.

2. In the main �le, begin a line with # to start a new section.

3. Begin a line with ## to start a new subsection

4. As we have seen, use ‘‘‘ to mark out blocks of code.

De�nition 17
Serialization puts data in a simple form (often using text) where it can be easily read

and extracted later.

De�nition 18
YAML (YAML Ain’t Markup Language) is a serialization language that is used for the

header of an R Markdown �le.

Note that in the interface to R Studio there is a button above the �le called Knit. Press

this button to compile the document, which turns the R Markdown �le into an HTML �le.
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2.5 Kni�ing a file from the console

Instead of pressing a button, the render command can be used from the console to turn a

.Rmd �le into other �le types. For instance, typing

library(rmarkdown)
render("example.Rmd")

into the console will transform the example.Rmd �le into the �le type speci�ed in the

YAML header.

Other Markdown notation

We can emphasize a word in our Markdown �le by surrounding it with *. So *word*
will be emphasized. We can put a word in bold in Markdown by surrounding it with two

asterisks, **. So **word** will knit to a bold word in R Markdown.

2.6 Latex

When you are writing papers and descriptions in a social or physical science, you often need

to add in mathematical equations and de�nitions. The most popular typesetting program

in the scienti�c community for doing this is called LATEX. Fortunately, you do not need to

learn all of LATEX, as R Markdown allows you to use the most important LATEXcommands

directly. For instance, suppose we added to our previous document the following code.

## LaTeX examples

This is an example of *inline mathematics*: $a^2+b^2=c^2$. In
this type of mathematics, the equation is presented in the
middle of a line of text.

The second kind of mathematics is *display mathematics*, which
is written like

\[
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a^2 + b^2 = c^2.
\]
This is the same statement, but now it appears on its own line

of the document.

The result looks like
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Chapter 3

Graphical Grammars

Summary

• The tidyverse is a collection of packages in R.

• An important part of the tidyverse is the ggplot2 package, which includes

commands for a grammar of graphics.

– The grammar of graphics uses the ggplot function to create a canvas upon

which we will place graphical elements.

– Various functions that start with geom_ then are used to place various

graphical elements on the canvas.

Putting data into a standard form is often known as tidying the data. The advantage of

having tidy data is that then standard programs can be used to analyze the data. In order

to accomplish this task, we will be used a package.

3.1 Packages

The basic R statistical environment has certain functions and data sets built in. Users can

contribute to the R project by building a package.

De�nition 19
A package or library is a collection of functions and variables for a programming

environment with a common theme.

Anyone can build a package if they would like! Once a user has built a package, any

other user can download and use that package. By installing a package, a user makes it so

that they can use the package within the R environment. This installing part only needs to

be done once. in R, the command
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install.packages("name_of_the_pakcage")

is used to install a package.

R fact 4
Use ‘install.packages‘ to install a particular package to R. This only needs to be done

once for a particular installation of R.

Once a package is installed, it still must be loaded in every time you start a new instance

of R. The idea here is that an installed package is waiting in the background for you to

use, but you do not want R to load in all the functions and variables of the package every

single time you run R. There are so many packages that you would run out of memory if

you tried that!

Instead, R has you load in only the packages that you need to do your work. You use the

command

library(name_of_the_package)

in the console or a code chunk to load a particular package into your current instance of

R. Note that unlike the install.packages command, you do not need quotes around

the name of the package for the library command.

R fact 5
If a package is installed, you use library(name_of_package) in the console or

code chunk to be able to use the functions in your current instance of R.

The tidyverse actually consists of several packages intended to help visualize, transform,

explore, read, and model data. If the tidyverse packages are not already installed on your

system, you can install them with the command

install.packages(’tidyverse’)

Once the packages are installed, using

library(tidyverse)

will load the packages into your current R session so that their functions can be used.

Note that yosu should only have to install the packages once, but you will have to load

the library every time you wish to use it.
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3.2 Visualization in the tidyverse

We start with the fun part: visualization. R has a basic plotting command called plot, but

here we will be using a more advanced version called ‘ggplot. The gg pre�x stands for

grammar of graphics, and essentially means that the plotting commands form their own

miniature programming language. There are commands for putting the data into the plot,

and commands for setting the aesthetics of the plot.

De�nition 20
A grammar of graphics is a set of tools for building graphics by adding components

and transformations layer by layer.

Let’s start by trying this with the cars data from before. If you are working with

a new session, remember that you have to load in the tidyverse commands with

library(tidyverse) so that R knows how to run the functions in the package.

ggplot(data = cars) +
geom_point(mapping = aes(x = speed,y = dist))

We set up two things in this command. The �rst part, ggplot(data = cars) tells

R that we are working within the cars data set. So we will not need the $ operators from

last time to indicate variables within the data frame.

The second part geom_point puts the actual points on the plot, while aes tells what

aesthestic should be used.

3.3 Aesthetic mappings

Aesthetics tell the geom what data to use in building objects.

De�nition 21
Aesthetic mappings describe how variables in the data are mapped to visual properties

(See section 3.2 of Wickham and Grolemand.) Now let’s look at some of the di�erent

mappings we can tackle. We will get a feel for this using a variable ggplot2::mpg that

is built into the ggplot package. As usual, use ?mpg to bring up the help on the package,

where we see that this data set contains mileage information on 234 cars from 38 models

spanning 1999 to 2008.

Let’s try the same plot from earlier for the mpg data set.

ggplot(data = mpg) +
geom_point(mapping = aes(x = displ, y = hwy))
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From the data, we see that as the displacement of the engine (essentially the engine size)

grows, the highway mileage tends to go down.

However, there is a weird exception among the points. Most of the data clumps together

in the same spot, but there are some data points near the right hand side that seem higher

than the main body of points. Perhaps those points represent a special type of car? To add

that dimension of the data to the graph, We will use color to show the class of the car.

ggplot(data=mpg) +
geom_point(mapping=aes(x = displ, y = hwy, color = class))
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With the colors in place, it becomes clear that the plots that are o� from the rest mostly

belong to 2-seater cars.

We have lots of choices beyond color here. For instance, we could have used the size of

the points to denote the class.

ggplot(data = mpg) +
geom_point(mapping = aes(x = displ, y = hwy, size = class))

## Warning: Using size for a discrete variable is not
## advised.

20 400



Mark Huber Notes on the Foundations of Data Science

20

30

40

2 3 4 5 6 7
displ

hw
y

class

2seater

compact

midsize

minivan

pickup

subcompact

suv

Note that our code has sparked a warning: Using size for a discrete
variables is not advised. In fact, looking at the graph reveals that the warning

was pretty smart. It is very di�cult to tell what class we are working in by shape, and it

causes lots of overlap between points.

Or you can change the shape of the points by class.

ggplot(data = mpg) +
geom_point(mapping = aes(x = displ, y = hwy, shape = class))

## Warning: The shape palette can deal with a maximum of
## 6 discrete values because more than 6
## becomes difficult to discriminate; you have
## 7. Consider specifying shapes manually if
## you must have them.

## Warning: Removed 62 rows containing missing values
## (geom_point).
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This provokes another warning. In thise case we had seven classes, but there are only six

shapes so the SUV class does not get a shape.

Of course, we can also use the aesthetic to change all the points to the same color.

ggplot(data = mpg) +
geom_point(mapping = aes(x = displ, y = hwy), color = "blue")
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What can go wrong?

It is very easy for commands in R to go wrong. A misplaced parenthesis or comma and

you might get an error message, or even worse is when the command runs without an

error, but does not do what you expected it to.

Usually the console in R starts with a > character, indicating that it is ready to accept a

new line of input.

When you forget to close a right parenthesis ), the R console will respond by starting

the next line with a + character, indicating that the console wishes for you to add to the

previous line and �nish your command.

R fact 6
In R you can always get help for a function by using ‘?function.name‘.

3.4 Facets

Previously we used color, size, and shape to tell the di�erent points apart. We can also

break the plot into multiple plots using facets.
Consider

ggplot(data = mpg) +
geom_point(mapping = aes(x = displ, y = hwy)) +
facet_wrap(~ class, nrow = 2)
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As you see, by using facet_wrap, we split the plot into multiple plots based on the

class of the vehicle.

3.5 Using multiple geometries

A geom is a geometric object, it represents a way of looking at data. In the last chapter,

we primarly used the point geom for data. Here each x and y value was represented by a

small black dot.

ggplot(data = mpg) +
geom_point(mapping = aes(x = displ, y = hwy))
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We could replace the points by a smooth line geom that attempts to capture the position

of the points.

ggplot(data = mpg) +
geom_smooth(mapping = aes(x = displ, y = hwy))

## ‘geom_smooth()‘ using method = ’loess’ and formula ’y ~ x’
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Both the points and the line used a mapping argument, but not every aesthetic works

with every geom. For instance, the shape aesthetic works with points, but not with lines.

The linetype aesthetic works with lines, but not with points.

These di�erent ways of viewing the data can become even more e�ective when we put

them into the same plot.

ggplot(data = mpg) +
geom_point(mapping = aes(x = displ, y = hwy)) +
geom_smooth(mapping = aes(x = displ, y = hwy))

## ‘geom_smooth()‘ using method = ’loess’ and formula ’y ~ x’
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Because both geoms used the same aesthetic, we could place it into the initial ggplot
and end up with the same plot.

ggplot(data = mpg, mapping = aes(x = displ, y = hwy)) +
geom_point() +
geom_smooth()

## ‘geom_smooth()‘ using method = ’loess’ and formula ’y ~ x’
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As with the point geoms, we can break down the lines into di�erent classes. For instance,

if we break the data into three groups by the type of drive the cars use, we get something

like this.

ggplot(data = mpg, mapping = aes(x = displ, y = hwy, color = drv)) +
geom_point() +
geom_smooth()

## ‘geom_smooth()‘ using method = ’loess’ and formula ’y ~ x’
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We can also apply di�erent aesthetics to the di�erent geoms. For instance, we can color

the points by car class and leave the line geom as blue.

ggplot(data = mpg, mapping = aes(x = displ, y = hwy)) +
geom_point(mapping = aes(color = class)) +
geom_smooth()

## ‘geom_smooth()‘ using method = ’loess’ and formula ’y ~ x’
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3.6 Bar charts

Another type of geom is bar, which as you might have guessed creates a bar chart.

The variable diamonds (part of the ggplot2 package) contains data on almost 54,000

di�erent diamonds. Consider the following bar chart for the data, which shows the various

numbers associated with each quality of cut.

ggplot(data = diamonds) +
geom_bar(mapping = aes(x = cut))
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Of course, this particular geom is not just visualizing the data, it is also computing

statistics of the data. Each of these counts, for Fair, Good, and so on, is a function of the

data. Hence this bar plot is a way of summarizing �ve statistics of the data at once, in a

way that immediately gives us a relative sense of their size.

When you use ?geom_bar, you are told that one of the parameters of the function

is stat. In fact, it says that stat = "count", which means that the statistic that the

geom is using is the count statistic.

R fact 7
If a parameter in a function has the form ‘parameter = value‘, then value is the default

value given to the parameter if the parameter is not explicitly set by the user.

Every geom has a default statistic that it uses. In the same way, every statistic has a

default geom! In the case of stat_count, the default geom is geom_bar. Hence the

following code generates the same bar plot as before.

ggplot(data = diamonds) +
stat_count(mapping = aes(x = cut))

31 400



Mark Huber Notes on the Foundations of Data Science

0

5000

10000

15000

20000

Fair Good Very Good Premium Ideal
cut

co
un

t

To get more detail about a statistic (including its default geom), just use the help

(?statistic).

As with the last geom, there are plenty of ways to modify the basic defaults. For instance,

the following plots the proportion counts rather than the raw counts.

ggplot(data = diamonds) +
geom_bar(mapping = aes(x = cut, y = ..prop.., group = 1))
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This modi�cation picks out certain pieces of the stat_summary of diamonds to

plot.

ggplot(data = diamonds) +
stat_summary(
mapping = aes(x = cut, y = depth),
fun.ymin = min,
fun.ymax = max,
fun.y = median

)
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Adding color
One thing to note with bar plots. The option color now only colors the borders of the

bars. To color the entire bar, use the �ll option.

ggplot(data = diamonds) +
geom_bar(mapping = aes(x = cut, colour = cut))
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ggplot(data = diamonds) +
geom_bar(mapping = aes(x = cut, fill = cut))
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Often, we need our bars broken down by another attribute. For instance, suppose for

each cut of diamond, we want to know what fraction of each cut corresponds to di�erent

levels of clarity. Rather than base our �ll color on the cut, base it instead on the clarity.

ggplot(data = diamonds) +
geom_bar(mapping = aes(x = cut, fill = clarity))
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The geom_bar has a parameter position that defaults to stack which is what we

saw in the plot above. Note that this stack allows us to e�ectively look at three dimensions

of the data in a two dimensional plot. The color serves as the third dimension, and is

an e�ective way of making a two-dimensional graphic serve as a tool for seeing three-

dimensional data.

Other position values to try include

• dodge This places colored bars side by side for easy relative comparison within

groups.

• �ll This forces each bar to be height 1: that way you can compare the fraction of

each type that has the subtype used with the �ll command.

The position command can also be used with the scatterplots from earlier. One

particularly useful option is jitter. This randomly moves the point around, and is

helpful when points land right on top of one another.

No jitter:

ggplot(data = mpg) +
geom_point(mapping = aes(x = displ, y = hwy))
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Now add some jitter:

ggplot(data = mpg) +
geom_point(mapping = aes(x = displ, y = hwy), position = "jitter")
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We now have a way of seeing which points actually were hiding multiple points under-

neath.

3.7 Transforming coordinates

There are some useful functions for dealing with coordinate systems.

• coord_flip() �ips the x and y axes, which is very helpful in dealing with long

label names. Just + this function to your ggplot to �ip.

ggplot(data = mpg, mapping = aes(x = class, y = hwy)) +
geom_boxplot() +
coord_flip()
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• coord_quickmap() sets the aspect ratio to the correct value when your data is

coming from map data.

library(maps)
states <- map_data("state")
ca <- subset(states, region == "california")

ggplot(ca, aes(long, lat, group = group)) +
geom_polygon(fill = "gold", color = "black") +
coord_quickmap()
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• coord_polar Plots points as if they are using polar coordinates.

3.8 Pu�ing it all together

What we have seen is that visualization tools are not just about graphics, but they also

calculate statistics from the data set. A good visualization will accomplish several things.

• Pick the aspects of the data set that are important to us.

• Allow us to see multiple dimensions simultaneously on a two dimensional graphic.

• Allow comparisions across di�erent characteristics of our data set.

A general template for ggplot can be written as follows.

ggplot(data = <DATA>) +
<GEOM_FUNCTION>(

mapping = aes(<MAPPINGS>),
stat = <STAT>,
position = <POSITION>

) +
<COORDINATE_FUNCTION> +
<FACET_FUNCTION>
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Chapter 4

Advanced graphical grammars in the
tidyverse

Summary There are a lot of more advanced plots that ggplot can help with, and

many plots that have been developed and can be accessed through other packages

as well. Some useful plotting capabilities include * Histogram and density plots *

Composition plots * Area charts * Diverging bars * Correlograms

4.1 Visualizing distributions of more than one variable

Histogram plots are a simple way of understanding the mean and spread of a random

variable. A histogram consists of intervals where for each interval, the height of the bar

counts the number of data points that fall into that bin.

Start by making sure that we have the ggplot2 library in our instance of R.

library(ggplot2)

Next we consider some data viewed using a histogram. This data will be the city milleage

for cars in the mpg data set.

ggplot(data = mpg) +
geom_histogram(aes(x = cty))

## ‘stat_bin()‘ using ‘bins = 30‘. Pick better
## value with ‘binwidth‘.
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Notice that the bars are kind of ugly. We can spruce things up by making the border of

the bars black, and the interior of the bars white.

ggplot(data = mpg) +
geom_histogram(aes(x = cty), color = "black",

fill = "white")

## ‘stat_bin()‘ using ‘bins = 30‘. Pick better
## value with ‘binwidth‘.
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Similarly, we can examine the distribution of the hwy milleage:
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ggplot(data = mpg) +
geom_histogram(aes(x = hwy), color = "black",

fill = "white")

## ‘stat_bin()‘ using ‘bins = 30‘. Pick better
## value with ‘binwidth‘.
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We can build a scatter plot of the city and highway milleage to see how they interact

with one another.

ggplot(data = mpg) +
geom_point(aes(x = cty, y = hwy))
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Because the milleage values are rounded to the nearest integer, many points lie on top of

each other. We can see how many points by using geom_count instead of geom_point
in our scatterplot.

ggplot(data = mpg) +
geom_count(aes(x = cty, y = hwy))
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These points look very much like they lie on a line. Therefore, we can put a least-squares
line that is one way of giving a best �t line through the point cloud. We will go into more

detail about how this line is constructed later, but for now, we can create this line by using

the lm (standing for linear model) with geom_smooth.
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ggplot(data = mpg, aes(x = cty, y = hwy)) +
geom_count() +
geom_smooth(method = ’lm’)
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Now suppose we wished to take this plot, and put the histogram for the cty variable

on the x-axis, and the histogram for the hwy variable on the y-axis. We can do this using

the ggMarginal function in the ‘ggExtra“ package.

library(ggExtra)

(As usual, if this library is not already installed, you might need to use

install.packages("ggExtra") �rst.)

Now we can add histograms to our plot. First, we place our original plot into a variable.

g <- ggplot(data = mpg, aes(x = cty, y = hwy)) +
geom_count() +
geom_smooth(method = ’lm’)

Next, we give this plot to the ggMarginal function to add the histograms on the

margins.

ggMarginal(g, type = "histogram", fill = "white")
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4.2 Composition plots

When you have values that comprise a population, a composition plot is a good way to

visualize the data. For instance, the population of the states of California, Texas, Florida,

and South Dakota are 37, 25, 19, and 1 million (rounded to the nearest million). First we

place this into a tibble using the tibble function. To use this function, we �rst load the

tibble package.

library(tibble)

## Warning: package ’tibble’ was built under R
## version 3.6.3

Next we build our tibble.

pop <- tibble(
state = c("CA", "TX", "FL", "SD"),
value = c(37, 25, 19, 1)

)

pop

## # A tibble: 4 x 2
## state value
## <chr> <dbl>
## 1 CA 37
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## 2 TX 25
## 3 FL 19
## 4 SD 1

Next, we build a bar plot. We want to create a single bar, so the x variable in the aes
will be blank. Then we want to �ll the inside of the bar by color based on the state. Finally,

we want the height of the bar to be given by the value variable. So we will set the stat
parameter to be "identity".

ggplot(pop) +
geom_bar(aes(x = "", y = value, fill = state),

stat = "identity")
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We can make this prettier by removing the background, making the bar horizonal, and

making it a bit narrower.

ggplot(pop) +
geom_bar(aes(x = "", y = value, fill = state),

stat = "identity", width = 0.4) +
coord_flip() +
theme_void()
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Now, a more common type of composition plot is the pie chart. The short advice on

pie charts is to never use them. They tend to make smaller slices of the composition look

bigger than they actually are. But if you absolutely, positively, must have a pie chart, you

can make them by transforming the bar plot using the coord_polar transform applied

to the y-axis.

ggplot(pop) +
geom_bar(aes(x = "", y = value, fill = state),

stat = "identity", width = 0.4) +
coord_polar("y") +
theme_void()
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4.3 Correlograms

Earlier we saw that a scatterplot can show the relationship between 2 variables. Suppose

we have more variables? Then a correlogram is an e�ective way to show relationships. The

correlation between two variables is an indicator of how closely they are related.

Correlation runs between 1 and -1. If two variables are positively correlated, then when

one variable is larger on average the other variable is larger. When two variables are

negatively correlated, we have that if one variable is larger than on average the other

variable is smaller.

You can �nd the correlation between all pairs of continuous variables in a data set using

the cor function in R. For instance, the mtcars data set (part of the ggplot2 package)

contains 11 variables. To �nd the correlation between them, we can use the cor function.

The round function can then be used to round the values of the correlation to 2 decimal

places as follows.

corr <- round(cor(mtcars), 2)

corr

## mpg cyl disp hp drat wt qsec
## mpg 1.00 -0.85 -0.85 -0.78 0.68 -0.87 0.42
## cyl -0.85 1.00 0.90 0.83 -0.70 0.78 -0.59
## disp -0.85 0.90 1.00 0.79 -0.71 0.89 -0.43
## hp -0.78 0.83 0.79 1.00 -0.45 0.66 -0.71
## drat 0.68 -0.70 -0.71 -0.45 1.00 -0.71 0.09
## wt -0.87 0.78 0.89 0.66 -0.71 1.00 -0.17
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## qsec 0.42 -0.59 -0.43 -0.71 0.09 -0.17 1.00
## vs 0.66 -0.81 -0.71 -0.72 0.44 -0.55 0.74
## am 0.60 -0.52 -0.59 -0.24 0.71 -0.69 -0.23
## gear 0.48 -0.49 -0.56 -0.13 0.70 -0.58 -0.21
## carb -0.55 0.53 0.39 0.75 -0.09 0.43 -0.66
## vs am gear carb
## mpg 0.66 0.60 0.48 -0.55
## cyl -0.81 -0.52 -0.49 0.53
## disp -0.71 -0.59 -0.56 0.39
## hp -0.72 -0.24 -0.13 0.75
## drat 0.44 0.71 0.70 -0.09
## wt -0.55 -0.69 -0.58 0.43
## qsec 0.74 -0.23 -0.21 -0.66
## vs 1.00 0.17 0.21 -0.57
## am 0.17 1.00 0.79 0.06
## gear 0.21 0.79 1.00 0.27
## carb -0.57 0.06 0.27 1.00

Even rounded, the matrix of correlations is di�cult to understand. A correlogram is a

good way to turn those numbers into colors. The package ggcorrplot is helpful here.

As always, �rst we load the library

library(ggcorrplot)

Next we create our plot

ggcorrplot(corr)
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Notice that (for historical reasons), the order of the rows was reversed from when we

looked at corr the matrix. This helps us pick out squares of high and low correlation,

but is not much help when it comes to �nding the variables that are highly positively (or

negatively) correlated with each other. To see those relationships, we can reorder the rows

and columns by setting the parameter hc.order to TRUE.

ggcorrplot(corr, hc.order = TRUE)
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The �ve variables in the lower left square are highly correlated with each other, and

negatively correlated (mostly) with the other six variables.

4.4 Diverging bars

Often we wish to use bar graphs to show both positive and negative values. For instance,

perhaps we are measuring how much above (or below) average the highway milleage is.

These are often referred to as diverging bars plots.

Before we can do this, we need to clean our data a bit. When we look at the rows of the

mtcars, we see that the rows of the table actually contain more data, the name of the car

itself!

head(mtcars)

## mpg cyl disp hp drat wt
## Mazda RX4 21.0 6 160 110 3.90 2.620
## Mazda RX4 Wag 21.0 6 160 110 3.90 2.875
## Datsun 710 22.8 4 108 93 3.85 2.320
## Hornet 4 Drive 21.4 6 258 110 3.08 3.215
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## Hornet Sportabout 18.7 8 360 175 3.15 3.440
## Valiant 18.1 6 225 105 2.76 3.460
## qsec vs am gear carb
## Mazda RX4 16.46 0 1 4 4
## Mazda RX4 Wag 17.02 0 1 4 4
## Datsun 710 18.61 1 1 4 1
## Hornet 4 Drive 19.44 1 0 3 1
## Hornet Sportabout 17.02 0 0 3 2
## Valiant 20.22 1 0 3 1

This is actually part of the data, and so we need to create a variable in the table to hold

these names. We can use the mutate command in the dplyr package to accomplish this.

We will de�nitely go into more detail about the mutate command later. For now, we load

in the dplyr package:

library(dplyr)

## Warning: package ’dplyr’ was built under R version
## 3.6.3

##
## Attaching package: ’dplyr’

## The following objects are masked from ’package:stats’:
##
## filter, lag

## The following objects are masked from ’package:base’:
##
## intersect, setdiff, setequal, union

and then mutate our data using the rownames function

d1 <- mutate(mtcars, carname = rownames(mtcars))
head(d1)

## mpg cyl disp hp drat wt qsec vs am gear
## 1 21.0 6 160 110 3.90 2.620 16.46 0 1 4
## 2 21.0 6 160 110 3.90 2.875 17.02 0 1 4
## 3 22.8 4 108 93 3.85 2.320 18.61 1 1 4
## 4 21.4 6 258 110 3.08 3.215 19.44 1 0 3
## 5 18.7 8 360 175 3.15 3.440 17.02 0 0 3
## 6 18.1 6 225 105 2.76 3.460 20.22 1 0 3
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## carb carname
## 1 4 Mazda RX4
## 2 4 Mazda RX4 Wag
## 3 1 Datsun 710
## 4 1 Hornet 4 Drive
## 5 2 Hornet Sportabout
## 6 1 Valiant

The next thing that we want to do is to center and standardize our data for mpg. We

do this by subtracting the sample mean of the data, and dividing by the sample standard

deviation. Again, we can use the mutate function to do this. Because standardized data is

also known as the z-score, we will call the new variable mpg_z. We will use the select
function to only keep the carname and mpg_z variables.

d2 <- mutate(d1, mpg_z = (mpg - mean(mpg)) / sd(mpg))
d3 <- select(d2, carname, mpg_z)
head(d3)

## carname mpg_z
## 1 Mazda RX4 0.1508848
## 2 Mazda RX4 Wag 0.1508848
## 3 Datsun 710 0.4495434
## 4 Hornet 4 Drive 0.2172534
## 5 Hornet Sportabout -0.2307345
## 6 Valiant -0.3302874

Finally, we divide our car into types: say that mpg_type is “above”" if mpg_z is at

least 0, and otherwise it is type “below”.

d4 <- mutate(d3, mpg_type = ifelse(mpg_z < 0, "below", "above"))
head(d4)

## carname mpg_z mpg_type
## 1 Mazda RX4 0.1508848 above
## 2 Mazda RX4 Wag 0.1508848 above
## 3 Datsun 710 0.4495434 above
## 4 Hornet 4 Drive 0.2172534 above
## 5 Hornet Sportabout -0.2307345 below
## 6 Valiant -0.3302874 below

At last we are ready to make our plot! The bars for the above average mpg we will

color a shade of green. This shade can be represented as “#00ba38” (we will explain later

how this code works.) Similarly, “#f8766d” is a shade of red. We use the helper function
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reorder within the aes function to rank the cars from best mpg to worst. We will �ip

the horizontal and vertical axes so that our bars are horizontal. Finally, we will relabel our

x and y axes. Putting this all together, we get the graph:

ggplot(d4, aes(x = reorder(carname, mpg_z), y = mpg_z)) +
coord_flip() +
geom_bar(stat = "identity", aes(fill = mpg_type)) +
scale_fill_manual(

name = "Mileage",
labels = c("Above Average", "Below Average"),
values = c("above" = "#00ba38", "below" = "#f8766d")

) +
ylab("Standardized mpg") +
xlab("Make and Model") +
theme_classic()
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4.5 Area graphs

For �nancial data, area charts are a useful way to view �nancial data. Consider the data set

economics, which includes data about the US from 1967 up to 2015. This data set is part

of the ggplot2 package. The psavert variable gives the personal savings rate. Suppose

that we are not interested in the savings rate itself, but in how the rate has changed over
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time. The diff command can �nd di�erences in a time series. For instance, diff(c(1,
5, 3)) returns a vector (4,−2), as 4 is the di�erence betwen 1 and 5, and -2 is the

di�erence between 5 and 3.

We can then consider the percentage change by dividing the di�erence vector by the

original vector. As before, we use the mutate command to store this data in a new variable.

We then use the filter function to only keep earlier dates.

e2 <- mutate(economics, returns_perc = c(diff(psavert), 0) / psavert)
e3 <- filter(e2, date < 1975)

Now we plot these di�erences using geom_area, which �lls in the region between the

line plot and the x-axis to give an area chart.

gac <- ggplot(e3) +
geom_area(aes(x = date, y = returns_perc), fill = "blue")
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It looks somewhat better with proper titles and rotated labels for the dates.

gac +
labs(title = "Area Chart",

subtitle = "Percentage Returns for Personal Savings",
y = "% Returns for Personal savings",
caption = "Source: ggplot2::economics data set") +

theme(axis.text.x = element_text(angle = 45, vjust = 1, hjust = 1))
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Chapter 5

Transforming data

Summary A tibble is similar to a data frame in *R* but has default behavior that is

slightly easier to work with. The dplyr package gives us several tools for transforming

our tibble, including �lter for choosing data points with properties, arrange for

sorting rows by the data values, select for picking out variables of the data with

certain properties, and mutate which allows us to create new variables as functions

of existing ones.

When we learned about our visualization tools in the last few chapters, our data (such

as the map data, diamonds, and mileage data) had been already nicely prepared for us.

In this chapter we will learn about the basic tools used to transform data so that we can

extract the important pieces that we need for our analysis.

To illustrate these methods, we will use a data set that contains the On-time information

for all �ights from NYC in 2013.

library(nycflights13)
library(tidyverse)

loads this data set into R together with the tools we will use to transform it.

flights

## # A tibble: 336,776 x 19
## year month day dep_time sched_dep_time dep_delay
## <int> <int> <int> <int> <int> <dbl>
## 1 2013 1 1 517 515 2
## 2 2013 1 1 533 529 4
## 3 2013 1 1 542 540 2
## 4 2013 1 1 544 545 -1
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## 5 2013 1 1 554 600 -6
## 6 2013 1 1 554 558 -4
## 7 2013 1 1 555 600 -5
## 8 2013 1 1 557 600 -3
## 9 2013 1 1 557 600 -3
## 10 2013 1 1 558 600 -2
## # ... with 336,766 more rows, and 13 more variables:
## # arr_time <int>, sched_arr_time <int>, arr_delay <dbl>,
## # carrier <chr>, flight <int>, tailnum <chr>, origin <chr>,
## # dest <chr>, air_time <dbl>, distance <dbl>, hour <dbl>,
## # minute <dbl>, time_hour <dttm>

A tibble is an extension of the basic data frame type that is found in R, for now the

di�erence between a tibble and a data frame are unimportant. Notice that each row of the

tibble contains a single data point, which is itself a vector whose components tell us things

like the year of the �ight (2013 for every data point), the departure time, the carrier, and

other information.

Below the headings are abbreviations like <int> and <dbl>. These tell us the type of

variable we are dealing with.

• <int> is an integer valued variable.

• <dbl> is a �oating point number. It is meant to represent a real number that has

been rounded so a value that in �t using 64 bits of precision in a computer. The

abbreviation stands for double, since initially, �oating point numbers used 32 bits

and this uses double that.

• <chr> This stands for character and is used for strings of characters like "UA" or

"AA".

• <dttm> This stands for date and time and records both the data and current time

values for the data point.

5.1 The dplyr package

A command in R that allows us to apply the same operation to a bunch of di�erent data

points is, appropriately enough, called apply. The plyr function was developed as a faster

means of doing certain common tasks for which apply was too general. Then dplyr was

developed to speci�cally perform those tasks on data frames. By restricting the applicability,

the package could be made as fast as possible.

Generally speaking, dplyr contains functions that allow us to perform the most common

tasks of data management in R very quickly. These tasks are as follows.

• �lter allows us to pick our data points with certain values.
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• arrange allows us to reorder the data points by their values.

• select gives us the ability to pick out data points by their names.

• mutate allows us to add new variables as functions of existing variables in the data

set.

• summarize allows us to summarize the values in the data.

We will cover the �rst four of these in this chapter: summarize is complex enough that

we will leave that for the next chapter.

All of these commands work in roughly the same way: the �rst argument to the command

is a data frame, and then the remaining arguments describe what the command should do

to the data contained in the data frame.

5.2 The filter function

Let’s start with �lter, which (as the name indicates) allows us to �lter out the data based

on its properties.

Let’s say that we want all �ights on February 4nd. Then we could use

feb4 <- filter(flights, month == 2, day == 4)

In making this comparison, we used the logical operator ==, which is true if the numerical

expressions on both sides of the == are true.

The six common comparision operators are:

greater than >
greater than or equal to >=
less than <
less than or equal to <=
not equal to !=
equal to ==

Recall that �oating point numbers are not exact real numbers, and so an issue that comes

up is when computations do not give numerical results that are identical. For instance, in a

perfect world

sqrt(2)^2 == 2

## [1] FALSE

would return TRUE, in fact it returns FALSE.

In order to deal with this �oating point phenomenon, there is a command called near to

deal with this exact situation. The command
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near(sqrt(2)^2,2)

## [1] TRUE

returns TRUE as desired.

In the command

feb4 <- filter(flights, month == 2, day == 4)

the comma behaved the way it does in probability expressions, as a logical and.

Logic

Sometimes we are interested in working with multiple conditions where we only need as

least one condition to be true, and sometimes all conditions are true. These refer to logical
and and logical or.

De�nition 22
The logical and of two logical statements is de�ned by

T ∧ T = T

T ∧ F = F

F ∧ T = F

F ∧ F = F.

In other words, the logical and of two logical statements is true if and only if both

statements are true. The logical or of the statements is true if and only if at least one of the

statements is true.

De�nition 23
The logical or of two logical statements is de�ned by

T ∧ T = T

T ∧ F = T

F ∧ T = T

F ∧ F = F.

There is also the exclusive or which is true if and only if exactly one of the statements is

true.
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De�nition 24
The logical or of two logical statements is de�ned by

T ∧ T = F

T ∧ F = T

F ∧ T = T

F ∧ F = F.

These three logical operations can be included in selections as follows:

Logical Operator Math Notation in *R*

logical and p ∧ q p & q
logical or p ∨ q p | q
exclusive or p Y q xor(p,q)

So if I am interested in �ights that either left in November or on Dec 25th, I would use

filter(flights, (month == 11) | (month == 12 & day == 25))

## # A tibble: 27,987 x 19
## year month day dep_time sched_dep_time dep_delay
## <int> <int> <int> <int> <int> <dbl>
## 1 2013 11 1 5 2359 6
## 2 2013 11 1 35 2250 105
## 3 2013 11 1 455 500 -5
## 4 2013 11 1 539 545 -6
## 5 2013 11 1 542 545 -3
## 6 2013 11 1 549 600 -11
## 7 2013 11 1 550 600 -10
## 8 2013 11 1 554 600 -6
## 9 2013 11 1 554 600 -6
## 10 2013 11 1 554 600 -6
## # ... with 27,977 more rows, and 13 more variables:
## # arr_time <int>, sched_arr_time <int>, arr_delay <dbl>,
## # carrier <chr>, flight <int>, tailnum <chr>, origin <chr>,
## # dest <chr>, air_time <dbl>, distance <dbl>, hour <dbl>,
## # minute <dbl>, time_hour <dttm>

(Note that here the use of the comma for the logical and would have thrown an error.)

Missing values

One thing that often appears in data is missing values, where a data value is simply not

there. For instance, if the recipient of a census survey did not �ll our their age, it would

appear in the data frame as NA.
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Such missing data values are impossible to compare with values, and so tend to result in

NA when used. For instance, the commands

NA > 8

## [1] NA

-3 == NA

## [1] NA

NA + 0

## [1] NA

NA / 2

## [1] NA

NA == NA

## [1] NA

all return NA.

We do have a special command for determine if a value is missing or not:

x <- c(NA, 3, NA)
is.na(x)

## [1] TRUE FALSE TRUE

Now the �lter command only returns rows where the condition is TRUE, if it is either

FALSE or NA, then it is eliminated by the �lter. So if you want to keep your missing values

as well, you must explicitly ask for NA values as well. For instance,

df <- tibble(x = c(1, NA, 3))
filter(df, x > 1)

## # A tibble: 1 x 1
## x
## <dbl>
## 1 3
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does not return the NA value in line 2. Whereas

filter(df, is.na(x) | x > 1)

## # A tibble: 2 x 1
## x
## <dbl>
## 1 NA
## 2 3

does return lines where either x > 1 or the value is NA.

5.3 Using arrange to order rows

The arrange command will take the rows and sort them by numerical value. For instance,

arrange(flights, year, month, day)

## # A tibble: 336,776 x 19
## year month day dep_time sched_dep_time dep_delay
## <int> <int> <int> <int> <int> <dbl>
## 1 2013 1 1 517 515 2
## 2 2013 1 1 533 529 4
## 3 2013 1 1 542 540 2
## 4 2013 1 1 544 545 -1
## 5 2013 1 1 554 600 -6
## 6 2013 1 1 554 558 -4
## 7 2013 1 1 555 600 -5
## 8 2013 1 1 557 600 -3
## 9 2013 1 1 557 600 -3
## 10 2013 1 1 558 600 -2
## # ... with 336,766 more rows, and 13 more variables:
## # arr_time <int>, sched_arr_time <int>, arr_delay <dbl>,
## # carrier <chr>, flight <int>, tailnum <chr>, origin <chr>,
## # dest <chr>, air_time <dbl>, distance <dbl>, hour <dbl>,
## # minute <dbl>, time_hour <dttm>

arranges the rows from low to high, �rst by column year, then month, and �nally day.

If you want to put the rows in an order from high to low, surround that parameter with

the command desc. So

arrange(flights, desc(dep_delay))
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## # A tibble: 336,776 x 19
## year month day dep_time sched_dep_time dep_delay
## <int> <int> <int> <int> <int> <dbl>
## 1 2013 1 9 641 900 1301
## 2 2013 6 15 1432 1935 1137
## 3 2013 1 10 1121 1635 1126
## 4 2013 9 20 1139 1845 1014
## 5 2013 7 22 845 1600 1005
## 6 2013 4 10 1100 1900 960
## 7 2013 3 17 2321 810 911
## 8 2013 6 27 959 1900 899
## 9 2013 7 22 2257 759 898
## 10 2013 12 5 756 1700 896
## # ... with 336,766 more rows, and 13 more variables:
## # arr_time <int>, sched_arr_time <int>, arr_delay <dbl>,
## # carrier <chr>, flight <int>, tailnum <chr>, origin <chr>,
## # dest <chr>, air_time <dbl>, distance <dbl>, hour <dbl>,
## # minute <dbl>, time_hour <dttm>

arranges the rows so that the largest delays are �rst, and then the smallest delays will

be at the minimum.

5.4 Using select to pick out variables and string data

Many data sets have an enormous number of columns, many of which are not of in-

terest in an analysis. The select command returns a tibble that only has the targeted

columns/variables. For instance,

select(flights, year, dep_delay)

## # A tibble: 336,776 x 2
## year dep_delay
## <int> <dbl>
## 1 2013 2
## 2 2013 4
## 3 2013 2
## 4 2013 -1
## 5 2013 -6
## 6 2013 -4
## 7 2013 -5
## 8 2013 -3
## 9 2013 -3
## 10 2013 -2
## # ... with 336,766 more rows
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returns a new tibble with the same number of rows as the original �ights, but only two

columns: year and dep_delay.

We can treat variable names as a range with select to grab the variables and everything

in between.

select(flights, year:day)

## # A tibble: 336,776 x 3
## year month day
## <int> <int> <int>
## 1 2013 1 1
## 2 2013 1 1
## 3 2013 1 1
## 4 2013 1 1
## 5 2013 1 1
## 6 2013 1 1
## 7 2013 1 1
## 8 2013 1 1
## 9 2013 1 1
## 10 2013 1 1
## # ... with 336,766 more rows

grabs the variables year, day, and the month variable that is in between them.

We can use helper functions within select in order to pick out the variable names that

match certain criteria. Fortunately, most of these helper functions are self explanatory. For

instance,

1. starts_with("start")) matches all names that begin with “start”.

2. ends_with("end")) matches all names that end with “end”.

3. contains("middle")) matches all names that have the string “middle” somewhere

inside them.

4. num_range("a", 1:4)) would match either a1, a2, a3, or a4.

For more general string matching, there is the matches command, which uses what are

called regular expressions. We’ll go into regular expressions in more detail later when

we discuss the variable type strings in more detail.

5.5 Using mutate to create new variables

One of the great strengths of spreadsheets is their ability to create new columns based on

data from the old ones. For instance, if I wish to create a new variable that is the di�erence
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of two other ones in my spreadsheet that is very easy to do with a small sheet. When the

spreadsheet has 105 rows, that becomes much more di�cult to do.

For a tibble, that same functionality resides in the mutate command. This command

adds new variables to the tibble that are created as a function of previous variables. For

instance, suppose we start with a smaller tibble that picks out a few variables including

those that end with the string “delay”.

flights_sml <- select(flights,
year:day,
ends_with("delay"),
distance,
air_time

)

Now we can calculate things like how much time the pilots made up in the air, and what

the average speed of the aircraft was.

mutate(flights_sml,
gain = dep_delay - arr_delay,
speed = distance / air_time * 60

)

## # A tibble: 336,776 x 9
## year month day dep_delay arr_delay distance air_time
## <int> <int> <int> <dbl> <dbl> <dbl> <dbl>
## 1 2013 1 1 2 11 1400 227
## 2 2013 1 1 4 20 1416 227
## 3 2013 1 1 2 33 1089 160
## 4 2013 1 1 -1 -18 1576 183
## 5 2013 1 1 -6 -25 762 116
## 6 2013 1 1 -4 12 719 150
## 7 2013 1 1 -5 19 1065 158
## 8 2013 1 1 -3 -14 229 53
## 9 2013 1 1 -3 -8 944 140
## 10 2013 1 1 -2 8 733 138
## # ... with 336,766 more rows, and 2 more variables: gain <dbl>,
## # speed <dbl>

5.6 Pipes

In the last section, we performed several transformations of the original data set. This

happens a lot, which is why it is useful to have pipes.
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De�nition 25
A pipe transfers information from one computing process to another.

In the tidyverse, the pipe operator is %>%. How it works is that the dataset on the left

becomes the initial input to the function on the right. For instance, consider the following.

flights %>% select(year:day, distance, air_time)

Here the data set flights becomes the �rst input to the function select. Now

select has as output a new data set. This can then be fed into another function, such

as mutate. That can then be fed into another function, such as filter. The result is

something like this:

flights %>%
select(year:day, distance, air_time) %>%
mutate(speed = distance / air_time * 60) %>%
filter(speed > 600)

The result is the 4 �ights with average air speed above 600 miles per hour. Use of pipes

can make complex analyses transparent to the average reader. Without the use of pipes,

the last thing to be done is written �rst, which leads to hard to read code. For example,

here is the same code as above, but written without pipes.

filter(
mutate(

select(flights, year:day, distance, air_time),
speed = distance / air_time),

speed > 600)

5.7 Logical operators in R
Note that the logical operators ==, & and | are vector operators. For instance, consider the

command

c(2,1,-6) == c(2,7,-6)

## [1] TRUE FALSE TRUE

Because it looks at each component of the vector and sees if it is a match, the result is a

vector of three boolean values. Similarly consider
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c(TRUE, FALSE, FALSE) & c(TRUE, TRUE, FALSE)

## [1] TRUE FALSE FALSE

This also has a vector of three boolean values.

Typically, this is exactly the behavior we want when using �lter to �nd data with certain

properties.

There are other logical operators, however, && and ||. These are not vector operators,

but only work on the �rst component.

c(TRUE, FALSE, FALSE) && c(TRUE, TRUE, FALSE)

## [1] TRUE

The output was only a single boolean, based on the �rst component

These double symbol operators are better for program control using if and while,

and we will discuss these in length later on.

5.8 A note about SQL

The Structured Query Language (SQL) is designed to perform tasks similar to the ones that

we looked at in this chapter. Later on, we will see how to build queries from a relational

database with SQL that accomplishes the types of tasks that we did here with dplyr.

69 400



Chapter 6

Creating summaries of tibbles

Summary The group_by function takes the data of a tibble and partitions it into

groups. Then the summarize command can be used to return summaries that operate

on each group.

Our last commands for transforming tibbles is summarize and group_by. The

group_by command allows us to partition the data into groups. At �rst, when using

this command it appears like our data is unchanged. However, once the data has been

partitioned, you can use summarize together with functions such as mean, median, or

arrange in order to apply them not to the entirety of the data, but instead to within each

group in the partition.

R fact 8
You can either use the American English spelling summarize or the British English

spelling summarise for this command.

Basically this collapses a tibble down based on how we perform the summary. As with

the previous chapter, we are working with the �ights tibble and tidyverse commands.

First we load the libraries:

library(nycflights13)
library(tidyverse)

Start with the summarize command. First we apply summarize to �ights without

doing a partition �rst.

summarize(flights)

## data frame with 0 columns and 0 rows
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The result is a data frame with no rows and no columns! That is because we did not tell

the command what to include in the summary. Let’s add a bit more detail.

summarize(flights, delay = mean(dep_delay, na.rm = TRUE))

## # A tibble: 1 x 1
## delay
## <dbl>
## 1 12.6

The na.rm parameter to mean is a logical parameter that when TRUE, strips out all of

the NA values in calculating the mean. If we forget to strip out the NA values, then we

might end up with a NA for our �nal result.

This creates a new tibble from �ights with a single variable delay whose value is the

mean of all the dep_delay values in the original �ights (excluding the NA values.)

6.1 Using group_by
We can use the group_by command to take a tibble and break it down into groups. For

instance, consider

by_day <- group_by(flights,day)

The variable by_day is now the same tibble as �ights, but with 31 extra groups, one for

each day. The original �ights variable looks like:

# A tibble: 336,776 x 19
year month day dep_time sched_dep_time dep_delay

<int> <int> <int> <int> <int> <dbl>
1 2013 1 1 517 515 2
2 2013 1 1 533 529 4
3 2013 1 1 542 540 2
4 2013 1 1 544 545 -1
5 2013 1 1 554 600 -6
6 2013 1 1 554 558 -4
7 2013 1 1 555 600 -5
8 2013 1 1 557 600 -3
9 2013 1 1 557 600 -3

10 2013 1 1 558 600 -2
# ... with 336,766 more rows, and 13 more variables:
# arr_time <int>, sched_arr_time <int>, arr_delay <dbl>,
# carrier <chr>, flight <int>, tailnum <chr>, origin <chr>,
# dest <chr>, air_time <dbl>, distance <dbl>, hour <dbl>,
# minute <dbl>, time_hour <dttm>

Now the grouped variable by_day:
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# A tibble: 336,776 x 19
# Groups: day [31]

year month day dep_time sched_dep_time dep_delay
<int> <int> <int> <int> <int> <dbl>

1 2013 1 1 517 515 2
2 2013 1 1 533 529 4
3 2013 1 1 542 540 2
4 2013 1 1 544 545 -1
5 2013 1 1 554 600 -6
6 2013 1 1 554 558 -4
7 2013 1 1 555 600 -5
8 2013 1 1 557 600 -3
9 2013 1 1 557 600 -3

10 2013 1 1 558 600 -2
# ... with 336,766 more rows, and 13 more variables:
# arr_time <int>, sched_arr_time <int>, arr_delay <dbl>,
# carrier <chr>, flight <int>, tailnum <chr>, origin <chr>,
# dest <chr>, air_time <dbl>, distance <dbl>, hour <dbl>,
# minute <dbl>, time_hour <dttm>

It looks the same. However, now when we run summarize command as before on the

grouped variable by_day, the result is di�erent:

summarize(by_day, delay = mean(dep_delay, na.rm = TRUE))

## # A tibble: 31 x 2
## day delay
## <int> <dbl>
## 1 1 14.2
## 2 2 14.1
## 3 3 10.8
## 4 4 5.79
## 5 5 7.82
## 6 6 6.99
## 7 7 14.3
## 8 8 21.8
## 9 9 14.6
## 10 10 18.3
## # ... with 21 more rows

So now the mean of the dep_delay variable has been calculated for each group. Since

there were 31 groups (one for each day), we have 31 means.

6.2 Using pipes to avoid intermediate variables

The by_day variable is an example of an intermediate variable. We did not really want to

create it, but we needed to in order to complete our calculation. If we need to use multiple

functions, one after another, we can end up creating a lot of unnecessary intermediate

variables. For instance, the following code
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by_dest <- group_by(flights, dest)
delay <- summarize(by_dest,

count = n(),
dist = mean(distance, na.rm = TRUE),
delay = mean(arr_delay, na.rm = TRUE)

)
delay <- filter(delay, count > 20, dest != "HNL")

# It looks like delays increase with distance up to ~750 miles
# and then decrease. Maybe as flights get longer there’s more
# ability to make up delays in the air?
ggplot(data = delay, mapping = aes(x = dist, y = delay)) +

geom_point(aes(size = count), alpha = 1/3) +
geom_smooth(se = FALSE)
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#> ‘geom_smooth()‘ using method = ’loess’ and formula ’y ~ x’

One way to avoid having to create these intermediate variables is with pipes. A pipe

takes an output or variable and feeds it into another function. In R, pipes are created by

%>%. So we can write the same code to generate delay with pipes as

delays <- flights %>%
group_by(dest) %>%
summarize(
count = n(),
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dist = mean(distance, na.rm = TRUE),
delay = mean(arr_delay, na.rm = TRUE)

) %>%
filter(count > 20, dest != "HNL")

Here �ights is being fed into the group_by function and its output is fed directly into

the summarize function. Then its output is fed directly into the �lter command.

In general, using pipes makes code easier to read and so should be used in these types of

situations when possible.

6.3 The e�ect of NA values

Suppose that we forgot to take out our NA values from our mean. What would happen?

Since the values are unknown, the overall sample average is unknown. Consider the

following command.

flights %>%
group_by(year, month, day) %>%
summarize(mean = mean(dep_delay))

## # A tibble: 365 x 4
## # Groups: year, month [?]
## year month day mean
## <int> <int> <int> <dbl>
## 1 2013 1 1 NA
## 2 2013 1 2 NA
## 3 2013 1 3 NA
## 4 2013 1 4 NA
## 5 2013 1 5 NA
## 6 2013 1 6 NA
## 7 2013 1 7 NA
## 8 2013 1 8 NA
## 9 2013 1 9 NA
## 10 2013 1 10 NA
## # ... with 355 more rows

Since so many of the variables are unknown, so are the means. Of course, we could have

also removed any rows with a NA value for dep_delay �rst, and then done the experiment.

First, we remove the NA values using �lter.

not_cancelled <- flights %>%
filter(!is.na(dep_delay), !is.na(arr_delay))

Then summarize as before.
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not_cancelled %>%
group_by(year, month, day) %>%
summarize(mean = mean(dep_delay))

## # A tibble: 365 x 4
## # Groups: year, month [?]
## year month day mean
## <int> <int> <int> <dbl>
## 1 2013 1 1 11.4
## 2 2013 1 2 13.7
## 3 2013 1 3 10.9
## 4 2013 1 4 8.97
## 5 2013 1 5 5.73
## 6 2013 1 6 7.15
## 7 2013 1 7 5.42
## 8 2013 1 8 2.56
## 9 2013 1 9 2.30
## 10 2013 1 10 2.84
## # ... with 355 more rows

The variable then looks like

not_cancelled

## # A tibble: 327,346 x 19
## year month day dep_time sched_dep_time dep_delay
## <int> <int> <int> <int> <int> <dbl>
## 1 2013 1 1 517 515 2
## 2 2013 1 1 533 529 4
## 3 2013 1 1 542 540 2
## 4 2013 1 1 544 545 -1
## 5 2013 1 1 554 600 -6
## 6 2013 1 1 554 558 -4
## 7 2013 1 1 555 600 -5
## 8 2013 1 1 557 600 -3
## 9 2013 1 1 557 600 -3
## 10 2013 1 1 558 600 -2
## # ...

6.4 Combining groups with filter, select, and mutate
Groups can also be used with the �lter function. For instance,

flights %>%
group_by(year, month, day) %>%
filter(rank(desc(arr_delay)) < 5)
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## # A tibble: 1,464 x 19
## # Groups: year, month, day [365]
## year month day dep_time sched_dep_time dep_delay
## <int> <int> <int> <int> <int> <dbl>
## 1 2013 1 1 848 1835 853
## 2 2013 1 1 1815 1325 290
## 3 2013 1 1 1842 1422 260
## 4 2013 1 1 2343 1724 379
## 5 2013 1 2 1332 904 268
## 6 2013 1 2 1412 838 334
## 7 2013 1 2 1607 1030 337
## 8 2013 1 2 2131 1512 379
## 9 2013 1 3 1834 1540 174
## 10 2013 1 3 2008 1540 268
## # ... with 1,454 more rows ...

This has found the four worst arrival delays for each particular day. Note that these

worst arrivals are not sorted by arr_delay, they appear in the same order as in the original

tibble.

Sometimes when we group our tibble, some groups may be too small to be useful. The n
function helps in these situation. For instance, there are 105 di�erent destinations for the

�ights:

flights %>% group_by(dest)

## # A tibble: 336,776 x 19
## # Groups: dest [105]
## year month day dep_time sched_dep_time dep_delay
## <int> <int> <int> <int> <int> <dbl>
## 1 2013 1 1 517 515 2
## 2 2013 1 1 533 529 4
## 3 2013 1 1 542 540 2
## 4 2013 1 1 544 545 -1
## 5 2013 1 1 554 600 -6
## 6 2013 1 1 554 558 -4
## 7 2013 1 1 555 600 -5
## 8 2013 1 1 557 600 -3
## 9 2013 1 1 557 600 -3
## 10 2013 1 1 558 600 -2
## # ... with 336,766 more rows,...

By using n, we can keep only those destinations with at least 1000 members.

flights %>% group_by(dest) %>% filter(n() >= 1000)

## # A tibble: 320,366 x 19
## # Groups: dest [58]
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## year month day dep_time sched_dep_time dep_delay
## <int> <int> <int> <int> <int> <dbl>
## 1 2013 1 1 517 515 2
## 2 2013 1 1 533 529 4
## 3 2013 1 1 542 540 2
## 4 2013 1 1 554 600 -6
## 5 2013 1 1 554 558 -4
## 6 2013 1 1 555 600 -5
## 7 2013 1 1 557 600 -3
## 8 2013 1 1 557 600 -3
## 9 2013 1 1 558 600 -2
## 10 2013 1 1 558 600 -2
## # ... with 320,356 more rows,...

There were only 58 such destinations with at least 1000 �ights to them. We can then

take these �ights and use mutate and select on them as well. The following returns the

proportion of delay for each group.

flights %>%
group_by(dest) %>%
filter(n() >= 1000) %>%
filter(arr_delay > 0) %>%
mutate(prop_delay = arr_delay / sum(arr_delay)) %>%
select(year:day, dest, arr_delay, prop_delay)

## # A tibble: 125,929 x 6
## # Groups: dest [58]
## year month day dest arr_delay prop_delay
## <int> <int> <int> <chr> <dbl> <dbl>
## 1 2013 1 1 IAH 11 0.000111
## 2 2013 1 1 IAH 20 0.000201
## 3 2013 1 1 MIA 33 0.000235
## 4 2013 1 1 ORD 12 0.0000424
## 5 2013 1 1 FLL 19 0.0000938
## 6 2013 1 1 ORD 8 0.0000283
## 7 2013 1 1 LAX 7 0.0000344
## 8 2013 1 1 DFW 31 0.000282
## 9 2013 1 1 ATL 12 0.0000400
## 10 2013 1 1 DTW 16 0.000116
## # ... with 125,919 more rows

So apparently this third �ight to Miama (MIA) was .0235% of all �ight delays to that

destination.

6.5 Example: average mileage and displacement by car class

We noted in our framework that often the process of visualization will lead us to a trans-

formation. For instance, consider once again our plot of highway mileage versus engine
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displacement for the mpg data set.

ggplot(mpg, aes(x = displ, y = hwy)) +
geom_point()
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We found that breaking the data down by the class of the vehicle made for a much clearer

view of what is going on.

ggplot(mpg, aes(x = displ, y = hwy)) +
geom_point(aes(col = class))
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That means in doing our analysis, we should work with the data broken down by class.

That is exactly what group_by does.
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mpg %>%
group_by(class) %>%
summarize(mean(hwy, na.rm = TRUE), mean(displ, na.rm = TRUE))

## # A tibble: 7 x 3
## class ‘mean(hwy)‘ ‘mean(displ)‘
## <chr> <dbl> <dbl>
## 1 2seater 24.8 6.16
## 2 compact 28.3 2.33
## 3 midsize 27.3 2.92
## 4 minivan 22.4 3.39
## 5 pickup 16.9 4.42
## 6 subcompact 28.1 2.66
## 7 suv 18.1 4.46
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Chapter 7

Exploratory Data Analysis: Variation

Summary In Exploratory Data Analysis (EDA), we try to �gure out where the data

lies and what types of patterns it has. Here we concentrate on variation, how to

understand the di�erent types of data. The count function in dplyr is useful here,

both for categorical and for numerical data.

When faced with a new data set, the �rst step is usually what statisticians call Exploratory

Data Analysis (EDA). This is when we �rst try to look at what the data is telling us.

There is no one way to approach EDA, partially because at the beginning, there is no

way to know what is going on with your data set. That being said, there are three general

areas that we usually start with.

• Center: where is the data located?

• Variation: how does the data vary from its center.

• Covariation: how do two or more variables interact.

First we set up some terminology.

• Variables are things that we can measure. They can either be quantitative (numerical)

or qualitative (for instance gender).

• Value is the state of a variable when measured.

• Observations are a set of measurements of a particular variable. These are also

referred to as a data point.

• Tabular data is a way of organizing the data into a table. We use the term tidy to

indicate that the variables are set up in the columns, and the rows contain observa-

tions.
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7.1 Variation

For most experiments, when you measure a variable more than once, you do not obtain the

same result. Variation represents the fact that you obtain di�erent values when measuring

more than once. There are various ways of measuring this variation depending on whether

we are dealing with a numerical variable, or a categorical variable.

De�nition 26
If a variable takes on only a �nite set of values, we call it categorical.

For example, the cut of a diamond is either fair, good, very good, premium, or ideal.

Using the built in diamonds data set, we can illustrate this as follows.

diamonds %>% ggplot() +
geom_bar(mapping = aes(x = cut))
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In this plot, the height of the bar is the number of data points that have this value. The

count() function in the dplyr package can be used to extract this data manually.

diamonds %>% count(cut)

## # A tibble: 5 x 2
## cut n
## <ord> <int>
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## 1 Fair 1610
## 2 Good 4906
## 3 Very Good 12082
## 4 Premium 13791
## 5 Ideal 21551

De�nition 27
If observations are real numbers, call the data numerical.

For numerical or continuous data, we form our histogram by binning the values. We

select values a1 < a2 < · · · < ak , and add to the count of bar i if the numerical value falls

into the interval (ai, ai+1]. If all the intervals have the same width, that is ai+1 − ai is the

same for all i, then we call that the bin width. If the geom_histogram command, we

can specify a common bin width for all the bins.

diamonds %>%
ggplot() +

geom_histogram(mapping = aes(x = carat), binwidth = 0.5)
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We can manually compute the counts for these bins with count() as well.
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diamonds %>% count(cut_width(carat, 0.5))

## # A tibble: 11 x 2
## ‘cut_width(carat, 0.5)‘ n
## <fct> <int>
## 1 [-0.25,0.25] 785
## 2 (0.25,0.75] 29498
## 3 (0.75,1.25] 15977
## 4 (1.25,1.75] 5313
## 5 (1.75,2.25] 2002
## 6 (2.25,2.75] 322
## 7 (2.75,3.25] 32
## 8 (3.25,3.75] 5
## 9 (3.75,4.25] 4
## 10 (4.25,4.75] 1
## 11 (4.75,5.25] 1

The exploratory part of EDA means that it is important to try di�erent bin widths on

di�erent parts of the data in order to try and learn about how it behaves. For instance,

suppose we restrict ourselves to the smaller carat results:

smaller <- diamonds %>%
filter(carat < 3)

and then play with the bin width.

smaller %>%
ggplot(aes(x = carat)) +

geom_histogram(binwidth = 0.1)
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From this perspective, we can see there are peaks near very low carats, 1 carat, 1.5 carat,

and 2 carat diamonds.

We can place several histograms in the same plot, but in this case it can be helpful to

use geom_freqpoly() rather than geom_histogram. This plots the counts using

lines rather than bars, which allows us to consider all the di�erent cuts of diamonds

simulataneously.

smaller %>% ggplot(aes(x = carat, colour = cut)) +
geom_freqpoly(binwidth = 0.1)
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Once we have our plots, what sort of things should we be looking for?

• What are the most common values of the data?

• What values do we not see? Is that reasonable?

• Are there any patterns appearing in the data? What aspects of the data could explain

the pattern you see?

From our data, we notice several interesting things * The carats appear to peak at whole

numbers or low denominator fractions. * The diamonds appear to trail o� to the right

rather than the left.

We can see if this pattern holds with a smaller bin width.

smaller %>%
ggplot(aes(x = carat, colour = cut)) +
geom_freqpoly(binwidth = 0.01)
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Let’s look at the histogram for the length of eruptions in Yellowstone.

faithful %>% ggplot(aes(x = eruptions)) +
geom_histogram(binwidth = 0.25)
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What sort of patterns do you see in this histogram?

7.2 Rare values

Note that we were able to see the patterns in the diamonds only by zooming in on pieces

of the data. As another example, let’s consider the y variable, which holds the width of the

diamond. The view from above of all the widths of the diamonds does not tell use much.

diamonds %>%
ggplot() +

geom_histogram(mapping = aes(x = y), binwidth = 0.5)
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Unfortunately, the 12000+ count bar completely wipes out the smaller bars that we

would otherwise see.

In order to see these rarer values, we can clip the y coordinate to only run from 0 to 50.

diamonds %>%
ggplot() +

geom_histogram(aes(x = y), binwidth = 0.5) +
coord_cartesian(ylim = c(0, 50))
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Aha! We have a bar at 0 one just right of 30, and one just shy of 60. Let’s use filter
to pick out the data corresponding to these values.

diamonds %>%
filter(y < 3 | y > 20) %>%
select(price, x, y, z) %>%
arrange(y)

## # A tibble: 9 x 4
## price x y z
## <int> <dbl> <dbl> <dbl>
## 1 5139 0 0 0
## 2 6381 0 0 0
## 3 12800 0 0 0
## 4 15686 0 0 0
## 5 18034 0 0 0
## 6 2130 0 0 0
## 7 2130 0 0 0
## 8 2075 5.15 31.8 5.12
## 9 12210 8.09 58.9 8.06

A look at the help for diamonds tells us about the variables. The x, y, and z variables

measure the length, width, and depth of the diamonds. So how can these all be 0? That

must be a mistake in how the data was recorded.
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Line 8 isn’t a whole lot better. The variables are measured in mm, and 31.8 mm is more

than an inch wide! Would such a diamond only cost $2075? Not very likely, so again these

values are probably errors in the data set. Probably this was the result of a misplaced

decimal point.

So what should we do with these types of values that we believe are wrong? We have a

choice, we can cut them out entirely, or we can switch them over to NA. When we have

many thousand data points like in diamonds, probably best just to change the data to

NA. This can be accomplished by using mutate together with ifelse.

diamonds2 <- diamonds %>%
mutate(y = ifelse(y < 3 | y > 20, NA, y))

The way ifelse works is that if the �rst argument is TRUE, then the value is the second

argument. If the �rst argument is FALSE, then the value is the third argument. This allows

us to compactly write a mutation that includes the type of if statement that is common in

programming languages.

Now when ggplot2 is used on diamonds2 without the mistakes in the data, we get a

much more useful histogram.

diamonds2 %>%
ggplot() +
geom_histogram(mapping = aes(x = y), binwidth = 0.5)

## Warning: Removed 9 rows containing non-finite values
## (stat_bin).
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Chapter 8

Exploratory Data Analysis: Covariation

In the last chapter we saw how to calculate variation, which is how far away a variable

tends to be from its center. Now we discuss covariation which describes the interaction

between more than one variable.

8.1 Categorical and continuous variables

The �rst case we consider is when dealing with trying to understand the covariation

between a categorical (discrete) and a continuous (numerical) random variable.

One method is simply to plot the continuous variable for the di�erent values that the

random variable can take on. For example, consider the variable diamonds from package

ggplot2. We wish to understand the price factor versus the cut. For each price, we

can count how many of each cut fall into that price point. The geom geom_freqpoly can

accomplish this task.

library(ggplot2)
ggplot(data = diamonds, mapping = aes(x = price)) +
geom_freqpoly(mapping = aes(color = cut), binwidth = 500)
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From the picture, it appears that Ideal cuts have many more diamonds at low counts.

But this could simply be because there are in fact many more diamonds altogether in the

data set that have ideal cuts.

A quick check shows that to be true.

ggplot(data = diamonds, mapping = aes(x = cut)) +
geom_bar()
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In order to deal with this we need to normalize the data. In other words, we readjust the

data so that the area under the frequency curve is one. We accomplish this by giving the

aesthetic for variable y the special parameter ..density..

ggplot(data = diamonds, mapping = aes(x = price, y = ..density..)) +
geom_freqpoly(mapping = aes(color = cut), binwidth = 500)
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So there we have it: higher quality cuts of diamonds tend to be cheaper than lower

quality cuts.

This is frustrating when you see this type of headline in the newspaper, because it

is so obviously wrong. So what’s going on with the diamonds? Well, one thing is that

these are not the only variables involved. Another factor strongly correlated with price is

size. If Ideal cut diamonds tend to be smaller, then the overall price on average might be

smaller despite the fact that each individual diamond would cost more than the otherwise

equivalent diamond with a lesser cut.

These other factors that mess up our attempts to study covariation are called confounding
variables, and it important to try to keep their e�ects to a minimum.

8.2 Boxplots

Another way to study the distribution of variables is through the use of boxplots. For

instance, the boxplots of the price versus cut can be found with geom_boxplot.

ggplot(data = diamonds, mapping = aes(x = cut, y = price)) +
geom_boxplot(outlier.size=0.5)
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The boxplot consists of three parts.

1. In the middle is a box with a horizontal line somewhere in the middle. This line is

the sample median, a place where about 50% of the data values are above the line

and 50% below. Similarly, the top of the boxplot is 75% quantile, where about 75%

of the data is below. The bottom of the box is the 25% quantile, so about 25% of the

data is below. The distance from the top of the box until the bottom of the box is

called the inquartile range or IQR for short.

2. The points that are farther than 1.5 · IQR from the top or bottom of the box are called

outliers. Each outlier gets a single dot in the boxplot.

3. A whisker is a line drawn from the top of the box out to the �rst outlier, or 1.5 · IQR

distance, which ever is longer. A similar whisker is drawn from the bottom of the

box.

The 25% quantile is also called the �rst quartile, the median is the second quartile and

the 75% quantile is the third quartile.
Since the data is always positive here, the bottom whisker stays above 0.

Between the medians, 75% quantile, 25% quantile, and the outliers, it is clear that the

pattern seen in the frequency plots is not a �uke: higher quality diamonds really do have

lower prices.

8.3 Two categorical variables.

One way to study covariation between categorical variables is to look at the counts for the

di�erent pair combinations. The geom_count function does the job.
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ggplot(diamonds) +
geom_count(aes(cut,color))
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Again we see the counts of all colors increasing as the quality of the cut increases, but

now we detect another pattern: Some colors levels are more common than others, and it

seems to be roughly the same pattern across cut.

While geom_count is easy, it is also not that pretty. Using the count function from

dplry directly gives the following.

library(tidyverse)
diamonds %>% count(color, cut)

# A tibble: 35 x 3
color cut n
<ord> <ord> <int>

1 D Fair 163
2 D Good 662
3 D Very Good 1513
4 D Premium 1603
5 D Ideal 2834
6 E Fair 224
7 E Good 933
8 E Very Good 2400
9 E Premium 2337

10 E Ideal 3903
# ... with 25 more rows

We can visualize this with the geom_tile function.

diamonds %>% count(color, cut) %>% ggplot(mapping = aes(x = color,
y = cut)) + geom_tile(mapping = aes(fill = n))
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Two continuous variables

Scatterplots are the go-to method for seeing how one variable changes as another does.

diamonds %>% ggplot() + geom_point(aes(carat, price))
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The problem is that we have a lot of points here! To better see what it going on, it helps

to make the points somewhat transparent. In the graphics community, transparency is

often known as alpha, and that is the parameter to change.

diamonds %>% ggplot() + geom_point(aes(carat, price),
alpha = 0.01)
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Now we see that same banding around 1, 1.5, and 2 carats that we saw in earlier graphs.

We also see that prices tend to concentrate in a particular interval for each carat level.

8.4 Pa�erns and modeling

Sometimes patterns are easy to spot. A scatterplot of the times between eruptions and the

length of eruption of the Old Faithful geyser shows several patterns.

ggplot(faithful) +
geom_point(aes(eruptions, waiting))

0

1

2

3

4

5

Fair Good Very Good Premium Ideal
cut

ca
ra

t

First, the waiting time until an eruption is positively correlated with the length of the

eruption. Second there are de�nitely two clusters, indicating that there are two types of

eruptions.

Patterns are important, because they allow us to make better predictions of variables

based on others. This works by using the data to create a model of how one or more

variables a�ects the other variables.
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Suppose that the relationship between y = price and x = carat is polynomial, so of the

form y = xk for some k. Then taking the natural logarithm of both sides gives

ln(y) = k ln(x).

Hence if y varies polynomially in x, then the ln(y) should have a linear relationship with

ln(x). Linear models are the easiest to �nd and test for.

We will use the package modelr to test this relationship.

library(modelr)
mod <- lm(log(price) ~ log(carat), data = diamonds)
summary(mod)

Call:
lm(formula = log(price) ~ log(carat), data = diamonds)

Residuals:
Min 1Q Median 3Q Max

-1.50833 -0.16951 -0.00591 0.16637 1.33793

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 8.448661 0.001365 6190.9 <2e-16
log(carat) 1.675817 0.001934 866.6 <2e-16

(Intercept) ***
log(carat) ***
---
Signif. codes:
0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

Residual standard error: 0.2627 on 53938 degrees of freedom
Multiple R-squared: 0.933, Adjusted R-squared: 0.933
F-statistic: 7.51e+05 on 1 and 53938 DF, p-value: < 2.2e-16

The function lm standard for linear model. Without going into the details of the summary,

I will just point out here that the very last line saying that the p-value is 2.2 · 10−16 is

considered very strong evidence for a relationship between the two variables.

With this model, we can now examine what the price of the diamond is after we have

already used our predictive power based on the carat. The di�erence between the predicted

answer and the true answer is called the residual.
First let’s calculate these residuals, and then exponentiate them (because remember we

took the logarithm of the prices earlier.)
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diamonds2 <- diamonds %>%
add_residuals(mod) %>%
mutate(resid = exp(resid))

Now we can look at how these residuals behave for di�erent cuts.

ggplot(data = diamonds2) +
geom_boxplot(mapping = aes(x = cut, y = resid))
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Finally we are now able to see that the price goes up as the cut of the diamond improves.

Although not as much as you might think: the carat is far more important to the price than

the cut it turns out. Later chapters in the text are devoted to modelling and the modelr
package.
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Preparing data
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Chapter 9

Data Import Part I

Summary Common ways to organize data in �les is as comma separated �les
where each observation is one a separate row, and each variable value is separated by

a comma. In �xed width �les, each variable value gets a �xed number of spaces to

record the value.

Up until now we’ve been working with data sets that have been built in to R, but of

course the whole point of learning about these packages and functions is so that you can

apply them to your own data.

The process of bringing data from a �le or website into your computing environment is

called importing data. Sending data out to a �le is exporting data.

De�nition 28
Data import is the process of reading in data from storage to a programming environ-

ment.

De�nition 29
Data export is the process of writing data from the programming environment to

permanent storage.

Basic R has several tools for data import and export. However, they tend to be slow in

practice, and we will be looking primarily at the tools that are part of the tidyverse’s readr
package.

9.1 Comma Separated Files

The most common way of storing data is as a comma separated �le.
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De�nition 30
A text document is a comma separated �le or CSV if it stores data in a table using

plain text where the entries for a row are separated by commas.

For example, the USGS keeps the United States Wind Turbine Database (USWTDB) in

several formats, one is as a CSV �le. Here is a tiny (the full �le is 9.7 MB) portion of that

CSV �le (retrieved 3 Feb 2019 from h�ps://eerscmap.usgs.gov/uswtdb/data/.)

ct_state,t_county,t_fips,p_name,p_year,p_tnum,p_cap,t_manu
CA,Kern County,6029,251 Wind,1987,194,18.43,Vestas
CA,Kern County,6029,251 Wind,1987,194,18.43,Vestas
CA,Kern County,6029,251 Wind,1987,194,18.43,Vestas
CA,Kern County,6029,251 Wind,1987,194,18.43,Vestas
CA,Kern County,6029,251 Wind,1987,194,18.43,Vestas

There are several functions in readr to read comma separated �les and their variants.

• read_csv reads the standard CSV �les.

• read_csv2 reads a variant of CSV where the symbol between values is a semicolor ;
instead of a comma ,.

• read_delim reads �les where the values are separated by any delimiter.

• read_fwf reads �xed width �les. Here each column in the table of data is given using

the same number of text characters.

• read_log reads Apache style log �les. The Apache HTTP Server (which is commonly

referred to as just Apache) is a set of tools written in Java for creating and maintaining

web servers.

De�nition 31
A �xed width �le gives the same number of spaces in a �le for each variable value.

So, for instance, it could be that every eight characters in a row contains the value for a

particular variable.

As usual, we’ll need the tidyverse library to start.

library(tidyverse)

All of these functions operate the same way: the �rst an most important parameter is

the �le name (with directory) that you are trying to load in. Then come various options

that help you parse the �le in correctly.

For instance, if the �le uswtdb_v1_3_20190107.csv was in my working directory

under subdirectory datasets, I could use the following to load the CSV �le into the

variable wind.
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wind <- read_csv("datasets/uswtdb_v1_3_20190107.csv")

## Parsed with column specification:
## cols(
## .default = col_double(),
## faa_ors = col_character(),
## faa_asn = col_character(),
## t_state = col_character(),
## t_county = col_character(),
## t_fips = col_character(),
## p_name = col_character(),
## t_manu = col_character(),
## t_model = col_character(),
## t_img_date = col_character(),
## t_img_srce = col_character()
## )

## See spec(...) for full column specifications.

It creates (by default) a variable that is a tibble.

wind %>% select(case_id:t_county)

## # A tibble: 58,449 x 6
## case_id faa_ors faa_asn usgs_pr_id t_state t_county
## <dbl> <chr> <chr> <dbl> <chr> <chr>
## 1 3073438 <NA> <NA> 4979 CA Kern County
## 2 3073442 <NA> <NA> 4989 CA Kern County
## 3 3071562 <NA> <NA> NA CA Kern County
## 4 3073423 <NA> <NA> 4974 CA Kern County
## 5 3072662 <NA> <NA> 5113 CA Kern County
## 6 3004727 <NA> <NA> 5765 CA Kern County
## 7 3071571 <NA> <NA> 5065 CA Kern County
## 8 3073343 <NA> <NA> 4962 CA Kern County
## 9 3071528 <NA> <NA> NA CA Kern County
## 10 3072704 <NA> <NA> 5146 CA Kern County
## # ... with 58,439 more rows

The function read_csv can also be used to type data directly into a variable.

read_csv("
a, b, c
1, 2, 3
4, 5, 6")
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## # A tibble: 2 x 3
## a b c
## <dbl> <dbl> <dbl>
## 1 1 2 3
## 2 4 5 6

A useful character in strings is \n, which stands for newline, and allows us to write

these types of examples more compactly.

read_csv("a, b, c\n1, 2, 3\n4, 5, 6")

## # A tibble: 2 x 3
## a b c
## <dbl> <dbl> <dbl>
## 1 1 2 3
## 2 4 5 6

Comment lines
One thing to note is that the �rst line is treated as the variable/factor names. Often,

however, the �rst few lines of a �le just contains comments about the �le.

read_csv("This is a test csv file.
a, b, c\n1, 2, 3\n4, 5, 6")

## Warning: 3 parsing failures.
## row col expected actual file
## 1 -- 1 columns 3 columns literal data
## 2 -- 1 columns 3 columns literal data
## 3 -- 1 columns 3 columns literal data

## # A tibble: 3 x 1
## ‘This is a test csv file.‘
## <chr>
## 1 a
## 2 1
## 3 4

This tends to throw o� the read_csv function. So we can force the reader to skip lines

at the beginning.

read_csv("This is a test csv file.
a, b, c
1, 2, 3
4, 5, 6", skip = 1)
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## # A tibble: 2 x 3
## a b c
## <dbl> <dbl> <dbl>
## 1 1 2 3
## 2 4 5 6

In fact, we can de�ne a comment character so that we can skip any line that starts with

that character.

read_csv("# This is a test csv file.
a, b, c
1, 2, 3
# Next is the last row.
4, 5, 6", comment = "#")

## # A tibble: 2 x 3
## a b c
## <dbl> <dbl> <dbl>
## 1 1 2 3
## 2 4 5 6

Variable names
Some csv �les like to jump straight into the data. We can use col_names = FALSE so

that read_csv does not treat the �rst line as the column name.

read_csv("# This is a test csv file.
1, 2, 3
# Next is the last row.
4, 5, 6", comment = "#", col_names = FALSE)

## # A tibble: 2 x 3
## X1 X2 X3
## <dbl> <dbl> <dbl>
## 1 1 2 3
## 2 4 5 6

R has generously made up names for the tibble, labeling them X1, X2, and X3. Of course,

we could also have supplied our own names.

read_csv("# This is a test csv file.
1, 2, 3
# Next is the last row.
4, 5, 6", comment = "#",
col_names = c("Larry", "Moe", "Curly"))
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## # A tibble: 2 x 3
## Larry Moe Curly
## <dbl> <dbl> <dbl>
## 1 1 2 3
## 2 4 5 6

One thing about strings: in many programming languages a backslash followed by an n

(\n) indicates a newline of text. So we could get the same �le by:

read_csv("1, 2, 3\n4, 5, 6",
col_names = c("Larry", "Moe", "Curly"))

## # A tibble: 2 x 3
## Larry Moe Curly
## <dbl> <dbl> <dbl>
## 1 1 2 3
## 2 4 5 6

Often we need to indicate what in the �le indicates that a value is not available. For

instance, if we want a period . to mean NA, we can also set that in the command.

read_csv("1, 2, 3\n4, 5, .", na = ".", col_names = FALSE)

## # A tibble: 2 x 3
## X1 X2 X3
## <dbl> <dbl> <dbl>
## 1 1 2 3
## 2 4 5 NA

Most of the options that we used here also applies to read_tsv (for tab separated values)

and read_fwf (for �xed width �les).

Compared to base R
In base R, the function read.csv function performs the same purpose as read_csv in

readr. The read_csv improves upon the original in several ways.

• They tend to be much faster at reading �les.

• The output is in tibble form.

• Base R functions can depend on the operating system upon which R is running. The

readr functions operate indpendently of the OS.
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9.2 Parsing vectors

As far as R is concerned, the lines of a comma separated �les are strings of characters. So a

big part of reading the �le is turning strings into integers.

Just like the various geom functions add di�erent type of graphics to the canvas, the

parse functions are the base functions for reading strings of data and turning them into

values.

For instance, we can turn strings into integers with the parse_integer.

parse_integer(c("53","760","2343"))

## [1] 53 760 2343

Of course, if our string does not have integers in it, mistakes ensue:

parse_integer(c("53","760","0.2343"))

## Warning: 1 parsing failure.
## row col expected actual
## 3 -- no trailing characters .2343

## [1] 53 760 NA
## attr(,"problems")
## # A tibble: 1 x 4
## row col expected actual
## <int> <int> <chr> <chr>
## 1 3 NA no trailing characters .2343

We can use the problems functions to understand what happened with a failure to

parse.

x <- parse_integer(c("53","760","0.2343"))

## Warning: 1 parsing failure.
## row col expected actual
## 3 -- no trailing characters .2343

problems(x)

## # A tibble: 1 x 4
## row col expected actual
## <int> <int> <chr> <chr>
## 1 3 NA no trailing characters .2343

The most important parse functions are:
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function purpose

parse_logical parse logical expressions

parse_integer parse integers

parse_double parse real numbers

parse_number parse any type of number

parse_character parse strings

parse_factors parse levels for factors

parse_datetime, parse_date, and parse_time parse various date and time formats

Dealing with numbers
There are quite a few issues that make parsing number di�cult.

• For instance, many countries use the period . to separate the integer and fractional

parts of a number, while others use the comma , to accomplish the same thing. As

we have seen, the default behavior of R is to print numbers using . for the decimal

mark.

• Numbers often are next to special characters that modify them. For instance $1000
or 10%.

• In addition to the decimal point, other characters are added to make the number

easier to read. For instance, in the United States, a number such as 106 might be

written 1,000,000. These grouping characters are di�erent around the world.

To tackle this �rst problem, readr has a parameter locale which can be used to change

the mark delineating the decimal part of the number. The locale function can then be

used to create an object suitable for passing to this parameter. This parameter does have

defaults. For instance, the following uses the default decimal mark of a period.

parse_double("1.23")

## [1] 1.23

If we try the defaults with a di�erent decimal mark, then mistakes happen.

parse_double("1,23")

## Warning: 1 parsing failure.
## row col expected actual
## 1 -- no trailing characters ,23
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## [1] NA
## attr(,"problems")
## # A tibble: 1 x 4
## row col expected actual
## <int> <int> <chr> <chr>
## 1 1 NA no trailing characters ,23

But using the locale parameter and locale function properly can �x this.

parse_double("1,23",
locale = locale(decimal_mark = ","))

## [1] 1.23

The parse_number function is intended to help the second problem by stripping out

extra modifying characters.

parse_number("$100")

## [1] 100

parse_number("65 mph")

## [1] 65

parse_number("20%")

## [1] 20

parse_number("This is the number 342.42.")

## [1] 342.42

Note that the % modi�er did not actually get applied by parse_number: it is up to the

user to actually deal with units and their rami�cations.

One thing parse_number does understand is the grouping character. Again using locale

and the locale function, we can alter what is the grouping symbol.

parse_number("$435,274")

## [1] 435274
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parse_number("$435.274",
locale = locale(grouping_mark = "."))

## [1] 435274
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Data Import Part II

10.1 Representing text

We’ve seen how we can use parse functions to bring strings containing numbers into R.

However, surprisingly there are also issues with bringing strings of characters into R! This

is because of way that characters are encoded in data often varies from system to system.

In order to understand how parse_character works, we need to look a bit more deeply

at how characters in strings are represented by computers. At the end of the day computers

only keep numbers represented by bits in memory, and so we need to have some method

of representing (encoding) characters by number.

Numbers in di�erent bases
First a reminder about bits, bytes, binary, decimal, and hexadecimal numbers.

De�nition 32
A bit is short for a *binary digit*, and is either 0 or 1.

De�nition 33
A byte consists of 8 bits.

Because bit tends to be too small, most memory sizes in computers are measured in

bytes. For instance, in 2019 the computer I am typing this on has 32 GB (gigabytes) of

memory, which is 32 · 109 bytes.

For example, 01111001 is a byte. I’ve written this using base 2, or binary notation. In

decimal (base 10) notation, 573 is 5 times 102 plus 7 times 101 plust 3 times 101. A bit

string like 1001 is 1 times 23 plus 1 times 20 plus 1 times 20, or 9 in decimal notation.

With 8 bits (a byte), one can represent an integer from 0 to 255. With 4 bits (sometimes

called a nibble), one can represented a number from 0 to 15. These 16 numbers can also be

represented in hexadecimal notation.

De�nition 34
A hexadecimal number is written in base 15.
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The digits in hexadecimal use the decimal digits plus the letters a through f for 10 through

15.

Hexadecimal 0 1 2 3 4 5 6 7 8 9 a b c d e f

Decimal 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Often (but not always) capital letters A through F are used instead of a through f.

So to convert 4d to decimal, use

4 · 16 + d = 64 + 13 = 77.

Having 8 bits, and since each hexadecimal digit can represent 4 bits, a single byte can be

represented by a two digit hexadecimal number.

ASCII, ISO LATIN 1, and UTF-8

The simplest standard is the American Standard Code, abbreviated ASCII (pronounced

as as-key). In this code, each number from 0 to 127 (which can be represented by 7 bits)

stands in for a single character. For instance, 26 is the ampersand character &, and the

numbers 65 through 90 represent the capital letters A through Z.

Since a byte contains 8 bits, and so can represent numbers from 0 to 28 − 1 = 255.

So what do we do with the extra 128 characters? One way is to use the ISO Latin set of

characters, which includes several characters with accents. This character set includes

enough characters for complete coverage in 24 language.

A di�erent approach is the UTF-8 standard. Unlike the ASCII and ISO Latin-1 standard,

each character here is represented by a variable number of bytes, from 1 to 4.

If the leading bit (most signi�cant) is 0, then the remaining seven bits acts just like the

ASCII code. But if the leading bit is 1 (so the number is from 127 through 255), then we

also have a second byte in the character. We would write 4d as U+004D. The U+ precedes

a character written in UTF-8. So one byte covers U+0000 through U+007F. This format

with U+ followed by hexadecimal digits, is called a Unicode code point.
If the leading bit is 1 we have a second byte. We use 11 bits to cover characters U+0080

through U+07FF. With three bytes we use 16 bits, and with four bytes we end up with

21 bits covering U+10000 through U+10FFFF. By the time we are at four bytes, we can

represent virtually every character used in every language both current and ancient.

UTF in R

In the readr package, all the functions by default assume that your data is UTF-8 encoded.

If in fact your string uses the ISO Latin 1 standard instead, things will be messed up. As

usual, the locale parameter and function comes to the rescue.

As usual, we �rst load in the tidyverse.

library(tidyverse)

The charToRaw function can be used to obtain the ASCII code of a string reoresented

in hexadecimal.
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charToRaw("Mark Huber")

## [1] 4d 61 72 6b 20 48 75 62 65 72

x1 <- "El Ni\xf1o was particularly bad this year"
x2 <- "\x82\xb1\x82\xf1\x82\xc9\x82\xbf\x82\xcd"
parse_character(x1, locale = locale(encoding = "Latin1"))

## [1] "El Ni\∼no was particularly bad this year"

parse_character(x2, locale = locale(encoding = "Shift-JIS"))

## [1] "<U+3053><U+3093><U+306B><U+3061><U+306F>"

Note the last has encoded the result in UTF-8. Hopefully your document says which

encoding it is in. If not, then there is a function guess_encoding that will try to �gure

out the encoding based on the text. It does tend to work better with more text. As input,

the function takes the hexadecimal bytes of the �le.

guess_encoding(charToRaw(x1))

## # A tibble: 2 x 2
## encoding confidence
## <chr> <dbl>
## 1 ISO-8859-1 0.46
## 2 ISO-8859-9 0.23

guess_encoding(charToRaw(x2))

## # A tibble: 1 x 2
## encoding confidence
## <chr> <dbl>
## 1 KOI8-R 0.42

Factors

A factor in statistics is something that we can measure. (Sometimes it is only used for

categorical variables.)

De�nition 35
A level is a particular value that a factor can take on.

114 400



Mark Huber Notes on the Foundations of Data Science

When the read functions load in data, they attempt to �gure out what the possible levels

for each factor is. Of course, they can be wrong about that. The parse_factor function

can be explicity told what levels are permitted. They then return an error if it sees a value

permitted outside the permitted value.

flagcolors <- c("red", "white", "green", "blue")
parse_factor(c("red","green","yellow"), levels = flagcolors)

## Warning: 1 parsing failure.
## row col expected actual
## 3 -- value in level set yellow

## [1] red green <NA>
## attr(,"problems")
## # A tibble: 1 x 4
## row col expected actual
## <int> <int> <chr> <chr>
## 1 3 NA value in level set yellow
## Levels: red white green blue

Importing dates and times

Unix time, which is also known as POSIX time) is a particular way for describing a particular

time. It works by saying the number of seconds that have elapsed since midnight on the

�rst of January in 1970. Several of the R commands are based upon this way of encoding

time.

• parse_datatime expects to see the date in the ISO8601 format, which puts compo-

nents from biggest to smallest. That means year �rst, then month, day, hour, minute,

and �nally second.

parse_datetime("2019-02-09T0829")

## [1] "2019-02-09 08:29:00 UTC"

If you leave o� the time, it defaults to midnight.

parse_datetime("2019-02-09")

## [1] "2019-02-09 UTC"

• parse_date expectes to see a year (in four digits) following by - or /, then the

month, then - or /, and �nally the day.
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parse_date("2019-02-09")

## [1] "2019-02-09"

• parse_time takes and hour, minutes, and then optionally seconds, separated by :.

The time can then be given an am or pm speci�cation. To use this, it is easier to use

the hms package in R.

library(hms)
parse_time("02:15 pm")

## 14:15:00

parse_time("14:15:23")

## 14:15:23

Often when reading in date time data you will be faced with a custom format. You can

set up the format for many di�erent possibilities. For example:

parse_date("01/02/15", "%m/%d/%y")

## [1] "2015-01-02"

parse_date("01/02/15", "%d/%m/%y")

## [1] "2015-02-01"

Characters for the custom dates.
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Year %Y (4 digit year)

%y (2 digit year)

Month %m (2 digit month)

%b Abbreviated month name such as "Jan"

%B Full name of month such as "January"

Day %d (2 digit day)

%e (can add optional leading space for day)

Time %H Hour given using 0-23

%I Hour given using 0-12 (must also use %p parameter)

%p am/pm indicator

%M minutes

%S integer seconds

%OS real seconds

%Z Time zone

%z O�est from UTC (ex: +0800)

In addition, %. skips any one non-digit character, and %* skips any number of non-digits.

For %b and %B you will need to specify the language with locale in order to get the

correct month names.

parse_date("1 janvier 2015", "%d %B %Y", locale = locale("fr"))

## [1] "2015-01-01"

How read_csv parses a file

When readr tries to read a �le, it uses various parse functions to read in each data value.

The question is: which function should it use for each data type?

The function guess_parser function tries to guess at the type of data from reading the

�rst 1000 or so lines in the �le. While this works most �les, there are exceptional �les that

can trick this method.

For instance, the �rst thousand rows might contain a text description. If the rows contain

mainly NA values, it might read it as a character type instead of integer.

An example of such a type of �le is included in the package.

challenge <- read_csv(readr_example("challenge.csv"))

## Parsed with column specification:
## cols(
## x = col_double(),
## y = col_logical()
## )
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## Warning: 1000 parsing failures.
## row col expected actual

file
## 1001 y 1/0/T/F/TRUE/FALSE 2015-01-16 ’C:/Users/mhuber/

Documents/R/win-library/3.4/readr/extdata/challenge.csv’
## 1002 y 1/0/T/F/TRUE/FALSE 2018-05-18 ’C:/Users/mhuber/

Documents/R/win-library/3.4/readr/extdata/challenge.csv’
## 1003 y 1/0/T/F/TRUE/FALSE 2015-09-05 ’C:/Users/mhuber/

Documents/R/win-library/3.4/readr/extdata/challenge.csv’
## 1004 y 1/0/T/F/TRUE/FALSE 2012-11-28 ’C:/Users/mhuber/

Documents/R/win-library/3.4/readr/extdata/challenge.csv’
## 1005 y 1/0/T/F/TRUE/FALSE 2020-01-13 ’C:/Users/mhuber/

Documents/R/win-library/3.4/readr/extdata/challenge.csv’
## .... ... .................. ..........

.........................................................................

## See problems(...) for more details.

Lots of problems! Let’s try to load in everything as character vectors.

challenge2 <- read_csv(readr_example("challenge.csv"),
col_types = cols(.default = col_character()))

By looking at this �le in Viewr, we see that after the �rst 1000 rows, the x values switch

to doubles. So we need to alter the way it is loaded in.

You can use the n_max parameter to set an upper limit on how many rows are read in

so that you can deal with the parsing issues before loading in the rest of the data.

Moreover, the y values start o� as NA, but the rest are dates and times. Fixing these two

allows us to load the �le correctly.

challenge <- read_csv(
readr_example("challenge.csv"),
col_types = cols(
x = col_double(),
y = col_date()

)
)

Another approach is to force the reader to look at more data.

challenge <- read_csv(readr_example("challenge.csv"), guess_max = 1001)

## Parsed with column specification:
## cols(
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## x = col_double(),
## y = col_date(format = "")
## )

Exporting data

Once we have completed a data analysis, it is sometimes the case that we wish to write

out a transformed version of the �le. Unsurprisingly, the functions that do so begin with

write. For instance, we could use

write_csv(challenge, "challenge.csv")

to put out the �le in the current directory.

One thing to note is that the comma separated value format does not keep the variable

types, so you will be starting over from scratch in importing the �le.

challenge

## # A tibble: 2,000 x 2
## x y
## <dbl> <date>
## 1 404 NA
## 2 4172 NA
## 3 3004 NA
## 4 787 NA
## 5 37 NA
## 6 2332 NA
## 7 2489 NA
## 8 1449 NA
## 9 3665 NA
## 10 3863 NA
## # ... with 1,990 more rows

write_csv(challenge, "challenge-2.csv")
read_csv("challenge-2.csv")

## Parsed with column specification:
## cols(
## x = col_double(),
## y = col_logical()
## )

## Warning: 1000 parsing failures.
## row col expected actual file
## 1001 y 1/0/T/F/TRUE/FALSE 2015-01-16 ’challenge-2.csv’
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## 1002 y 1/0/T/F/TRUE/FALSE 2018-05-18 ’challenge-2.csv’
## 1003 y 1/0/T/F/TRUE/FALSE 2015-09-05 ’challenge-2.csv’
## 1004 y 1/0/T/F/TRUE/FALSE 2012-11-28 ’challenge-2.csv’
## 1005 y 1/0/T/F/TRUE/FALSE 2020-01-13 ’challenge-2.csv’
## .... ... .................. .......... .................
## See problems(...) for more details.

## # A tibble: 2,000 x 2
## x y
## <dbl> <lgl>
## 1 404 NA
## 2 4172 NA
## 3 3004 NA
## 4 787 NA
## 5 37 NA
## 6 2332 NA
## 7 2489 NA
## 8 1449 NA
## 9 3665 NA
## 10 3863 NA
## # ... with 1,990 more rows

From the message we see that the import lost the date format for the y variable. However,

there are some nice features of the write_csv command.

• It alwways writes out characters in UTF-8 format.

• The dates are always written out in ISO8601 format.

If you do need a complete copy of your variable, then it is possible to write out your

data using RDS, the binary format that R uses.

write_rds(challenge, "challenge.rds")
read_rds("challenge.rds")

## # A tibble: 2,000 x 2
## x y
## <dbl> <date>
## 1 404 NA
## 2 4172 NA
## 3 3004 NA
## 4 787 NA
## 5 37 NA
## 6 2332 NA
## 7 2489 NA
## 8 1449 NA
## 9 3665 NA
## 10 3863 NA
## # ... with 1,990 more rows
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Another option if you want to be able to transfer to other programming languages (such

as Python) is to use the feather package to save the �le.

# install.packages{feather}
library(feather)
write_feather(challenge, "challenge.feather")
read_feather("challenge.feather")

## # A tibble: 2,000 x 2
## x y
## <dbl> <date>
## 1 404 NA
## 2 4172 NA
## 3 3004 NA
## 4 787 NA
## 5 37 NA
## 6 2332 NA
## 7 2489 NA
## 8 1449 NA
## 9 3665 NA
## 10 3863 NA
## # ... with 1,990 more rows

Other Formats

There are other packages for loading in other data sets.

* haven allows us to load in SPSS, Stata, and SAS �les.

• readxl reads in Microsoft Excel �les (.xls and .xlsx).

• DBL allows you to run SQL queries against a database and get a data.frame in return.
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Tidy Data

Question of the Day
Consider the following data:

Name 2017 2018 2019

A.B. 5 0 2

S.Q. 2 7 10

T.R. 1 3 4

Is this data tidy?

Summary
In tidy data,

1) each row corresponds to an observation,

2) each column corresponds to a variable, and

3) each entry only contains a single value.

We have several commands for tidying data when these are not already true.

Tidying data

pivot_wider Turns entries into variable names (fewer rows, more columns)

pivot_longer Turns variables names into entries (fewer columns, more rows)

separate When entry is two values, separates into two variables (columns)

unite Combines two variables (columns) into one variable

We also have some functions for dealing with missing values. A missing value NA is

explicit if we write it out directly in the data table, and implicit if we remove the row

that has an NA value. Also, sometimes NA values appear in data to indicate that the entry

is the same as the one above it. We have functions to deal with these situations.
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Missing values

complete Finds missing observations and explicitly makes them NA

�ll Changes NA entries to value of the entry above

11.1 What is tidy data?

So far we’ve learned how to visualize data, transform data, and import data. All of these

tools expect to be given the data in a tidy form.

Recall that for a statistician, a variable or factor is something that we can measure. A

level is the di�erent values that a factor can take on. In tabulating data, often the levels are

used for the column names. But this makes the data di�cult to analyze. A better way is

to have each column correspond to a variable, each row to an observation, and then the

entries at each row and column should be a level value.

When this is how the data is organized, we call the data tidy.

De�nition 36
A dataset is in tidy form when

1. Each row corresponds an observation.

2. Each column corresponds to a variable.

3. Each entry only contains a single value.

When these properties do not hold, the tidyr package has several useful functions for

manipulating our tables. For instance, consider the following variable table1 that is built

in to the tidyr package.

table1

## # A tibble: 6 x 4
## country year cases population
## <chr> <int> <int> <int>
## 1 Afghanistan 1999 745 19987071
## 2 Afghanistan 2000 2666 20595360
## 3 Brazil 1999 37737 172006362
## 4 Brazil 2000 80488 174504898
## 5 China 1999 212258 1272915272
## 6 China 2000 213766 1280428583

Each of the six observations occupies its own row. Each column corresponds to a unique

variable, and each of the 24 = 6 · 4 entries of the table corresponds to a single value.

In contrast, here is the same data, but organized di�erently. Here
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table2

## # A tibble: 12 x 4
## country year type count
## <chr> <int> <chr> <int>
## 1 Afghanistan 1999 cases 745
## 2 Afghanistan 1999 population 19987071
## 3 Afghanistan 2000 cases 2666
## 4 Afghanistan 2000 population 20595360
## 5 Brazil 1999 cases 37737
## 6 Brazil 1999 population 172006362
## 7 Brazil 2000 cases 80488
## 8 Brazil 2000 population 174504898
## 9 China 1999 cases 212258
## 10 China 1999 population 1272915272
## 11 China 2000 cases 213766
## 12 China 2000 population 1280428583

Here the two variables case and population have been turned into a type variable,

and their values have been put into a count variable.

This contains the same information, but it far more di�cult to work with.

• This format obscures the fact that there are 6 data points. By taking two di�erent

types of data and con�ating them, the fast that we are working with countries at

various years is lost.

• It becomes more di�cult to analyze. If we look just at the mean of the counts the

overall result con�ates the cases and the population values. A single column (if

possible) should always have the same units and be measuring the same thing. Here

two di�erent things (with di�erent units) are being measured. In tidy data, the entries

in each column are all measuring the same thing.

There are many reasons why the data you encounter in practice is not tidy. The two

main reasons are the following.

1. Unless you have trained in analyzing tidy data, you simply might not think to

organize your data in a tidy fashion. Despite its simplicity, the tidy principle is not

self-apparent.

2. Data is often organized in a way to make recording the data as e�cient as possible,

not for analysis of the data.

So that means we have to learn tools that take data sets that might be untidy and turn

them into tidy data sets.
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11.2 Turning entries into column names

The �rst tool we will introduce is pivot_wider, which deals with situations like those found

in table2. We wish to take the 12 rows, and change them back to the six observations

that we know exist by combining rows with di�erent type entries.

This function is called pivot_wider because it will make our table wider (as well as

shorter) by removing the count variable and introducing an equivalent of a cases
variable and a population variable.

The pivot_wider function has two main parameters. The �rst, names_from, it the

variable that holds the entries that we will turn into separate variables. The second,

values_from is the name of the existing variable with names for each of the variables

created under the key variable. The result is something like:

table2 %>% pivot_wider(names_from = type, values_from = count)

## # A tibble: 6 x 4
## country year cases population
## <chr> <int> <int> <int>
## 1 Afghanistan 1999 745 19987071
## 2 Afghanistan 2000 2666 20595360
## 3 Brazil 1999 37737 172006362
## 4 Brazil 2000 80488 174504898
## 5 China 1999 212258 1272915272
## 6 China 2000 213766 1280428583

Now each variable has its own column, and each row in each variable contains a value

rather than a variable name.

11.3 Turning column names into entries

We use pivot_wider when a column contains factor names rather than values. What

about when a column name is a level rather than a factor name? In that case, we use

pivot_longer. This turns column names into entries, which removes columns and adds

observations.

This often happens when dealing with numerical data. Suppose we reorganize our table

of data in yet another fashion.

table4a

## # A tibble: 3 x 3
## country ‘1999‘ ‘2000‘
## * <chr> <int> <int>
## 1 Afghanistan 745 2666
## 2 Brazil 37737 80488
## 3 China 212258 213766
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You can see that ‘1999‘ and ‘2000‘ are not true variable names because there is

nothing to measure here. Instead, they are really values that should have been assigned to

a variable year. Unlike with spread, we are going to have to tell gather exactly which of

the existing variable names are actually values. Then we use key to say what the name

of the new variable should be, and �nally values tells us what the name of the new value

variable should be.

g4a <- table4a %>%
pivot_longer(’1999’:’2000’, names_to = "year", values_to = "cases")

g4a

## # A tibble: 6 x 3
## country year cases
## <chr> <chr> <int>
## 1 Afghanistan 1999 745
## 2 Afghanistan 2000 2666
## 3 Brazil 1999 37737
## 4 Brazil 2000 80488
## 5 China 1999 212258
## 6 China 2000 213766

Of course, this table only contains the numbers of cases of TB, it does not contain the

population information. The rest of the data is contained in a varible table4b:

table4b

## # A tibble: 3 x 3
## country ‘1999‘ ‘2000‘
## * <chr> <int> <int>
## 1 Afghanistan 19987071 20595360
## 2 Brazil 172006362 174504898
## 3 China 1272915272 1280428583

We can tidy up this data using pivot_longer as with table4a.

g4b <- table4b %>%
pivot_longer(’1999’:’2000’, names_to = "year", values_to = "population")

g4b

## # A tibble: 6 x 3
## country year population
## <chr> <chr> <int>
## 1 Afghanistan 1999 19987071
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## 2 Afghanistan 2000 20595360
## 3 Brazil 1999 172006362
## 4 Brazil 2000 174504898
## 5 China 1999 1272915272
## 6 China 2000 1280428583

After tidying up this data in the same way as for table4a, we want to combine the

two resulting tables into one single table. A command for combining multiple tables into

one is the left_join command. When you have your data dispersed over multiple tables, it

is called a relational database, and we will cover in-depth methods for dealing with this

situation later in the text.

For now, we’ll use left_join to bring things together and recreate our tidy data set.

left_join(g4a, g4b)

## Joining, by = c("country", "year")

## # A tibble: 6 x 4
## country year cases population
## <chr> <chr> <int> <int>
## 1 Afghanistan 1999 745 19987071
## 2 Afghanistan 2000 2666 20595360
## 3 Brazil 1999 37737 172006362
## 4 Brazil 2000 80488 174504898
## 5 China 1999 212258 1272915272
## 6 China 2000 213766 1280428583

11.4 Separate

Another problem that can prevent data from being tidy is when the table tries to hold

values for two variables inside one entry. For example:

table3

## # A tibble: 6 x 3
## country year rate
## * <chr> <int> <chr>
## 1 Afghanistan 1999 745/19987071
## 2 Afghanistan 2000 2666/20595360
## 3 Brazil 1999 37737/172006362
## 4 Brazil 2000 80488/174504898
## 5 China 1999 212258/1272915272
## 6 China 2000 213766/1280428583
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This is pretty uncommon, the widespread use of spreadsheets tends to discourage this

sort of thing. Still, it is often the case that a name and ID number, or �rst and last name,

get combined into one variable, and we often want to separate entries into their di�erent

variables.

In the case of table3, the entries under the variable rate actually contain two values,

not one. We can use the separate function to do this. The syntax is straightforward: we

provide separate with the variable name to split and the new names of the variables.

table3 %>%
separate(rate, into = c("cases", "population"))

## # A tibble: 6 x 4
## country year cases population
## <chr> <int> <chr> <chr>
## 1 Afghanistan 1999 745 19987071
## 2 Afghanistan 2000 2666 20595360
## 3 Brazil 1999 37737 172006362
## 4 Brazil 2000 80488 174504898
## 5 China 1999 212258 1272915272
## 6 China 2000 213766 1280428583

Note that separate �gured out what delimiting character separated the two values, /. If

you want to specify your own delimiter, that works too.

The only problem the default call to separate has was it choose to treat the two entries

as through they were character strings rather than the integers that they are. By setting

the convert to TRUE, we tell the function to guess at what type of variable we are dealing

with.

table3 %>%
separate(rate, into = c("cases", "population"), convert = TRUE)

## # A tibble: 6 x 4
## country year cases population
## <chr> <int> <int> <int>
## 1 Afghanistan 1999 745 19987071
## 2 Afghanistan 2000 2666 20595360
## 3 Brazil 1999 37737 172006362
## 4 Brazil 2000 80488 174504898
## 5 China 1999 212258 1272915272
## 6 China 2000 213766 1280428583
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11.5 Unite

The unite function does precisely the opposite of separate, it brings two variables together

into one. This can be useful when, for instance, the century and two digit year within the

century have been separated into separate variables. Consider table5:

table5

## # A tibble: 6 x 4
## country century year rate
## * <chr> <chr> <chr> <chr>
## 1 Afghanistan 19 99 745/19987071
## 2 Afghanistan 20 00 2666/20595360
## 3 Brazil 19 99 37737/172006362
## 4 Brazil 20 00 80488/174504898
## 5 China 19 99 212258/1272915272
## 6 China 20 00 213766/1280428583

The function unite also has a straightforward syntax: tell it the new name of the variable,

followed by one or more variables you wish to unite.

table5 %>% unite(col = year, century, year)

## # A tibble: 6 x 3
## country year rate
## <chr> <chr> <chr>
## 1 Afghanistan 19_99 745/19987071
## 2 Afghanistan 20_00 2666/20595360
## 3 Brazil 19_99 37737/172006362
## 4 Brazil 20_00 80488/174504898
## 5 China 19_99 212258/1272915272
## 6 China 20_00 213766/1280428583

To denote the combination, by default unite uses an underscore character (_) to separate

values. For the year, we don’t want that. We can use the parameter sep to change the

parameter, or eliminate it entirely by giving it a blank string ("").

table5 %>% unite(col = year, century, year, sep = "")

## # A tibble: 6 x 3
## country year rate
## <chr> <chr> <chr>
## 1 Afghanistan 1999 745/19987071
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## 2 Afghanistan 2000 2666/20595360
## 3 Brazil 1999 37737/172006362
## 4 Brazil 2000 80488/174504898
## 5 China 1999 212258/1272915272
## 6 China 2000 213766/1280428583

11.6 Missing Values

Missing data can be denoted in two di�erent ways.

• Explicitly. This is when we give in the value NA.

• Implicitly. This is when we have an observation missing from the table.

For instance, suppose our original table had only had the �rst �ve observations:

table1 %>% slice(1:5)

## # A tibble: 5 x 4
## country year cases population
## <chr> <int> <int> <int>
## 1 Afghanistan 1999 745 19987071
## 2 Afghanistan 2000 2666 20595360
## 3 Brazil 1999 37737 172006362
## 4 Brazil 2000 80488 174504898
## 5 China 1999 212258 1272915272

There is no entry with county=China and year=2000. That data is implicitly missing.

The complete command can be used to try to �gure out what data is missing. For instance,

consider:

table1 %>% slice(1:5) %>% complete(country, year)

## # A tibble: 6 x 4
## country year cases population
## <chr> <int> <int> <int>
## 1 Afghanistan 1999 745 19987071
## 2 Afghanistan 2000 2666 20595360
## 3 Brazil 1999 37737 172006362
## 4 Brazil 2000 80488 174504898
## 5 China 1999 212258 1272915272
## 6 China 2000 NA NA
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Now the China in 2000 data is explicitly said to be NA. How did complete know that

this was missing? It looked at the various values for country and year and discovered

that one of the 2 · 3 = 6 possible combinations was not there, in this case for China. So it

added it in explicitly as an observation with missing data.

Blank lines in spreadsheets

Another issue we encounter is when a cell is blank in a spreadsheet, it often means to use

the value of the cell above it. Then when this is read into R using read_csv or another data

import function, the blank cells get changed to NA. For instance, if this type of technique

was used for the table1 data, we might end up with the following.

table1b <- table1
table1b[c(2, 4, 6), 1] <- c(NA, NA, NA)
table1b

## # A tibble: 6 x 4
## country year cases population
## <chr> <int> <int> <int>
## 1 Afghanistan 1999 745 19987071
## 2 <NA> 2000 2666 20595360
## 3 Brazil 1999 37737 172006362
## 4 <NA> 2000 80488 174504898
## 5 China 1999 212258 1272915272
## 6 <NA> 2000 213766 1280428583

This can be di�cult to �x, fortunately tidyr has a speci�c function to solve this problem:

�ll.

table1b %>% fill(country)

## # A tibble: 6 x 4
## country year cases population
## <chr> <int> <int> <int>
## 1 Afghanistan 1999 745 19987071
## 2 Afghanistan 2000 2666 20595360
## 3 Brazil 1999 37737 172006362
## 4 Brazil 2000 80488 174504898
## 5 China 1999 212258 1272915272
## 6 China 2000 213766 1280428583

11.7 Cleaning data

Even when data is in tidy form, it might end up being somewhat dirty. This happens when

there are errors in the data �le or misnamed variables. Here at two extra tools that are

useful for cleaning up such data sets.
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• names() returns the variable names in a tibble as a vector of strings.

• rename() allows us to e�ciently change the name or names of a variable in a tibble.

For example: rename(“newvariablename” = oldvariablename)

• str_replace takes a string and replaces it with another string. This is often used

either before or after a call to separate or unite to prepare the data. For example:

str_replace("tunabake", "bake", "melt")

## [1] "tunamelt"

can be used to quickly change one or more names to something else.

132 400



Chapter 12

A mathematical model of data

Summary A set consists of unordered elements. A subset of a setB consists only of

elements fromB. An n-tuple (aka observation) is an ordered collection (a1, . . . , an)
where each ai belongs to a speci�ed setAi. The set of n-tuples is called the Cartesian
product of the sets A1, . . . , An.

A set of observations form a relation (aka data table. A relational database
consists of one or more relations. A key is a set of variables whose values always

uniquely identi�es the observation. A key which is arti�cially created to make a

relation is called a surrogate key. One key from the relation is designated as the

primary key.

Now that we understand tidy data, we are ready to build a mathematical model of what

exactly a table of data is. To accomplish this, we need to understand the mathematical

notion of a set.

12.1 Sets

In logic, we can begin with just two unde�ned terms:

True, False

and every statement is either true or false.

De�nition 37
A logical statement is either true or false.

Another unde�ned term is object. The idea of a simple set is that for a particular object,

we can say if the set contains that object, or if it does not contain that object.
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De�nition 38
Call A a set if for any object x, the statement “A contains x” is a logical statement that

evaluates to either true or false.

De�nition 39
If for set A, the statement A contains x is true, say that x is an element of the set A.

Notation 1
If a is an element of set A, write a ∈ A. If A is a �nite set, then e can write out the

elements of A by enclosing them in curly braces. Order does not matter for sets, so

A = {a, b, c} = {b, a, c}.

By this we mean that a ∈ A, b ∈ A, and c ∈ A are all true statements, and if d 6= a and

d 6= b and d 6= c, then d ∈ A is false.

Some notes.

• If s1 ∈ A and s2 ∈ A is true, then both s1 and s2 are elements of A. There is no

notion of order between s1 and s2.

• Either s ∈ A or s /∈ A. There is no notion of the number of times s appears in A.

The sets {a, a, b} and {a, b} are the same.

Note Sets can be de�ned as much more complicated objects than as given here. However,

for sets applied to data, this is the full generality that we need.

A subset A of a set B is a set of elements that also all appear in B. To de�ne this, we

need the logical notion of ∀.

De�nition 40
Say that statement q(a) is true for all a ∈ A if whenever a ∈ A is true, q(a) also

evaluates to true. Write this as

(∀a ∈ A)(q(a)).

Example 1
For all x ∈ {3, 4, 5}, x2 > 8 is a true statement. Write (∀x ∈ {3, 4, 5})(x2 > 8).

The statement (∀x ∈ {1, 2, 3})(x2 > 8) is a false statement, because there is a value

of x in {1, 2, 3} (actually either x = 1 or x = 2) such that x2 ≤ 8.
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De�nition 41
Say that set A is a subset of B (write A ⊆ B) if

(∀a ∈ A)(a ∈ B).

Recall that in statistics, we have the notion of a variable (aka factor) that takes on a value

that comes from the levels of the factor. In this case, the levels form a set of possibilities,

and the variable must come from that set. For instance, if Ai are the levels for variable xi,
then we must have xi ∈ Ai.

Suppose I take an element from A1, one from A2, and so on up to An, and put them in

order. Because they are in order, we use parenthesis “(” and “)” to surround them. The

result is an element of the Cartesian product of the sets.

De�nition 42
Let A1, . . . , An be sets. Then the Cartesian product of the sets is written A1 ×A2 ×
· · · ×An, and is the set

{(a1, . . . , an) : a1 ∈ A1, . . . , an ∈ An}.

De�nition 43
An element of the Cartesian product A1× · · · ×An is called an n-tuple, or an observa-
tion.

Mathematically, an observation or row of a table is just an n-tuple, where n is the number

of variables in each observation.

Example 2
Let A1 = {a, b} and A2 = {c, d, e}. Then the Cartesian product of A1 and A2 is

A1 ×A2 = {(a, c), (a, d), (a, e), (b, c), (b, d), (b, e)}.

Then (a, c) might be an observation, as might (b, c).

De�nition 44
A relation, or data table is a subset of the Cartesian product A1 × · · · ×An.
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Example 3
For A1 = {a, b} and A2 = {c, d, e}, a relation (data table) could be:

A1 A2

a c
b d
b e

In R, a data.frame or tibble are just ways of representing a relation (table) inside the

computing environment. Because our data consists of relations in tidy data, we call data

represented in this fashion a relational database.

De�nition 45
In a relational database, all data is represented using one or more relations.

Every time we manipulate data with �lter or select, we are creating a new relation.

The select command creates a relation over a Cartesian product of fewer sets (variables),

while the �lter command creates a relation over the Cartesian product with the same sets

but with fewer observations.

A command like arrange does not change the relation at all. Instead, it merely a�ects

how the relation is represented inside of the computing environment. It does not a�ect the

mathematics of data, but does a�ect the computer science aspects of the data. (How the

relation is stored.)

12.2 Keys

This de�nition has two important consequences

• The order of the observations (n-tuples) in the table (relation) does not matter.

• Observations (n-tuples) must be unique, that is, they cannot be repeated.

For instance,

First name Last name Party

Tammy Baldwin Democrat

John Barrasso Republican

Marsha Blackburn Republican

and

First name Last name Party

John Barrasso Republican

Tammy Baldwin Democrat

Marsha Blackburn Republican
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form the same table of data.

Because each observation is unique, there will exist (at least one) subset of variables that

uniquely identi�es each observation. We call such a subset a key. That is, given the values

of the observation for the key variable(s), there is only one observation in the relation that

has those values. Mathematically, we can write this out as follows.

De�nition 46
Consider a relation where each observation x ∈ A1 × · · · × An. A key is a subset of

variables,D ⊆ {1, . . . , n}, such that for each y ∈ ×d∈DAd, there is a unique observation

x with x(D) = y.

In the last table, the set of variables {First name, Last name} form a key because together

they uniquely identify the observation, but {Party} is not a key, since knowing that the

observation has Party = Republican is not enough to identify the observation.

Of course, the set of variables {First name, Last name, Party} also forms a key by de�ni-

tion, since knowing the entirety of the observation should uniquely identify the observation.

In fact, for any relation, the set of all variables should serve as a key. On the other

hand, if two observations are duplicate, then they do not form a relation. In this case, it is

customary to create a surrogate key to force the observations to be a relation.

De�nition 47
Suppose T ∈ (A1×·An)m (som ordered observations rather than a set of observations.)

Then let An+1 = {k1, . . . , km} be any of size m. Let

T ′ = {(t1, . . . , tn, kj) : j ∈ {1, . . . ,m}, (t1, . . . , tn) = T (j).

Then call {An+1} a surrogate key.

For instance, consider the following.

name age

Smith, John 47

Smith, John 47

This is not a proper data table because the same observation is repeated in two di�erent

rows. That is, the same 2-tuple appears twice in the table. When reading this data, we do

not know if there was data entry error involved where the same data was entered twice, or

if there were actually two John Smiths in the survey.

In order to �x this problem, it is helpful when collecting data to assign a key that allows

us to uniquely identify di�erent observations. For instance, if we updated the table to

include a patient ID number:
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ID name age

1 Smith, John 47

2 Smith, John 47

Here ID is a surrogate key that forces each 3-tuple to be unique.

Create a surrogate key in R

If we have a table without a key, we can create a surrogate key using the mutate and

row_number functions. (We can then use select with everything to move that column

to the front.)

df <- tibble(name = "Smith, John", age = c(47, 47))
df

## # A tibble: 2 x 2
## name age
## <chr> <dbl>
## 1 Smith, John 47.
## 2 Smith, John 47.

df %>%
mutate(id = row_number()) %>%
select(id, everything())

## # A tibble: 2 x 3
## id name age
## <int> <chr> <dbl>
## 1 1 Smith, John 47.
## 2 2 Smith, John 47.

The primary key

There are usually more than one possible key for any given relation. To be useful in practice,

a key should contain as few variables as possible. Each relation is typically associated with

a single key known as the primary key.

De�nition 48
One particular key for a relation is designated as the primary key.

12.3 Terminology

Because the terms for our data come from mathematics, statistics, earlier database work

and later database work such as SQL, most of the entities in a relational database have

more than one name.

The following lists many of these equivalent terms.
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Mathematics Statistics Relational Database SQL

set variable, factor attribute, �eld Column

n-tuple observation tuple, record Row

relation data table relation, base relvar Table

When we pull data out of a table, mathematically it is just another relation, but we have

di�erent terms in other contexts.

Mathematics Relational Database SQL

relation derived relvar View, result set

At this point is is worth breaking down our terminology.

12.4 History

These ideas go back to a 1970’s paper of Edgar F. Codd, who invented the notion of relational

databases while working for IBM. His article A Relational Model of Data for Large Shared
Data Banks spelled out how data represented by relations should be stored and updated to

preserve properties as the database grows in size.
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Relational data

Summary If a set of variables from a �rst table is the primary key for a second table,

it is known as a foreign key in the �rst table. Such a foreign key can be used to

determine if an observation from one table is related to an observation in another

table. Data from the two tables can be combined into one table with various tools.

Bringing data from one table to another

inner_join Keeps observations where the key appears in both tables.

left_join Observations where the key appears in �rst table.

right_join Observations where the key appears in second table.

full_join Observations where the key appears in either table.

Often we do not just have one table (relation) of tidy data, but multiple tables that work

together to give di�erent information about a subject. In this case, we are dealing with

relational data, and we utilize tools that work across multiples tables.

The tasks we do are similar to those in single tables.

• Mutating joins bring data from one table over to another, matching values from a

common variable.

• Filtering joins removing observations from one table based on the values in another

table.

• Set operations are operations such as union and intersect.

Let’s go back to the package nyc�ights13 that holds the flights table of data that

we looked at earlier.
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library(tidyverse)
library(nycflights13)

Earlier we looked mainly at the flights variable, but there are many others within

the library. For instance, airlines contains the two letter abbreviations of the airlines

from the flights variable.

airlines

## # A tibble: 16 x 2
## carrier name
## <chr> <chr>
## 1 9E Endeavor Air Inc.
## 2 AA American Airlines Inc.
## 3 AS Alaska Airlines Inc.
## 4 B6 JetBlue Airways
## 5 DL Delta Air Lines Inc.
## 6 EV ExpressJet Airlines Inc.
## 7 F9 Frontier Airlines Inc.
## 8 FL AirTran Airways Corporation
## 9 HA Hawaiian Airlines Inc.
## 10 MQ Envoy Air
## 11 OO SkyWest Airlines Inc.
## 12 UA United Air Lines Inc.
## 13 US US Airways Inc.
## 14 VX Virgin America
## 15 WN Southwest Airlines Co.
## 16 YV Mesa Airlines Inc.

This is an example of two tables with di�erent information that support one another.

Other examples include

• airports gives the codes for each of the airports.

• planes tells us about the planes identi�ed by tailnum.

• weather gives the weather at NYC airports broken down by hour.

Any or none of this information might be useful in a particular analysis of the data in

flights. Note that carrier appears both in flights and in airlines. It is this

variables that allows us to link the two tables together.

De�nition 49
Suppose a set of variables in one table is a primary key in another table. Then we call

the variable a foreign key.
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In certain cases, the name of the variable might be di�erent in the two tables, but that

does a�ect whether or not we are dealing with a foreign key.

Example 4
In the planes variable, tailnum is a primary key because each plane with its unique

tail number appears exactly once. But in the flights variable, tailnum is a foreign

key. It is not a key in flights because a single plane makes more than one �ight in

the table.

To check if a variable (or set of variables) is a key in a table, each value of the key

variable(s) must appear exactly once in the table. We can use count to �nd the number

of observations where each key value appears, and then �lter to �nd those values that

appear more than once.

planes %>%
count(tailnum) %>%
filter(n > 1)

## # A tibble: 0 x 2
## # ... with 2 variables: tailnum <chr>, n <int>

flights %>%
count(tailnum) %>%
filter(n > 1)

## # A tibble: 3,873 x 2
## tailnum n
## <chr> <int>
## 1 D942DN 4
## 2 N0EGMQ 371
## 3 N10156 153
## 4 N102UW 48
## 5 N103US 46
## 6 N104UW 47
## 7 N10575 289
## 8 N105UW 45
## 9 N107US 41
## 10 N108UW 60
## # ... with 3,863 more rows

The importance of foreign keys is that they allow us to pass information from one table

to another.
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13.1 Le� joins

Keys allow us to properly link up observations across two tables.

To illustrate this, let’s make a narrower data set

flights2 <- flights %>%
select(year:day, hour, origin, dest, tailnum, carrier)

flights2

## # A tibble: 336,776 x 8
## year month day hour origin dest tailnum carrier
## <int> <int> <int> <dbl> <chr> <chr> <chr> <chr>
## 1 2013 1 1 5 EWR IAH N14228 UA
## 2 2013 1 1 5 LGA IAH N24211 UA
## 3 2013 1 1 5 JFK MIA N619AA AA
## 4 2013 1 1 5 JFK BQN N804JB B6
## 5 2013 1 1 6 LGA ATL N668DN DL
## 6 2013 1 1 5 EWR ORD N39463 UA
## 7 2013 1 1 6 EWR FLL N516JB B6
## 8 2013 1 1 6 LGA IAD N829AS EV
## 9 2013 1 1 6 JFK MCO N593JB B6
## 10 2013 1 1 6 LGA ORD N3ALAA AA
## # ... with 336,766 more rows

We have the carrier names using their two letter abbreviation. What if we wanted the

full name of the carrier? For this, we can use the function left_join.

flights2 %>%
select(-origin, -dest, -year) %>%
left_join(airlines, by = "carrier")

## # A tibble: 336,776 x 6
## month day hour tailnum carrier name
## <int> <int> <dbl> <chr> <chr> <chr>
## 1 1 1 5 N14228 UA United Air Lines Inc.
## 2 1 1 5 N24211 UA United Air Lines Inc.
## 3 1 1 5 N619AA AA American Airlines Inc.
## 4 1 1 5 N804JB B6 JetBlue Airways
## 5 1 1 6 N668DN DL Delta Air Lines Inc.
## 6 1 1 5 N39463 UA United Air Lines Inc.
## 7 1 1 6 N516JB B6 JetBlue Airways
## 8 1 1 6 N829AS EV ExpressJet Airlines Inc.
## 9 1 1 6 N593JB B6 JetBlue Airways
## 10 1 1 6 N3ALAA AA American Airlines Inc.
## # ... with 336,766 more rows
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Let’s break down what happened here. The �rst argument to left_join was the airlines–

that’s the name of the table whose information we are seeking to add to �ights. Next we

have the by parameter, which tells us the name of the key to use. In this case, we want to

use carrier, since that is a primary key in airlines.

Finally, the variable name was added to the table from the table airlines

13.2 Types of joins

Although the left join is the most commonly used, there are di�erent types depending on

what you are trying to accomplish when you join the two tables together.

Suppose that Table 1 has a set of key values that we will call (k1, . . . , kn). Table 2 has a

set of key values that we will call (`1, . . . , `m).

De�nition 50
An inner join combines tables by creating a new observation whenever ki = `j .

For an inner join, the key has to appear in both of the Tables. By constrast, an outer join

keeps keys that appear in at least one of the tables.

De�nition 51
An outer join combines tables by creating new observations when the key appears in

at least one of the tables. A left join occurs when we create observations for each of

(k1, . . . , kn), a right join occurs when we create observations for (`1, . . . , `m), and a

full join creates observations for both (k1, . . . , kn) and (`1, . . . , `m).

For outer joins, the natural question is: what do we do when we try to add a key value

that appears in an observation in one table but not the other? The answer is, we treat

this as an implicitly missing value in the other table, and then go ahead and make things

explicit.

13.3 No duplicate keys

At this point some examples are in order. Let’s create some tibbles to try these out on.

Suppose Table 1 has a key that has observation values a, b, and c, while Table 2 has a key

with observation values a, b, and d.

t1 <- tibble(x = c(’a’, ’b’, ’c’),
color = c(’blue’, ’red’, ’green’))

t2 <- tibble(x = c(’a’, ’b’, ’d’),
sound = c(’high’, ’low’, ’middle’))

t1

## # A tibble: 3 x 2
## x color
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## <chr> <chr>
## 1 a blue
## 2 b red
## 3 c green

t2

## # A tibble: 3 x 2
## x sound
## <chr> <chr>
## 1 a high
## 2 b low
## 3 d middle

Inner joins only create observations where the factor value appears in both tables:

t1 %>% inner_join(t2, by = "x")

## # A tibble: 2 x 3
## x color sound
## <chr> <chr> <chr>
## 1 a blue high
## 2 b red low

Key a and b were in both tables, so they appear in the combined table. Now let’s try a

left join. Remember, this makes sure that all the values from the �rst table are entered.

t1 %>% left_join(t2, by = "x")

## # A tibble: 3 x 3
## x color sound
## <chr> <chr> <chr>
## 1 a blue high
## 2 b red low
## 3 c green <NA>

t1 %>% right_join(t2, by = "x")

## # A tibble: 3 x 3
## x color sound
## <chr> <chr> <chr>
## 1 a blue high
## 2 b red low
## 3 d <NA> middle

145 400



Mark Huber Notes on the Foundations of Data Science

t1 %>% full_join(t2, by = "x")

## # A tibble: 4 x 3
## x color sound
## <chr> <chr> <chr>
## 1 a blue high
## 2 b red low
## 3 c green <NA>
## 4 d <NA> middle

13.4 Duplicate key values

In the example from before, where we did a left join between flights and airlines,

the carrier was a primary key in airlines. What if it hadn’t been unique, what if

the same key value appears more than once?

If a key value appears more than once, then we are unsure what data belongs with

that observation. Therefore, we need to create a new observation for each of the possible

pairings. For instance, if a key value appears twice in Table 1, and three times in Table 2,

then it will appear 2 · 3 = 6 times in the join.

t3 <- tibble(x = c(’a’, ’a’), y = c(1, 2))
t4 <- tibble(x = c(’a’, ’a’, ’a’), z = c(4, 5, 6))
t3 %>% full_join(t4, by = "x")

## # A tibble: 6 x 3
## x y z
## <chr> <dbl> <dbl>
## 1 a 1 4
## 2 a 1 5
## 3 a 1 6
## 4 a 2 4
## 5 a 2 5
## 6 a 2 6

(One more note. Because each key value appears in both tables, full_join, left_join,

and right_join all give the same result.)

13.5 Defining the factors that make up keys

So far we have been specifying the key to use in the join. However, by default all the join

commands will try to work out for themselves what variable (or variables) to use as the

key. In this case R will report what variables it tried to use for the join.

Natural joins

For instance, we can try to bring together the flights table and weather table.
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flights2 %>% left_join(weather) %>% select(-tailnum)

## Joining, by = c("year", "month", "day", "hour", "origin")

## # A tibble: 336,776 x 17
## year month day hour origin dest carrier temp dewp
## <dbl> <dbl> <int> <dbl> <chr> <chr> <chr> <dbl> <dbl>
## 1 2013 1 1 5 EWR IAH UA 39.0 28.0
## 2 2013 1 1 5 LGA IAH UA 39.9 25.0
## 3 2013 1 1 5 JFK MIA AA 39.0 27.0
## 4 2013 1 1 5 JFK BQN B6 39.0 27.0
## 5 2013 1 1 6 LGA ATL DL 39.9 25.0
## 6 2013 1 1 5 EWR ORD UA 39.0 28.0
## 7 2013 1 1 6 EWR FLL B6 37.9 28.0
## 8 2013 1 1 6 LGA IAD EV 39.9 25.0
## 9 2013 1 1 6 JFK MCO B6 37.9 27.0
## 10 2013 1 1 6 LGA ORD AA 39.9 25.0
## # ... with 336,766 more rows, and 8 more variables:
## # humid <dbl>, wind_dir <dbl>, wind_speed <dbl>,
## # wind_gust <dbl>, precip <dbl>, pressure <dbl>,
## # visib <dbl>, time_hour <dttm>

Success! The join naturally used �ve variables as the key in order to determine which

observations were the same. It was able to bring in all the variables from weather that

way. This is called a natural join.

Di�erently named keys

Sometimes a key in one table will have a di�erent name in another table. For instance, in

the flights there is a variable dest that is the three letter code for the airport. In the

airport, the name of the airport is listed by three letter code under the variable faa.

This type of situation can be handled within the by parameter using the following syntax.

flights2 %>%
left_join(airports, by = c("dest" = "faa")) %>%
select(origin:name, -carrier)

## # A tibble: 336,776 x 4
## origin dest tailnum name
## <chr> <chr> <chr> <chr>
## 1 EWR IAH N14228 George Bush Intercontinental
## 2 LGA IAH N24211 George Bush Intercontinental
## 3 JFK MIA N619AA Miami Intl
## 4 JFK BQN N804JB <NA>
## 5 LGA ATL N668DN Hartsfield Jackson Atlanta Intl
## 6 EWR ORD N39463 Chicago Ohare Intl
## 7 EWR FLL N516JB Fort Lauderdale Hollywood Intl
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## 8 LGA IAD N829AS Washington Dulles Intl
## 9 JFK MCO N593JB Orlando Intl
## 10 LGA ORD N3ALAA Chicago Ohare Intl
## # ... with 336,766 more rows

13.6 Merge

It should be noted that the base function merge can accomplish the same tasks as in-
ner_join, left_join, right_join, and full_join. The syntax uses the parameters all.x and

all.y to determine which keys should be added.

Tidyverse Base R

inner_join(x, y) merge(x, y)

left_join(x, y) merge(�ights2, airlines, all.x = TRUE)

right_join(x, y) merge(�ights2, airlines, all.y = TRUE)

full_join(x, y) merge(�ights2, airlines, all.x = TRUE, all.y = TRUE)

So why learn the tidyverse equivalents? Two main reasons.

• As is often the case, the tidyverse functions tend to be much faster in practice.

• Their naming conforms more closely to the commands in SQL, making that language

easier to learn later.
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Filterating joins and set operations

Summary There are two more types of joins that are used when we only want to

look at observations from one data set for a restricted set of keys. Unlike the earlier

joins, these do not add data from the second table, instead, only the observations from

the �rst table are kept.

Combining tables

semi_join Keeps observations where the key appears in the second table.

anti_join Keeps obs. where the key does not appear in the second table.

Another type of operation is set operations where the variables for both tables are

the same, and a new relation is formed which is either the union, intersection, or set

di�erence of the observations.

Combining tables

union Brings together all observations.

intersect Keeps observations in both tables.

setdi� Keeps observations in �rst table but not in second.

Two useful commands in base R:

Grabbing observations

head Takes the �rst few observations in a data table.

intersect Takes the last few observations in a data table.

Recall that a primary key for a relation tells us a set of variables such that knowing the

values for those variables uniquely identi�es the observation.

That is, a primary key only appears once in the set of observations.
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14.1 Joining over observations

In an inner join, the matching keys are used to add columns of data from one table to

another. But sometimes we are not interested in keeping the new data, we just want to

know which of the rows appear in the other table.

As an example of this, suppose we have discovered which destinations had the most

�ights from New York.

top_dest <- flights %>%
count(dest, sort = TRUE) %>%
head(10)

top_dest

## # A tibble: 10 x 2
## dest n
## <chr> <int>
## 1 ORD 17283
## 2 ATL 17215
## 3 LAX 16174
## 4 BOS 15508
## 5 MCO 14082
## 6 CLT 14064
## 7 SFO 13331
## 8 FLL 12055
## 9 MIA 11728
## 10 DCA 9705

Suppose that we want to �lter out those �ights that have only these ten as destinations.

If we have just one variable, we could easily build a �lter, unfortunately, that becomes

di�cult as soon as more than one variable is involved.

Instead, we can use the semi_join function. This is like an inner join in that it only

keeps observations that have a key that appears in both tables, but it does not add the

second table’s data to the �rst. For instance:

flights %>%
semi_join(top_dest)

## Joining, by = "dest"

## # A tibble: 141,145 x 19
## year month day dep_time sched_dep_time dep_delay
## <int> <int> <int> <int> <int> <dbl>
## 1 2013 1 1 542 540 2
## 2 2013 1 1 554 600 -6
## 3 2013 1 1 554 558 -4
## 4 2013 1 1 555 600 -5
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## 5 2013 1 1 557 600 -3
## 6 2013 1 1 558 600 -2
## 7 2013 1 1 558 600 -2
## 8 2013 1 1 558 600 -2
## 9 2013 1 1 559 559 0
## 10 2013 1 1 600 600 0
## # ... with 141,135 more rows, and 13 more variables:
## # arr_time <int>, sched_arr_time <int>, arr_delay <dbl>,
## # carrier <chr>, flight <int>, tailnum <chr>, origin <chr>,
## # dest <chr>, air_time <dbl>, distance <dbl>, hour <dbl>,
## # minute <dbl>, time_hour <dttm>

On the other hand, anti_join only keeps keys that do not appear in the other table. This

lets us know which keys are missing from the �rst table.

flights %>%
anti_join(planes, by = "tailnum") %>%
count(tailnum, sort = TRUE)

## # A tibble: 722 x 2
## tailnum n
## <chr> <int>
## 1 <NA> 2512
## 2 N725MQ 575
## 3 N722MQ 513
## 4 N723MQ 507
## 5 N713MQ 483
## 6 N735MQ 396
## 7 N0EGMQ 371
## 8 N534MQ 364
## 9 N542MQ 363
## 10 N531MQ 349
## # ... with 712 more rows

Anti-joins provide a nice reality check that the variable that we think is a key is actually

a key for both tables.

14.2 Set operations on tables

Recall that A is a set if for any x, the statement x ∈ A evaluates to be either true (T) or

false (F).

Many operations on sets can be reduced to logic, so it is useful to have notation for

logical operations.

In some cases we are dealing with two tables that have exactly the same set of variables,

and we are interested in combining the two tables, or only dealing with information that is

one table but not the other. In this case we can use set operations.
First, let’s review the common set operations.
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De�nition 52
Given sets A and B the union of the two sets is {c : c ∈ A or c ∈ B}. Write A ∪B for

the union of two sets.

Note that or here means the same as logical or, and so is true if one or the other or both

are true.

De�nition 53
Given sets A and B, the intersection of the two sets is {c : c ∈ A and c ∈ B}. Write

A ∩B, AB, or A,B to mean the intersection of A and B.

Again we are using logical and here, so an element is in the intersection of A and B if it

is in both A and B.

De�nition 54
Say that x is in the complement of A if x /∈ A.

Finally, we have the set di�erence.

De�nition 55
The set di�erence between A and B is those elements that are in A but not in B. So

{c : c ∈ A and c /∈ B}. Write A \B.

We can represent these operations pictorially using a Venn Diagram where set A is on

the left, and set B is on the right.

A ∪B A ∩B A \B

So given two tables that each are a set of n-tuples (observations) over the same variables,

we can think about taking the union, intersection, and set di�erence of these using the

appropriate functions.

• union includes observations from both tables.

• intersect includes observations that appear in both tables.

• setdi� includes observations in the �rst table that do not appear in the second table.

Let’s whip up an example.
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df1 <- tribble(
~x, ~y,
"red", "beta",
"green", "gamma"

)
df2 <- tribble(

~x, ~y,
"red", "beta",
"yellow", "alpha"

)

First we try out union:
union(df1, df2)

## # A tibble: 3 x 2
## x y
## <chr> <chr>
## 1 red beta
## 2 yellow alpha
## 3 green gamma

Next intersect

intersect(df1, df2)

## # A tibble: 1 x 2
## x y
## <chr> <chr>
## 1 red beta

Finally setdi�

setdiff(df1, df2)

## # A tibble: 1 x 2
## x y
## <chr> <chr>
## 1 green gamma

It should also be noted that the union command is intended to remove any duplicates

that appear.
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Strings

Summary A string is an ordered list of symbols. The stringr package contains the

tools for dealing with strings in the tidyverse.

String commands

str_length Returns the number of symbols in the string.

str_c Combines two or more strings into a single string.

str_replace_na Replaces a missing value NA with the string "NA".

str_to_upper Makes all the characters in a string uppercase.

str_to_lower Makes all the characters in a string lowercase.

str_sub Pull out part of a missing string.

A regular expression or regex is a sequence of characters used to look for patterns

in strings. In R, these expressions can become quite complicated, as they form a

particular type of language called a *regular language*.

When I was a kid one of my favorite activities was getting all of the Christmas lights

out from storage and untangling the giant blob that it had formed itself into. These are

typically called a string of Christmas lights.

In general, to string something together is to place items on a string, in a particular

order. Computer scientists starting using the term almost as early as the �rst digital

computers appeared. In 1944, in Recursively enumerable sets of positive integers and their
decision problems (h�p://www.ams.org/journals/bull/1944-50-05/S0002-9904-1944-08111-1/
S0002-9904-1944-08111-1.pdf) we �nd the quote

For working purposes, we introduce the letter b, and consider strings of 1’s and b’s such as
11b1bb1.

By 1958 A Command Language for Handling Strings of Symbols, the word string became

pretty much how we view it today.
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De�nition 56
A string is an ordered list of symbols from some alphabet.

R fact 9
To indicate a string in R, enclose the symbols with either single quotes (’) or double

quotes (").

s1 <- ’This is a string.’
s2 <- "So is this."

print(s1)

## [1] "This is a string."

print(s2)

## [1] "So is this."

Note that whether you created it with the single quotes or the double quotes, when it

prints out it always uses the double quotes. Note that if you want to include a double quote

character (“) inside your string, you should use single quotes on the outside. Similarly, if

you want to include a single quote character (’) inside your string, you shoudl use double

quotes on the outside.

s3 <- "This is a string with an inside ’word’."
s4 <- ’This contains a "quote" in quotes.’

print(s3)

## [1] "This is a string with an inside ’word’."

print(s4)

## [1] "This contains a \"quote\" in quotes."

Notice that for s4, the " inside the string was represented as \¨. This is called an escape
character. To actually see the quote, we can use the writeLines function.

writeLines(s4)

## This contains a "quote" in quotes.
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De�nition 57
An escape character in a string is a backslash \followed by a symbol. Together they

have a di�erent meaning inside a string.

Escape characters in R

\’ single quote

\" double quote

\n newline

\t tab character

\u begin unicode character

If you use \u, you can follow it with the hexadecimal representation of a Unicode symbol.

For instance, to get the degrees symbol, use:

"\u00b0"

## [1] "°"

15.1 Helpful string functions

R has some built in commands for dealing with strings, but as usual, we will use the

tidyverse alternates. Most of these start with str_, which makes them a bit easier to

remember. And if you don’t remember them in RStudio, you can just start typing str_ and

let autocomplete do its thing.

A simple command to �nd the length of a string is str_length:

str_length("abc")

## [1] 3

str_length("")

## [1] 0

Combining two strings to make one long string has a special name: we call it concatena-
tion.

De�nition 58
String concatenation is a binary operator that takes two strings s1 and s2 and forms

a new string s3 such that the �rst #(s1) characters in s3 match s1 and the last #(s2)
characters of s3 matches s2. This is written s1s2 or sometimes s1 + s2.

The concatenation of two sets of strings S1 and S2 consists of

S3 = {s1s2 : s1 ∈ S1, s2 ∈ S2}.
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In other words, the concatenation of two sets of strings consists of all the possible ways

of concatenating a string from the �rst set with a string from the second set.

Example 5
If S1 = {”a”, ”bt”} and S2 = {”cd”, ”ac”, ”bd”} then

S1S2 = {”acd”, ”aac”, ”abd”, ”btcd”, ”btac”, ”btbd”}.

In the tidyverse, the string concatenation function is str_c.

str_c("a", "b", "c")

## [1] "abc"

str_c("Cold", " ", "Fusion")

## [1] "Cold Fusion"

Note that combining doesn’t work with missing values.

str_c("a", NA, "c")

## [1] NA

If we want to convert a missing value NA to a string so that we can combine it, we use

the str_replace_na command.

x <- NA
str_c("a", str_replace_na(x), "c")

## [1] "aNAc"

The str_c command is vectorized. If you combine a short vector with a long vector, the

elements of the short vector will get used as often as necessary to �ll the long vector.

str_c(c("bad", "jump", "coward", "find"), c("ly", "ing"))

## [1] "badly" "jumping" "cowardly" "finding"

Making uppercase and lowercase

Often we wish to convert strings to entirely upper or lower case. The functions

str_to_upper and str_to_lower take case of this for us.

157 400



Mark Huber Notes on the Foundations of Data Science

test <- c("aBC", "d3&")
str_to_upper(test)

## [1] "ABC" "D3&"

str_to_lower(test)

## [1] "abc" "d3&"

The str_to_title capitalizes the �rst letter of each word.

str_to_title("And another one bites the dust")

## [1] "And Another One Bites The Dust"

Di�erent languages have di�erent rules for changing from lower to upper case. As

always, our friendly locale parameter is there to help out.

str_sub
You can get part of a string with str_sub. The start and end arguments tell the position of

the characters to get from the string.

colors <- c("red", "green", "blue")
str_sub(colors, 2, 4)

## [1] "ed" "ree" "lue"

If you use negative numbers, then it counts from the end. So to get the last letter of each

string:

str_sub(colors, -1, -1)

## [1] "d" "n" "e"

We can also use str_sub to assign a subset of a string to be a value. For instance, if you

forget about str_to_title, to make the �rst letter of each word uppercase you can use:

str_sub(colors, 1, 1) <- str_to_upper(str_sub(colors, 1, 1))
colors

## [1] "Red" "Green" "Blue"
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Sorting

We can use str_sort (or str_order) to put strings in alphabetical order. As with the upper

and lower case commands, you can use the locale parameter to ensure that you are sorting

according to the correct alphabet. For instance, in the Hawaiian alphabet vowels come

�rst, then consonants.

greek <- c("beta", "alpha", "iota", "gamma")
str_sort(greek)

## [1] "alpha" "beta" "gamma" "iota"

str_sort(greek, locale = "haw")

## [1] "alpha" "iota" "beta" "gamma"

15.2 Searching within strings: finite automata

The next major task we consider is how to search for a pattern within a string. The major

rule that we want to enforce (in order to be e�cient) is that the string can only be read

through once. That is, at each step of our procedure, we get the next character in the

string that we are searching and we are unable to look at previous characters once we have

moved on.

The following is a picture representation of how we would search a string for the pattern

“ab”.

""start "a" "ab"

¬a

a

¬b

b

As the diagram indicates, we start in the "" state. Then we examine the �rst character

of a string. If it is not an a character, then we return to the "" state. But if it is an a, then

we move to the "a" state. Next we look at the next character. If it is a b, then we move to

the "ab" state, which is a success!

For that reason, we call "ab" a �nal state.

Example 6
If the input string to the above example was "cdagabh", then the set of states the

�nite automata visits would be:

"", "", "", "a", "", "a", "ab",

and then it would stop.
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Because there are a �nite number of states, this is called a �nite automata. Formally, a

�nite automata consists of the states and the rule that tells us how to move from state to

state based on the alphabet.

De�nition 59
A �nite automaton consists of a set of states S, an initial state s ∈ S, an alphabet for

the input string A, a set of �nal states F ⊆ S, and a rule r : S × A → S that tells us

given the state and the next symbol on the input string, to which state we must move

next.

A �nite automata is a type of computer. For instance, the following �nite automata can

parse the answer to 1 + 1, 1 + 2, 2 + 1, or 2 + 2.

sstart 1

2

1+

2+

2

3

4f

1

2

+

+

1

2

1

2

Here the rule is if anything other than the listed symbols appear, move back to node f
for fail. For instance, if the next symbol from state 1 is anything other than a + symbol,

we fail.

This automata does simple addition, but because there are only a �nite number of states,

it cannot add all integers. We could make this more complex, but no matter how many

states we added, it still could not possible implement addition for all of the integers. This

is why programming languages such as R have NaN (not a number) types. If a number

gets too big (or too small), R will simply output its generic fail message: NaN.

There are patterns that a �nite automata can �nd and patterns that it cannot. In the

1950’s, a mathematician named Stephen Kleene proved that �nite automata can parse

regular expressions using a regular language. This language is di�erent from any that

we have seen so far, and is a very compact but powerful method for describing a �nite

automata using strings.

Next time we will go into detail about the regular expressions that R can parse.
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Regular expressions

De�nition 60
Regular expressions (aka regex aka regexp) is a sequence of characters that de�ne a

search pattern within strings.

Regular expressions have been around almost as long as the digital computer as they

were invented in the 1950’s. Stephen Kleene formalized their description using the notion

of a regular language, which is quite di�erent form the languages we have used so far.

These expression have the same computing power as a machine that has a �nite set of

states that responds to inputs. That makes them weaker than a Turing machine (which has

an in�nite memory), but more powerful than computers with no memory at all that only

collate input as it comes in.

Regular expressions became widely used in the Unix operating system. The grep com-

mand (which stands for global regular expression print) became a signature feature of

the Unix system.

The simplest kind of regular expression is just a string of alphanumeric characters. We

have a match whenever that string is found as a substring of any of our set of strings. For

instance, the regex ta applied to the names of the greek variable from earlier would

match in the following way:

beta alpha iota gamma.

In R, you can use the str_view function (which uses the package htmlwidgets) to look

at how these regular expressions work. Consider the following set of strings:

greek <- c("alpha", "beta", "gamma", "iota")

Matching "ta" to this with str_view(greek, regex("ta")) gives

alpha, beta, gamma, iota
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Note that "ta" is a string, while regex("ta") is a regular expression. A regular expression

can be represented using characters, but we will not put quotes around them. In other

words, the string "ta" is transformed by regex into the regular expression ta.

Regular expressions have a wildcard character that matches any symbol in the string.

De�nition 61
The wildcard symbol . matches any character in a regular expression.

To match a followed by any symbol, we would use the regular expression a., which on

the set of strings in greek gives

alpha, beta, gamma, iota.

Escape characters and ge�ing a backslash in a regular expression

That raises the question, how do we match a period in our string, if we are using the period

as the wildcard character? The answer is to use an escape character \. anytime you want

to match a period. So \. is a regular expression that matches a period, while . is a regular

expression that matches any character.

But this raises another question, what should the string s be so that regex(s) gives us

\. as our regular expression? Inside the string, we have to use its escape character. So to

get \. as a regular expression, we use regex("\\.").

In our examples, the expression was matched in any part of the string. In order to anchor
the expression to the beginning of the string or the end, use ^ to anchor to the beginning,

and $ to anchor to the end of the string. For instance, "^a" gives

alpha, beta, gamma, iota,

while ".a$" gives

alpha, beta, gamma, iota,

If you want the entire string to match the regex exactly, anchor it to both ends. So

"^..t." gives

alpha, beta, gamma, iota,

Characters that match several symbols

We saw that . matches anything (except newline). There are other ways to match more

that one, but not all, characters.
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pattern matches

\d any digit

\s any whitespace such as space, tab, and newline

[abc] Matches a or b or c.

[^abc] Matches any character except a, b, c.

[a-z] Matches any lower case in the Roman alphabet.

[A-Z] Matches any upper case character in the Roman alphabet.

An important note: remember that inside a regular expression, (which is itself a string)

you need to write \\ to get a single \. So you would put something like \\d for the

wildcard for a digit.

The bracket notation also gives another way of �nding wildcard characters. So use [.]
to search for . in a string. This works for

$ .| ?* + ( ) [ {

but not

] \ ^ -

There is something similar to logical or. In the context of regular expressions, it is called

alternation.

De�nition 62
If p and q are regular expressions, then p|q is the regular expression that matches either

p or q. This is called alternation.

Parenthesis

There is an order of operations with regular expressions, but whenever things become

unsure or confusing, feel free to add parenthesis to make things clear. For instance,

gr(e|a)y

matches either grey or gray.

Repetition

Next we look at how to control how many times a particular expression appears in a string.

The default is exactly one. This can be modi�ed using ?, +, or *,
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modi�er number of pattern matches

? either no times, or exactly once

+ at least once

* zero or more times

{n} exactly n
{n,} at least n
{,m} at most m
{n,m} at least n and at most m

For instance colou?r matches both color and colour.

The * notation turns out to be very useful in theoretical computer science. It is named

for the mathematician mentioned earlier who formalized regular expressions, Stephen

Kleene.

De�nition 63
The Kleene star is a unary operator on sets of strings. Given a set of strings S, let S∗

be the smallest set such that the empty string is in S∗, each s ∈ S is in S∗, and for any

s1, s2 ∈ S, the string concatenation of s1 and s2 is in S.

Example 7
Let S = {s}where s = {"abc"}. Since s ∈ S, the concatenation of swith itself (which

is "abcabc") is also in s∗. So is $s4 concatenated with itself three times, and so on.

Hence

S∗ = {"","abc","abcabc", . . .}.

When allowing for repeated expressions, the default behavior is greedy, which means

that it will try to match as long as possible a string. You can alter this behavior to lazy by

putting a ? after the expression.

So C{2,3} matches to MDCCCLXXXVIII, while C{2,3}? matches

MDCCCLXXXVIII.

Repeating wildcard matches

Parenthesis do more than group expressions. Consider an expression of the form (p)(q).

Then the reference for (p) is 1, since that parenthetical expression appeared �rst, while the

reference for (q) is 2 since that appeared second. (We could have had more parenthesis if

we wanted to.)

If a particular string of letters matches p, then from now on \1 will only match that

same string of numbers. So what can we do with that?

Suppose I am interested in discovering strings where the same two letter combination

appears twice. For instance, in banana, an appears twice, as does pa in papaya. Then

we can use (..) to match the �rst group of two letters. To catch words like this, use the

regular expression
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(..)\\1

which says: accept any two characters, then accept only the same two characers imme-

diately after. On the fruit list of words from the rcorpora package gives

banana coconut cucumber jujube papaya salal berry

16.1 Finite Autotomata for regular expressions

Now let’s consider how these regular expressions translate into �nite automata. We have

any seen how to form the automata for any given string. For instance, the automata for

"bet" is

""start "b" "be" "bet"

¬a

b

¬e

e

¬t

t

Here "bet" is the only �nal node. If we wished to replace the "e" in "bet" with "."
that is easy, simply allow any character in its place.

""start "b" "be" "bet"

¬a

b .

¬t

t

Consider "be+t" = "bee*t"? For instance,

beta,beeeta,bta.

This means that the letters be must appear followed by an arbitrary number of e’s followed

by a t. We can use a directed cycle in the graph of the �nite automata to depect a Kleene

star.

De�nition 64
A directed graph consists of nodes V connected by edgesE. Each edge inE is a 2-tuple

of nodes.

165 400



Mark Huber Notes on the Foundations of Data Science

Example 8
For instance, we might have nodes V = {A,B,C}, and edges E =
{(A,B), (B,A), (B,C), (C,A)}. This can be drawn as follows.

A

B

C

De�nition 65
A directed cycle is a n-tuple of nodes v1, . . . , vn where n ≥ 2, v1 = vn, and for each

i ∈ {1, . . . , n− 1}, there is a directed edge from vi−1 to vi. The length of the cycle is

n− 1.

Example 9
In the last graph example, (A,B,A) is a cycle of length 2 and (A,B,C,A) is a cycle of

length 4.

For the Kleene star regular expression e∗, the cycle is short, of length 1. This looks like

""start "b" "be" "bet"

¬a

b

¬e

e

e

¬{e, t}

t

The length of the cycle will equal the length of the expression the Kleene star is applied

to. So for "b(abc)*t", the automata looks like:
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""start "b" "be" "bet"

"(a" "(ab"

¬a

b

¬e

e

¬{e, t}

t

a

b

¬b c

¬c

16.2 Nondeterministic finite automata

So far the �nite automata that we have been considering are called deterministic. Therefore

they are sometimes referred to as deterministic �nite automata, or DFA. From each state,

we receive our input character and move to a new state. A nondeterministic �nite automata,

or NFA gets two extra possiblities. First, it is possible in an NFA to stay at the current

state. Second, it is possible to move not to a single state but to two or more di�erent states

simulataneously.

To see why this ability might be useful, consider the regular expression with alternation:

(a|ab)∗c

When we �rst see the a character, it might be part of a repeating sequences of a’s, or a

repeating sequence of ab’s; those are the alternatives that are possible. Hence we need to

be able to travel to 2 di�erent possibilities in order to be able to tell if a path exists.

Astart

B

C D E

a

a

a

c

b

a

c
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To simplify the diagram, if an any state we encounter an input that does not lead to an

outgoing edge, the match returns to state A. Then E the �nal node that indicates a match.

What makes this an NFA is from A we see two outgoing nodes marked a. So in some

sense the automata takes both choices. The �nal NFA is a success (match) if there exists

some path from the start node A to the �nal node E.

To formally de�ne an NFA,

De�nition 66
The power set of a �nite set S, written 2S , consists of all subsets of S.

Example 10
If S = {1, 2, 3}, then

2S = {∅, {1}, {2}, {3}, {1, 2}, {1, 3}, {2, 3}, {1, 2, 3}}.

De�nition 67
A nondeterministic �nite automata (aka NFA) consists of a set of states S, an initial

state s ∈ S, an alphabet for the input stringA, a special symbol ε at means do not change

the state, a set of �nal states F ⊆ S, and a rule r : S × (A ∪ {ε}) → 2S that tells us

given the state and the next symbol on the input string, to which set of states we move

to next.

It turns out that all NFA’s can be converted to DFA’s, although the result might use a

number of nodes that is exponential in the size of the regular expression. In the case of the

NFA above, conversion is easy because after the �rst a, if the second character is a or b our

path is determined.
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Astart B

C

D E

F

a

a

b

a

c

c

a

b

Because the size of a DFA might be exponentially large in the size of the original regular

expression, a seemingly short regular expression might take exponential time to evaluate by

a computer! This is the basis for what are called regular expression denial-of-service attacks.
By feeding a program or service a regular expression that unpacks to be exponentially

large, a malicious user (or someone very clumsy) could bring a system to an e�ective halt

while it unpacks the query.

So you do have to be a bit careful using regular expressions!
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Using regular expressions

Summary Once we have a regular expression, there are multiple commands to detect

matches, count matches, replace matches, and extract matches.

Regular expressions and strings

str_detect Returns true or false if match found in string.

str_subset Returns strings from vector that have at least one match.

str_count Counts matches in a string.

str_extract Returns �rst match found in the string.

str_extract_all Returns all the matches found in the string.

str_locate Returns the start and ending characters of the �rst match.

str_locate_all Returns the start and ending characters of all matches.

str_match Gives the match broken into components.

str_match_all Gives all matches in a string broken up by component.

str_replace Replaces �rst match with a new string.

str_replace_all Replaces all matches with a new string.

seq_along Vector of numbers from 1 up to the length of the string.

There are two commands that are used to create vectors of strings.

Vectors of strings

apropos Searches everything in the Global Environment in R.

dir Lists �lenames in the working directory.

glob2rx Converts a glob pattern to a regular expression.

Now that we have regular expressions and all their wonderful �nite autotomata power,

how can we use them within R? We have seen that the function str_view in the package
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htmlwidgets can be used to view matches directly, but how do we include matches in a

program?

The str_detect function does exactly this task. If the string contains a match, then the

result is true. Otherwise, it is false.

As an example, consider four Greek letters written out as English words:

greek <- str_sort(c("beta", "alpha", "iota", "gamma"))
greek

## [1] "alpha" "beta" "gamma" "iota"

To match "et" to this:

str_detect(greek, "et")

## [1] FALSE TRUE FALSE FALSE

The output indicates that "beta" is the only output that contains exactly these two

letters in this order.

Anytime you use any numerical operation on values that are TRUE or FALSE, they

automatically get converted to 0 or 1. That means that when you use sum or mean on

the result of str_detect, it will calculate the total number of matches, or the percentage

number of strings that match respectively.

sum(str_detect(greek, "et"))

## [1] 1

mean(str_detect(greek, "et"))

## [1] 0.25

As usual in combinatorics, it is often easier to �nd the negation of something than the

original thing. For instance, the words data set is a collection of 980 common words in the

English language. Suppose that we want to �nd the words in this set that consists entirely

of consonants or y. This could be doable but challenging with a regular expression. An

easier approach is to �nd all words that do not contain a single a, e, i, o, or u and then use

! to negate this.

First to �nd words that do not contain a, e, i, o, or u:

# Find all words containing at least one vowel, and negate
no_vowels_1 <- !str_detect(words, "[aeiou]")
sum(no_vowels_1)
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## [1] 6

To �nd words that do consist of only consonants or y, we can use the following. Recall

that surrounding the regex with ˆ and $ makes it that we match the entire word. The ˆ
symbol inside the brackets is the negation symbol for regex: it means that we are matching

anything that is not a vowel, and the + after the brackets means that we are taking words

that consists of one or more consonants.

# Find all words consisting only of consonants (non-vowels)
no_vowels_2 <- str_detect(words, "^[^aeiou]+$")
sum(no_vowels_2)

## [1] 6

We can check if the two vectors are exactly the same with the identical function.

identical(no_vowels_1, no_vowels_2)

## [1] TRUE

Logical subsetting
Suppose that we want to pick out those words that do not have an a, e, i, o, or u. Then

we could use logical subsetting:

words[!str_detect(words, "[aeiou]")]

## [1] "by" "dry" "fly" "mrs" "try" "why"

This is a bit clunky however, so there is a command str_subset to avoid this construction:

str_subset(words, "^[^aeiou]+$")

## [1] "by" "dry" "fly" "mrs" "try" "why"

However, to use str_subset, we needed the direct version of the regex.
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Strings and tibbles
Oftentimes we are not dealing with strings in isolation, but rather in a tibble. Consider

the following tibble.

df <- tibble(
word = words,
i = seq_along(words)

)
df

## # A tibble: 980 x 2
## word i
## <chr> <int>
## 1 a 1
## 2 able 2
## 3 about 3
## 4 absolute 4
## 5 accept 5
## 6 account 6
## 7 achieve 7
## 8 across 8
## 9 act 9
## 10 active 10
## # ... with 970 more rows

The seq_along function is a variant of seq that generates a number from 1

up to the length of the argument. So in this case it is equivalent to i =
seq(1:length(words)).

Anyway, now suppose we want to search with the strings in the tibble variable words.

We can use str_detect within �lter to make this happen.

df %>% filter(!str_detect(words, "[aeiou]"))

## Warning: package ’bindrcpp’ was built under R version 3.5.2

## # A tibble: 6 x 2
## word i
## <chr> <int>
## 1 by 123
## 2 dry 249
## 3 fly 328
## 4 mrs 538
## 5 try 895
## 6 why 952
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Counting matches within a word
The function str_detect returns either TRUE or FALSE depending on whether or not

the string contains the regex. Sometimes we want more information, such as how many

times the string contains the regex. In this case, we can use str_count. Recall our set of

four Greek letters.

greek

## [1] "alpha" "beta" "gamma" "iota"

To count the number of times a appears in each letter, we use:

str_count(greek, "a")

## [1] 2 1 2 1

As always, we can use mutate to add the information obtained to a tibble.

df %>%
mutate(
aeiou = str_count(word, "[aeiou]"),
not_aeiou = str_count(word, "[^aeiou]")

)

## # A tibble: 980 x 4
## word i aeiou not_aeiou
## <chr> <int> <int> <int>
## 1 a 1 1 0
## 2 able 2 2 2
## 3 about 3 3 2
## 4 absolute 4 4 4
## 5 accept 5 2 4
## 6 account 6 3 4
## 7 achieve 7 4 3
## 8 across 8 2 4
## 9 act 9 1 2
## 10 active 10 3 3
## # ... with 970 more rows

A thing to note about the count is that matches never overlap. This goes back to our idea

of a regular expression as being equivalent to a �nite automata that never looks at previous

input. Once we have a match, everything resets to the begining, and we are starting over

from scratch. For instance if we match "aba" to string ababababa, we get
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ababababa

For instance:

str_count("ababababa", "aba")

## [1] 2

17.1 Extracting matches

The next step is to actually extract the matches when found. This can be illustrated with

the Harvard sentences data set (h�ps://en.wikipedia.org/wiki/Harvard_sentences) which

is a group of sentences intended to match the frequency of phenomes in English. It is

contained in the stringr in the variable sentences.

length(sentences)

## [1] 720

head(sentences)

## [1] "The birch canoe slid on the smooth planks."
## [2] "Glue the sheet to the dark blue background."
## [3] "It’s easy to tell the depth of a well."
## [4] "These days a chicken leg is a rare dish."
## [5] "Rice is often served in round bowls."
## [6] "The juice of lemons makes fine punch."

Let’s take a list of colors, and see which sentences contain at least one of these words.

A quick way of creating an or regex is to use the collapse parameter within str_c. This

takes a vector and strings and collapses it down to a single string, with the given separator

between the string. By using the separator character |, we immediately string for ‘regex‘.

For our colors:

colors <- c("red", "orange", "yellow", "green", "blue", "purple")
color_match <- str_c(colors, collapse = "|")
color_match

## [1] "red|orange|yellow|green|blue|purple"

The str_detect can �gure out which sentences contain colors, and then the str_extract
actually tells us which color it was.
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has_color <- str_subset(sentences, color_match)
matches <- str_extract(has_color, color_match)
head(matches)

## [1] "blue" "blue" "red" "red" "red" "blue"

Note that str_extract only returns the �rst match.

str_extract("The blue marker and the red marker", color_match)

## [1] "blue"

If we do want all of the matches, we can use str_extract_all. It returns the matches in

the form of a list, a data structure in R that we have not talked about yet. It is similar to an

n-tuple in that a list can contain items of di�erent variable types. In the example below,

the list contains two items which are vectors of di�erent lengths.

x <- c("The blue marker and the red marker", "green acres")
str_extract_all(x, color_match)

## [[1]]
## [1] "blue" "red"
##
## [[2]]
## [1] "green"

The matrix variable type in R can be more intuitive. If we set the parameter simplify to

TRUE, then the result will be placed into a matrix instead of a list.

str_extract_all(x, color_match,
simplify = TRUE)

## [,1] [,2]
## [1,] "blue" "red"
## [2,] "green" ""

Sometimes we do not want the match extracted, but we want to know where in the string

the match occurred. The str_locate and str_locate_all commands accomplish this.

str_locate(x, color_match)
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## start end
## [1,] 5 8
## [2,] 1 5

str_locate_all(x, color_match)

## [[1]]
## start end
## [1,] 5 8
## [2,] 25 27
##
## [[2]]
## start end
## [1,] 1 5

17.2 Keeping our matches

Alternatives can be used to determine entire words as well. Suppose that we want to try to

�nd the nouns in a sentence. Separating words is actually a fairly di�cult task (for instance,

“a lot” is actually one word), but a simple heuristic is to treat everything separated by a

space as a di�erent word.

Finding nouns is even more di�cult than �nding words, again a simple heuristic is to

look for words that follow a'',an’‘or “the”.

First, the regular expression:

noun <- "(a|an|the) ([^ ]+)"

Translated this means: look for a, an, or the, followed by a space, followed by a one or

more characters that are not a space. So stop at the next space.

Now let’s try this on sentences

has_noun <- sentences %>%
str_subset(noun) %>%
head(10)

has_noun %>%
str_extract(noun)

## [1] "the smooth" "the sheet" "the depth" "a chicken" "the parked"
## [6] "the sun" "the huge" "the ball" "the woman" "a helps"

Note that str_extract gives us the complete match, while str_match will give us each

component of the match in a matrix form.
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has_noun %>%
str_match(noun)

## [,1] [,2] [,3]
## [1,] "the smooth" "the" "smooth"
## [2,] "the sheet" "the" "sheet"
## [3,] "the depth" "the" "depth"
## [4,] "a chicken" "a" "chicken"
## [5,] "the parked" "the" "parked"
## [6,] "the sun" "the" "sun"
## [7,] "the huge" "the" "huge"
## [8,] "the ball" "the" "ball"
## [9,] "the woman" "the" "woman"
## [10,] "a helps" "a" "helps"

Just to emphasize, our regular expression is a poor grammarian: it picks up things like

“the smooth” which is an adjective, not a noun.

The extract function in tidyr works much the same way as str_match together with a

mutate. It �nd the data and pulls it out into a new column in the tibble.

tibble(sentence = sentences) %>%
extract(
sentence, c("article", "noun"), "(a|the) ([^ ]+)",
remove = FALSE

)

## # A tibble: 720 x 3
## sentence article noun
## <chr> <chr> <chr>
## 1 The birch canoe slid on the smooth planks. the smooth
## 2 Glue the sheet to the dark blue background. the sheet
## 3 It’s easy to tell the depth of a well. the depth
## 4 These days a chicken leg is a rare dish. a chicken
## 5 Rice is often served in round bowls. <NA> <NA>
## 6 The juice of lemons makes fine punch. <NA> <NA>
## 7 The box was thrown beside the parked truck. the parked
## 8 The hogs were fed chopped corn and garbage. <NA> <NA>
## 9 Four hours of steady work faced us. <NA> <NA>
## 10 Large size in stockings is hard to sell. <NA> <NA>
## # ... with 710 more rows

As with str_extract, there is a form str_match_all that pulls out all of the matches for

a given string.
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Replacing matches

The commands str_replace and str_replace_all �nd one (or all) matches, and then replace

them with the second argument to the command. For example:

x <- c("Apple", "Microsoft", "Google")
str_replace(x, "[AEIOUaeiou]", "-")

## [1] "-pple" "M-crosoft" "G-ogle"

str_replace_all(x, "[AEIOUaeiou]", "-")

## [1] "-ppl-" "M-cr-s-ft" "G--gl-"

We can use backreferences as part of the replacement. The following swaps the location

of the �rst and second word (as indicated by space.) Recall the regex “([^ ]+)” picks out

non-space characters until it �nds a space.

sentences %>%
str_replace("([^ ]+) ([^ ]+)", "\\2 \\1") %>%
head(5)

## [1] "birch The canoe slid on the smooth planks."
## [2] "the Glue sheet to the dark blue background."
## [3] "easy It’s to tell the depth of a well."
## [4] "days These a chicken leg is a rare dish."
## [5] "is Rice often served in round bowls."

17.3 Creating vectors of strings

There are a couple commands in R that create vectors of strings. These of course can

then be used with any of the commands we’ve learned to search out the strings that are

important.

The �rst such command is apropos which searches all of the variables in the Global

Environment in R. This can be used to �nd that function that you know contains a word,

but you cannot quite remember what it is.

apropos("extract")

## [1] "extract" "extract_" "extract_numeric" "extractAIC"
## [5] "model.extract" "str_extract" "str_extract_all"
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The second such command is dir, which creates a vector of strings where each string

is the �lename of a �le in the working directory. The pattern parameter takes a regular

expression and only returns those �lenames that match. For example:

head(dir(pattern = "\\.Rmd$"))

This returns any �les in the directory that contain “.Rmd” anywhere within the �lename.

17.4 When stringr is not enough

The package stringr contains a couple dozen of the most commonly used functions for

dealing with strings, but sometimes more �exibility is needed. At that point, you should

turn to stringi, which contains several hundred functions related to string operations.

The primary di�erence in calling functions from stringi is that the functions all begin

with stri_ instead of str_.
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Functions that create patterns

Summary There are other ways of using strings to match patterns.

Pattern matching

str_split Splits a string based upon a separator.

regex Treats a string as a regular expression.

glob2rx Converts a glob pattern for a �lename into a regular expression.

�xed Searches for a �xed set of bytes.

Not all tasks involving strings need the power of regular expressions to accomplish.

18.1 Spli�ing

Suppose that we want to take a string that uses a separator such as the space or | characters,

and break it into its component parts. Then we can use str_split to accomplish this. For

example:

sentences %>%
head(3) %>%
str_split(" ")

## [[1]]
## [1] "The" "birch" "canoe" "slid" "on"
## [6] "the" "smooth" "planks."
##
## [[2]]
## [1] "Glue" "the" "sheet" "to"
## [5] "the" "dark" "blue" "background."
##
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## [[3]]
## [1] "It’s" "easy" "to" "tell" "the" "depth" "of"
## [8] "a" "well."

The result is a list: a collection of varying data types. For instance the �rst element of

the list, denoted [[1]] is a vector of 8 strings, while [[5]] is a vector of 7 strings.

The str_ functions that return a list have a parameter simplify that can be set to TRUE

in order to make the result into a matrix.

sentences %>%
head(3) %>%
str_split(" ", simplify = TRUE)

## [,1] [,2] [,3] [,4] [,5] [,6] [,7]
## [1,] "The" "birch" "canoe" "slid" "on" "the" "smooth"
## [2,] "Glue" "the" "sheet" "to" "the" "dark" "blue"
## [3,] "It’s" "easy" "to" "tell" "the" "depth" "of"
## [,8] [,9]
## [1,] "planks." ""
## [2,] "background." ""
## [3,] "a" "well."

The shorter lines get �lled with empty strings to make every line of the matrix of equal

length. You can also set the maximum number of pieces.

fields <- c("Name: Huber: Mark", "Country: US: CA", "Age: 47")
fields %>% str_split(": ", n = 2, simplify = TRUE)

## [,1] [,2]
## [1,] "Name" "Huber: Mark"
## [2,] "Country" "US: CA"
## [3,] "Age" "47"

Note that after the �rst split since there are a max of two pieces, the remaining gets put

all in the second piece regardless of the presence or absence of another “:”.

The boundary helper function can also be used to divide things. Consider

x <- "This is a lot of monkeys. I find it a bit strange."

str_split will (without boundary) will include the period at the end of the �rst sentence

and the two spaces between monkeys.'' andI”.
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str_split(x, " ")[[1]]

## [1] "This" "is" "a" "lot" "of"
## [6] "monkeys." "" "I" "find" "it"
## [11] "a" "bit" "strange."

Splitting by words gives:

str_split(x, boundary("word"))[[1]]

## [1] "This" "is" "a" "lot" "of"
## [6] "monkeys" "I" "find" "it" "a"
## [11] "bit" "strange"

Although note that it does not recognize a lot'' ora bit” as single words.

18.2 Transforming other pa�ern types to regular expressions

Hidden behind the scenes (strings?) is a command regex. A string given as a regular

expression is automatically turned into one using the regex function. So

sum(str_detect(fruit, "berry"))

## [1] 14

is really the same as

sum(str_detect(fruit, regex("berry")))

## [1] 14

By explicitly putting in the regex function, you can modify how it transforms the string

into a regular expression.

• Setting ignore_case to TRUE means that the string will match either upper or lower

case forms.

str_replace(c("Apple", "Banana"), regex("a", ignore_case = TRUE), "-")

## [1] "-pple" "B-nana"

• For multiline strings, setting multiline to TRUE will allow ^ and $ to match the

beginning and end of each line rather than the entire string.
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x <- "Test 1\nTest 2\nTest 3"
str_extract_all(x, "^Test")[[1]]

## [1] "Test"

versus

str_extract_all(x, regex("^Test", multiline = TRUE))[[1]]

## [1] "Test" "Test" "Test"

• Regular expressions are terrible when they get long. The comments when set to

TRUE allow you to make comments. Spaces are ignored, as is everything after the #
symbol. To make a space actually part of things, it must be escaped with "
".

phone <- regex("
\\(? # optional opening parens
(\\d{3}) # area code
[)\\s-]? # optional closing parens, whitespace, or dash
(\\d{3}) # another three numbers
[\\s-]? # optional whitespace or dash
(\\d{3}) # three more numbers
", comments = TRUE)

str_match("514-791-8141", phone)

## [,1] [,2] [,3] [,4]
## [1,] "514-791-814" "514" "791" "814"

• Setting dotall to TRUE makes . match everything, included the newline character

\n.

Globs

We saw that all the �lenames in the working directory could be brought in using the

dir command. In fact, �lenames have their own pattern matching methods that are very

di�erent from regular expressions. These are called globs.

De�nition 68
A glob is a pattern matching system often used to match �lenames in a directory.

Commonly used wildcards are * for multiple unknown characters, and ? for a single

character.
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So for instance, *.Rmd is a glob that matches all �lenames that end in .Rmd
If you want to use a glob pattern in pattern, the function glob2rx converts a glob pattern

to a regular expression.

head(dir(pattern = glob2rx("*.Rmd")))

18.3 Fixed

Another way to match patterns is to use �xed. This function looks for a pattern that is a

given expression of bytes as a string. For instance

fruit %>% head(10) %>% str_replace(fixed("a"), "-")

## [1] "-pple" "-pricot" "-vocado"
## [4] "b-nana" "bell pepper" "bilberry"
## [7] "bl-ckberry" "bl-ckcurrant" "blood or-nge"
## [10] "blueberry"

Why use �xed rather than regex? In a word: speed. By only having to deal with the

simplest type of regular expression, �xed can be signi�cantly faster than regex.
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Factors

Summary Strings that are used to encode the values measured for a categorical vari-

able are called levels, and there are several functions designed to assist in modifying

the order and name of levels. Some of these are in base R, while others are in the

tidyverse package forcats

Factor and level commands

factor Give factor values and permissible levels.

unique Forms levels from unique data values.

fct_reorder Reorder the levels of a factor by one variable.

fct_reorder2 Reorder the levels of a factor by two variables.

fct_relevel Push level to end of the order.

fct_recode Rename levels

fct_collapse Combine levels.

fct_lump Combine all uncommon levels.

19.1 Factors

Recall that in tidy data, each column corresponds to a variable that is also known as a

factor. A factor is something that can be measured, and the values that each measure can

take on are called levels. Finally, categorical data only takes on a �nite set of values. The

month, blood type, and religion are typical examples of categorical variables.

De�nition 69
In tidy data, a variable can also be called a factor

De�nition 70
The values that a factor can take on are called levels.
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Suppose that we record our measurements using a string.

x1 <- c("Dec", "Dec", "Apr", "Jan")

There are couple problems with this. First it’s easy to make a typo that move us outside

of the set of months.

x2 <- c("Duc", "Dec", "Apr", "Jam")

Second, if we sort the values, they don’t sort the way we want as months, instead they

sort as strings.

sort(x2)

## [1] "Apr" "Dec" "Duc" "Jam"

To �x these problems, we can state explicitly what the possible levels are, and how to

sort them.

months <- c("Jan", "Apr", "Dec")

Now we explicity tell R that these are levels of a factor using the factor function.

y1 <- factor(x1, levels = months)
y1

## [1] Dec Dec Apr Jan
## Levels: Jan Apr Dec

Now sorting works

sort(y1)

## [1] Jan Apr Dec Dec
## Levels: Jan Apr Dec

and if we try to put in something wrong we get an NA value.

y2 <- factor(x2, levels = months)
y2

## [1] <NA> Dec Apr <NA>
## Levels: Jan Apr Dec
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For certain data sets, it is helpful to have the levels sorted by the order of their �rst

appearance in the data set. This can be accomplished by passing the output of the function

unique to the levels parameter.

f1 <- factor(x1, levels = unique(x1))
f1

## [1] Dec Dec Apr Jan
## Levels: Dec Apr Jan

19.2 Package forcats
The tidyverse package for dealing with factors and levels is forcats, which is an acronym

for categorical data sets. An acronym is an abbreviation formed from a subset of letters in a

phrase that is pronounced as a word. Often acronyms are formed from the initial letters of

a phrase. For instance, NORC means the National Opinion Research Centers and is based

at the University of Chicago. The other type of acronym that is not formed solely from the

initial letters in the phrase is less common, but still used. Examples include NORAD and

loran.

Speaking of NORC, they conduct something called the General Social Survey (h�p:
//gss.norc.org/) which has for many years has asked the US population about marriage,

age, race, income, religion, and other factors.

The forcats packages contains a variable gss_cat that is a small sample of the data

set from the year 2000.

gss_cat

## # A tibble: 21,483 x 9
## year marital age race rincome partyid relig denom tvhours
## <int> <fct> <int> <fct> <fct> <fct> <fct> <fct> <int>
## 1 2000 Never ma... 26 White $8000 to ... Ind,near r... Protesta... Souther... 12
## 2 2000 Divorced 48 White $8000 to ... Not str re... Protesta... Baptist... NA
## 3 2000 Widowed 67 White Not appli... Independent Protesta... No deno... 2
## 4 2000 Never ma... 39 White Not appli... Ind,near r... Orthodox... Not app... 4
## 5 2000 Divorced 25 White Not appli... Not str de... None Not app... 1
## 6 2000 Married 25 White $20000 - ... Strong dem... Protesta... Souther... NA
## 7 2000 Never ma... 36 White $25000 or... Not str re... Christian Not app... 3
## 8 2000 Divorced 44 White $7000 to ... Ind,near d... Protesta... Luthera... NA
## 9 2000 Married 44 White $25000 or... Not str de... Protesta... Other 0
## 10 2000 Married 47 White $25000 or... Strong rep... Protesta... Souther... 3
## # ... with 21,473 more rows

This is a tibble, so we can use our panopoly of commands to learn more about it.
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gss_cat %>%
ggplot(aes(relig)) +
geom_bar() +
coord_flip()
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Everything on the left hand side is a level for the factor relig. Suppose we want to

learn about the average age and average number of hours spent watching TV per day

across religions.

relig_sum <- gss_cat %>%
group_by(relig) %>%
summarize(

age = mean(age, na.rm = TRUE),
tvhours = mean(tvhours, na.rm = TRUE),
n = n()

)

relig_sum %>%
ggplot() +
geom_bar(aes(relig, tvhours), stat = ’identity’) +
coord_flip()
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19.3 Ordering the levels

In this case the order of the levels is not exactly helpful. So we want to reorder the factor

levels based on the TV hours viewed. The function fct_reorder accomplishes exactly this

task. For instance:

relig_sum %>%
ggplot() +
geom_bar(aes(fct_reorder(relig, tvhours), tvhours),

stat = ’identity’) +
coord_flip()
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It is much easier with this level ordering to see how much TV viewing hours in 2000

changed with religion.

The same reordering could have been accomplished by directly mutating the relig
factor as well.

relig_sum %>%
mutate(relig_bytv = fct_reorder(relig, tvhours)) %>%
ggplot() +

geom_bar(aes(relig_bytv, tvhours), stat = ’identity’) +
coord_flip()
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Note that a couple of these answers for religion are not like the others. For instance,

we have Don't know'',Other’‘, None'', andNo answer”. These of course are not

religions in an of themselves. We can move a level to the front of the line using the

fct_relevel command.

relig_sum %>%
mutate(relig_bytv = fct_reorder(relig, tvhours)) %>%
ggplot() +

geom_bar(aes(fct_relevel(relig_bytv, "No answer"),
tvhours), stat = ’identity’) +

coord_flip()
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The function fct_reorder2 can be useful when we are doing line plots in color. This

function lines up the lines so that they are ordered by the last value. This makes the lines

match up correctly with the labels in the legend, which makes the legend much easier to

read.

by_age <- gss_cat %>%
filter(!is.na(age)) %>%
count(age, marital) %>%
group_by(age) %>%
mutate(prop = n / sum(n))

ggplot(by_age, aes(age, prop, color = marital)) +
geom_line(na.rm = TRUE)
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ggplot(by_age, aes(age, prop,
color = fct_reorder2(marital, age, prop))) +

geom_line() +
labs(color = "marital")
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19.4 Changing the levels

It might be the case that we wish to change the actual names of the levels for clarity or for

a particular graphic. The fct_recode accomplishes this task. Consider:
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gss_cat %>% count(partyid)

## # A tibble: 10 x 2
## partyid n
## <fct> <int>
## 1 No answer 154
## 2 Don’t know 1
## 3 Other party 393
## 4 Strong republican 2314
## 5 Not str republican 3032
## 6 Ind,near rep 1791
## 7 Independent 4119
## 8 Ind,near dem 2499
## 9 Not str democrat 3690
## 10 Strong democrat 3490

There are three parties hiding in there: Republican, Independent, and Democratic.

However, the adjectives come before Republican and Democrat, and after Independent.

Moreover, each should be capitalized. We can �x these with a recode.

gss_cat %>%
mutate(partyid = fct_recode(partyid,
"Republican, strong" = "Strong republican",
"Republican, weak" = "Not str republican",
"Independent, near rep" = "Ind,near rep",
"Independent, near dem" = "Ind,near dem",
"Democrat, weak" = "Not str democrat",
"Democrat, strong" = "Strong democrat"

)) %>%
count(partyid)

## # A tibble: 10 x 2
## partyid n
## <fct> <int>
## 1 No answer 154
## 2 Don’t know 1
## 3 Other party 393
## 4 Republican, strong 2314
## 5 Republican, weak 3032
## 6 Independent, near rep 1791
## 7 Independent 4119
## 8 Independent, near dem 2499
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## 9 Democrat, weak 3690
## 10 Democrat, strong 3490

Because we did not mention some of the levels (for instance, “No answer”), that level

stayed exactly the same as before. We can also use fct_recode to combine several labels

into 1.

gss_cat %>%
mutate(partyid = fct_recode(partyid,
"Republican, strong" = "Strong republican",
"Republican, weak" = "Not str republican",
"Independent, near rep" = "Ind,near rep",
"Independent, near dem" = "Ind,near dem",
"Democrat, weak" = "Not str democrat",
"Democrat, strong" = "Strong democrat",
"Other" = "No answer",
"Other" = "Don’t know",
"Other" = "Other party"

)) %>%
count(partyid)

## # A tibble: 8 x 2
## partyid n
## <fct> <int>
## 1 Other 548
## 2 Republican, strong 2314
## 3 Republican, weak 3032
## 4 Independent, near rep 1791
## 5 Independent 4119
## 6 Independent, near dem 2499
## 7 Democrat, weak 3690
## 8 Democrat, strong 3490

If you wish to collapse multiple levels, an easier to read function to do so is fct_collapse.

Here we can give each new level a vector of old levels to collapse to.

gss_cat %>%
mutate(partyid = fct_collapse(partyid,
other = c("No answer", "Don’t know", "Other party"),
rep = c("Strong republican", "Not str republican"),
ind = c("Ind,near rep", "Independent", "Ind,near dem"),
dem = c("Not str democrat", "Strong democrat")

195 400



Mark Huber Notes on the Foundations of Data Science

)) %>%
count(partyid)

## # A tibble: 4 x 2
## partyid n
## <fct> <int>
## 1 other 548
## 2 rep 5346
## 3 ind 8409
## 4 dem 7180

If you don’t want to deal anything but the labels with the largest counts, the fct_lump
command does this.

gss_cat %>%
mutate(relig = fct_lump(relig)) %>%
count(relig)

## # A tibble: 2 x 2
## relig n
## <fct> <int>
## 1 Protestant 10846
## 2 Other 10637

The most important parameter here is n, which says how many groups we wish to end

up with.

gss_cat %>%
mutate(relig = fct_lump(relig, n = 10)) %>%
count(relig, sort = TRUE) %>%
print(n = Inf) # show all rows of the tibble.

## # A tibble: 10 x 2
## relig n
## <fct> <int>
## 1 Protestant 10846
## 2 Catholic 5124
## 3 None 3523
## 4 Christian 689
## 5 Other 458
## 6 Jewish 388
## 7 Buddhism 147
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## 8 Inter-nondenominational 109
## 9 Moslem/islam 104
## 10 Orthodox-christian 95

197 400



Chapter 20

Introduction to Structured Query
Language (SQL)

Summary SQL, Structured Query Language, is a way to draw out data from a

centrally maintained database. It is designed to be written to make command clear

while providing much of the same power for selecting and transforming data seen

earlier in the tidyverse. Because the tidyverse was written with SQL in mind, many

(but not all) of the functions have similar names.

SQL and tidyverse commands

SELECT select Select a subset of variables/factors.

WHERE �lter Choose observations meeting criteria.

ORDER BY arrange Order observations by a factor.

NULL NA Data that is missing or not available.

IS NULL is.na True if an variable value is NULL.

IS NOT NULL !is.na True if an variable value is not NULL.

& & Logical and.

OR | Logical or.

NOT ! Logical not.

AS mutate Create new variables from old ones.

LIKE str_extract Pick out observations involving strings.

LIMIT Only return the �rst few values found.

OFFSET Return few values skipping some as beginning.

In 1970, Edgar Frank Todd proposed that the data contained in a database should be

represented in the form of relations.

Following Todd’s idea, two researchers at IBM, Raymond Boyce and Donald Chamberlin
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developed the language SEQUEL to work with data stored in a relational database at IBM

called System R.

Apparently trademark issues intervened and so the name was shortened to SQL, which

stands for Structured Query Language.

Of course, this raised an interesting question: should the word SQL be pronounced as

the word “sequel”, or as an initialism, that is, “ess-que-ell . Lots of folks have weighed in

on this matter, including Chamberlin himself who still pronounces it”sequel“, and the ISO

standard where it is pronounced”ess-que-ell".

As mentioned, today SQL is an ANSI/ISO standard, but there are still several competing

versions of the language. Always be sure to download a reference to the version of the

dialect of the language you are expected to use, or you could end up with some nasty

surprises!

• SQL is often used by websites to access information from a database, making it

possible to quickly change the website without modifying the underlying code,

merely the data that drives it.

• A version which is quite popular is MySQL, which is distributed by Oracle. It has

an open source version which allows it to be downloaded and used for free.

• The version we will be using here is SQLite. This is also useable with R Markdown.

Instead of putting {r} in your code chunks to run R, we use {sql, connection
= db}, where db is the database we are accessing with our query.

We can set up an SQL database in R using the dbConnect function in the DBI package.

This uses a helper function SQLite that is part of package RSQLite
Much of what we can do with SQL we have already seen how to do in the tidyverse. The

format has changed, but the basic tasks remain the same.

20.1 Making a connection

The online platform data.world is a social media network for sharing data sets and their

analyses. Its name is its URL, that is, you can access it by going to data.world and setting

up a free account. To illustrate our commands, we will be using a data set on outcomes

from an Austin Animal Center from 2013 to 2017. This data can be found at h�ps://data.
world/cityofaustin/9t4d-g238.

The idea of using SQL is that the process of maintaining the data should be separate

from the process of analyzing the data. That way experts can deal with the problem of

storing millions, billions, or trillions of n-tuples (observations), while anyone can quickly

draw out the data they need for their analysis.

Much of this chapter follows the SQL tutorial from data.world that can be found at

h�ps://docs.data.world/documentation/sql
The �rst thing we need to do is to make a connection to our data set. For instance, suppose

we had a data set contained in the �le animals.sqlite under the data_output
directory. Then we could tell R to make a connection to that table with the dbConnect
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function. This connection function appears in the library DBI, and we will use the SQLite
function in the RSQLite library to connect to this type of SQL database.

library(DBI)
library(RSQLite)

## Warning: package ’RSQLite’ was built under R version 3.6.3

db <- dbConnect(SQLite(),
dbname = "data_output/animals.sqlite")

This is a bit di�erent than reading the database into memory, which is what something

like read_csv does. Instead, dbConnect leaves the data where it is, but opens up a pathway

to read the data as needed.

Inside the dbplyr package are commands for reading the database.

library(dbplyr)
src_dbi(db)

## src: sqlite 3.30.1 [E:\Dropbox\Work\books\Foundations_of_Data_Science\Foundations of Data Science\chapterssql\SQL\data_output\animals.sqlite]
## tbls: austin_animal_center_age_at_outcome, austin_animal_center_intakes,
## austin_animal_center_intakes_by_month, austin_animal_center_outcomes,
## austin_animal_center_outcomes_for_animal_type_and_subtype, sqlite_stat1,
## sqlite_stat4

We can see that this database contains four tables,

austin_animal_center_intakes
austin_animal_center_intakes_by_month
sqlite_state
sqlite_stat4

20.2 SELECT

Earlier we used select in the tidyverse to choose particular variable from a tibble. In

SQL, the SELECT command does exactly the same thing. If we wish to work with all the

variables, we use the glob wildcard character *.

Consider a data set of animals taken to an animal center in Austin, Texas. For R we

usually call our commands functions, for SQL we usually call them a query.

For instance, consider the following query.

SELECT name, intake_type
FROM austin_animal_center_intakes
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Table 20.1: Displaying records 1 - 10

name intake_type

Scamp Stray

Scamp Public Assist

Bri-Bri Stray

Tyson Public Assist

Jo Jo Public Assist

Oso Owner Surrender

Oso Public Assist

Dottie Stray

Manolo Owner Surrender

Manolo Owner Surrender

This returns the two requested variables from theaustin_animal_center_intakes
data set. Note that * serves as a wildcard here: so SELECT * FROM
austin_animal_center_intakes would return all variables.

Now, the SELECT and FROM commands were captialized in the previous commands.

Strictly speaking, this is not necessary, as SQL is case-insensitive. That is because SQL was

created in the days before it was common to allow upper and lower case within computer

commands. That being said, the modern convention in SQL is to capitalize keywords like

this. It turns out it helps greatly when reading the code to know the functions from the

parameters.

Suppose that we want to rename one or more of the variables. Then we can use the AS
keyword to change things in out output. The query.

SELECT name AS Name,
intake_type AS Type

FROM austin_animal_center_intakes

Table 20.2: Displaying records 1 - 10

Name Type

Scamp Stray

Scamp Public Assist

Bri-Bri Stray

Tyson Public Assist

Jo Jo Public Assist

Oso Owner Surrender

Oso Public Assist

Dottie Stray

Manolo Owner Surrender
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Name Type

Manolo Owner Surrender

This changes the name of the variables in the result to Name and Type respectively.

If you want to use more than one word for the titles, just use left-apostrophe to delineate

strings.

SELECT name AS Name,
intake_type AS ‘Intake Type‘

FROM austin_animal_center_intakes

Table 20.3: Displaying records 1 - 10

Name Intake Type

Scamp Stray

Scamp Public Assist

Bri-Bri Stray

Tyson Public Assist

Jo Jo Public Assist

Oso Owner Surrender

Oso Public Assist

Dottie Stray

Manolo Owner Surrender

Manolo Owner Surrender

Now suppose that we want to collect together all the di�erent types of animals. By

adding the keyword DISTINCT to the SELECT command, we collapse all the di�erent

results with the same data into one (compare to group_by. For instance,

SELECT DISTINCT animal_type
FROM austin_animal_center_intakes

Table 20.4: 5 records

animal_type

Dog

Cat

Other

Bird

Livestock
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This indicates that only �ve values appear in the column animal_type.

Once DISTINCT is invoked it only returns observations with unique values, no matter

how many columns you include. For instance, consider

SELECT DISTINCT animal_type,
sex_upon_intake,
age_upon_intake

FROM austin_animal_center_intakes

Table 20.5: Displaying records 1 - 10

animal_type sex_upon_intake age_upon_intake

Dog Neutered Male 10 years

Dog Neutered Male 7 years

Cat Intact Female 16 years

Dog Neutered Male 11 years

Dog Spayed Female 7 years

Dog Intact Male 3 years

Dog Spayed Female 2 years

Dog Neutered Male 9 years

Dog Spayed Female 1 year

Other Unknown 3 years

This returns 539 query results out of the original 75947 animal intakes. The very �rst

line is

Dog Neutered Male 10 years

which means that this particular combination will not be repeated in the table.

20.3 WHERE

For R we used filter to pick out rows satisfying certain characteristics, for SQL we use

WHERE to accomplish similar tasks.

For instance, suppose that we wish to list all animals in the data set that are cats. We

could use

SELECT year,
month,
count,
animal_type

FROM austin_animal_center_intakes_by_month
WHERE animal_type = "Cat"
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Table 20.6: Displaying records 1 - 10

year month count animal_type

2013 10 542 Cat

2013 11 436 Cat

2013 12 331 Cat

2014 1 335 Cat

2014 2 269 Cat

2014 3 353 Cat

2014 4 566 Cat

2014 5 901 Cat

2014 6 821 Cat

2014 7 881 Cat

Note that in SQL the logical equals operator is a single equals sign =, and not two equals

signs as in most languages.

20.4 ORDER BY

We used arrange to put rows in order by a speci�ed column. In SQL, the command is

just called ORDER BY, and uses alphabetical order.

For instance,

SELECT year,
month,
count,
animal_type

FROM austin_animal_center_intakes_by_month
WHERE animal_type = "Cat"
ORDER BY year, month

Table 20.7: Displaying records 1 - 10

year month count animal_type

2013 10 542 Cat

2013 11 436 Cat

2013 12 331 Cat

2014 1 335 Cat

2014 2 269 Cat

2014 3 353 Cat

2014 4 566 Cat

2014 5 901 Cat

2014 6 821 Cat
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year month count animal_type

2014 7 881 Cat

We can convert this to descending order by adding DESC to the command.

SELECT year,
month,
count,
animal_type

FROM austin_animal_center_intakes_by_month
WHERE animal_type = "Cat"
ORDER BY year DESC, month DESC

Table 20.8: Displaying records 1 - 10

year month count animal_type

2017 12 100 Cat

2017 11 427 Cat

2017 10 513 Cat

2017 9 656 Cat

2017 8 565 Cat

2017 7 669 Cat

2017 6 895 Cat

2017 5 914 Cat

2017 4 565 Cat

2017 3 353 Cat

20.5 NULL values and logical operators

The equivalent of NA in R is called NULL. By default, the ORDER BY command puts a

NULL value at the end. To put these values �rst, simple add NULLS FIRST at the end of

the ORDER BY line.

There are also logical operators in SQL, similar to those in R. The logical and is AND,

logical or is OR, and logical not is NOT.

If we wished to look at data for cats and dogs where either the type was a stray or an

owner surrender, we would use the following:

SELECT animal_type,
intake_type,
Intake_condition,
age_upon_intake
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FROM austin_animal_center_intakes
WHERE (animal_type = "Cat" OR animal_type = "DOG")

AND (intake_type = "Stray" OR intake_type = "Owner Surrender")

Table 20.9: Displaying records 1 - 10

animal_type intake_type intake_condition age_upon_intake

Cat Stray Normal 16 years

Cat Stray Normal 1 month

Cat Owner Surrender Normal 10 years

Cat Owner Surrender Normal 9 months

Cat Stray Normal 10 months

Cat Owner Surrender Sick 15 years

Cat Stray Normal 7 years

Cat Stray Normal 3 years

Cat Owner Surrender Normal 1 month

Cat Owner Surrender Normal 1 month

To check if a data value is null, we use the IS NULL expression. Similarly, to test if a

data value is not null, we use the IS NOT NULL expression.

We could use AND to �nd data between two values, or we could use BETWEEN. For

instance,

SELECT year,
month,
animal_type,
COUNT

FROM austin_animal_center_intakes_by_month
WHERE count BETWEEN 900 AND 2000
ORDER BY month

Table 20.10: Displaying records 1 - 10

year month animal_type count

2014 5 Cat 901

2014 5 Dog 966

2015 5 Cat 1009

2015 5 Dog 988

2016 5 Cat 921

2016 5 Dog 1020

2017 5 Cat 914
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year month animal_type count

2015 6 Cat 1103

2015 6 Dog 1014

2014 7 Dog 926

This �nds all data points with values between 900 and 2000 inclusive of the endpoints.

20.6 Transforming data

It often is the case that we wish to transform data when presenting it to the user. The

standard arithmetic operators +, -, *, and / behave exactly the way you would expect. For

instance, if I wanted to transform the age_in_days variable to years, I could use

SELECT monthyear,
animal_type,
outcome_type,
(age_in_days / 365) AS ‘Years Old‘

FROM austin_animal_center_age_at_outcome

Table 20.11: Displaying records 1 - 10

monthyear animal_type outcome_type Years Old

2014-03 Dog Return to Owner 6.668493

2014-12 Dog Return to Owner 7.454795

2015-11 Cat Return to Owner 16.252055

2015-03 Dog Return to Owner 11.972603

2015-04 Dog Return to Owner 7.638356

2014-09 Dog Return to Owner 2.668493

2014-01 Dog Euthanasia 2.002740

2014-01 Cat Euthanasia 15.013699

2014-01 Dog Return to Owner 3.005479

2014-01 Dog Return to Owner 2.013699

If I wanted to pull out all the data with age at least 8 years, and then sort by the age, I

could use

SELECT monthyear,
animal_type,
outcome_type,
(age_in_days / 365) AS ‘Years Old‘

FROM austin_animal_center_age_at_outcome
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WHERE (age_in_days / 365) > 8
ORDER BY age_in_days

Table 20.12: Displaying records 1 - 10

monthyear animal_type outcome_type Years Old

2014-02 Dog Return to Owner 8.002740

2015-01 Dog Return to Owner 8.002740

2015-05 Dog Return to Owner 8.005479

2014-01 Dog Transfer 8.005479

2014-02 Dog Return to Owner 8.005479

2014-02 Cat Euthanasia 8.005479

2014-02 Cat Euthanasia 8.005479

2014-03 Dog Euthanasia 8.005479

2014-03 Dog Return to Owner 8.005479

2014-03 Dog Euthanasia 8.005479

20.7 LIKE and NOT LIKE

Suppose we want to �nd all the data such that the breed ends with the word “wolfhound”.

To accomplish this (and similar tasks), we use the LIKE command.

The LIKE command uses two wildcards. The �rst wildcard is the percentage sign, %, and

stands in for any number of characters. So for example %testwould match unfairtest
or fair test, but not test case.

The other wildcard is the underscore symbol _, and matches a single character. So t_st
would match test or tkst, but not tests. You can use more than one _ if you want

more than one wildcard in your search.

For instance,

SELECT sex_upon_outcome,
outcome_type,
outcome_subtype,
breed

FROM austin_animal_center_outcomes
WHERE animal_type = "Dog"

AND breed LIKE "%wolfhound%"
ORDER BY monthyear

Table 20.13: Displaying records 1 - 10

sex_upon_outcome outcome_type outcome_subtype breed

Neutered Male Transfer Partner Irish Terrier/Irish Wolfhound
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sex_upon_outcome outcome_type outcome_subtype breed

Spayed Female Adoption NA Irish Wolfhound Mix

Neutered Male Transfer Partner Irish Wolfhound/Great Pyrenees

Neutered Male Adoption NA Irish Wolfhound Mix

Neutered Male Adoption NA Catahoula/Irish Wolfhound

Intact Female Return to Owner NA Irish Wolfhound/Great Dane

Neutered Male Transfer Partner Irish Wolfhound/Australian Shepherd

Neutered Male Return to Owner NA Irish Wolfhound Mix

Intact Male Return to Owner NA Irish Wolfhound Mix

Intact Female Transfer Partner Irish Wolfhound Mix

This query matches any name that contains “wolfhound” anywhere inside the text of

the breed.

20.8 OFFSET

For a table that is very large, a query could take a very large amount of time. The LIMIT
keyword allows you to limit the number of results obtained. So

SELECT DISTINCT animal_type,
sex_upon_intake,
age_upon_intake

FROM austin_animal_center_intakes
LIMIT 10

Table 20.14: Displaying records 1 - 10

animal_type sex_upon_intake age_upon_intake

Dog Neutered Male 10 years

Dog Neutered Male 7 years

Cat Intact Female 16 years

Dog Neutered Male 11 years

Dog Spayed Female 7 years

Dog Intact Male 3 years

Dog Spayed Female 2 years

Dog Neutered Male 9 years

Dog Spayed Female 1 year

Other Unknown 3 years

only returns t he �rst 10 rows o ut of 539.

What if we wanted values 11 through 20 instead of 1 through 10? We could just use

OFFSET 10 to get them. That is,
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SELECT found_location, intake_type
FROM austin_animal_center_intakes

LIMIT 10
OFFSET 10

Table 20.15: Displaying records 1 - 10

found_location intake_type

Austin (TX) Owner Surrender

1111 W 34Th St in Austin (TX) Public Assist

12705 Lamplight Village in Austin (TX) Wildlife

6103 Manor Rd in Austin (TX) Stray

2318 Post Oak Rd. in Travis (TX) Stray

Stassney & Westgate in Austin (TX) Stray

12900 Carillon Way in Manor (TX) Stray

Anderson Mill Rd And Olson Dr in Austin (TX) Stray

6720 Quinton in Austin (TX) Stray

Verbank Villa Dr & Ringsby Rd in Austin (TX) Stray

This table is rows 11 through 20 of the data. OFFSET 20 would give rows 21 through

30, and so on.

20.9 SQL versus the tidyverse

Our commands so far!

SQL tidyverse

SELECT select
WHERE �lter
ORDER BY arrange
DESC desc
NULL NA

= ==
AND &
OR |
NOT !
IS NULL is.na
IS NOT NULL !is.na
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Joining tables in SQL

Summary SQL was designed to use relational databases, and so has many commands

for drawing data from multiple tables.

Joining tables in SQL

JOIN Bring two tables together.

OUTER Modi�es ‘JOIN‘ to be an outer join.

LEFT Modi�es ‘OUTER‘ to be a left outer join.

UNION Union of observations from tables with

same variables.

INTERSECT Intersection of observations from tables

with same variables.

MINUS Set di�erence of observations from tables

with same variables.

Aggregating and grouping data can also be done in SQL.

Aggregation and groups in SQL

SUM Adds together the non NULL values.

COUNT Counts non NULL values.

AVG Averages non NULL values.

MIN Minimum of non NULL values.

MAX Maximum of non NULL values.

GROUP_CONCAT concatenate strings.

So far we have been working with one table (relation) at a time, but the point of having

more than one table is that we should have the ability to collect data from multiple tables

to get the report that we are after.
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Suppose our data is stored in an SQLite �le called data_output/sales.sqlite.

Then we can form a connection to that database using:

library(DBI)
library(RSQLite)
db <- dbConnect(SQLite(),

dbname = "data_output/sales.sqlite")

21.1 Inner Join

Recall that an Inner Join brings together those observations where a particular value of a

column is equal in both tables.

In the table sales_teams, each value of sales_agent appears only once, since

each agent is part of only one team. Therefore it is a key in this table.

SELECT sales_agent, manager
FROM sales_teams

Table 21.1: Displaying records 1 - 10

sales_agent manager

Anna Snelling Dustin Brinkmann

Cecily Lampkin Dustin Brinkmann

Versie Hillebrand Dustin Brinkmann

Lajuana Vencill Dustin Brinkmann

Moses Frase Dustin Brinkmann

Jonathan Berthelot Melvin Marxen

Marty Freudenburg Melvin Marxen

Gladys Colclough Melvin Marxen

Niesha Hu�nes Melvin Marxen

Darcel Schlecht Melvin Marxen

The table sales_pipeline tells us what deals a particular agent has in pipeline. In

this table each agent might be working on more than one deal at a time.

SELECT account, sales_agent
FROM sales_pipeline

Table 21.2: Displaying records 1 - 10

Account Sales_Agent

Cancity Moses Frase
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Account Sales_Agent

Isdom Darcel Schlecht

Cancity Darcel Schlecht

Codehow Moses Frase

Hatfan Zane Levy

Ron-tech Anna Snelling

J-Texon Vicki La�amme

Cheers Markita Hansen

Zumgoity Niesha Hu�nes

NA James Ascencio

So sales_agent is not a key in this table. Since it is a key in sales_teams, it

provides a foreign key for that table. This simplest kind of inner join can be accomplished

just by using the WHERE command.

SELECT sales_teams.manager,
sales_pipeline.sales_agent,
sales_pipeline.account

FROM sales_teams, sales_pipeline
WHERE (sales_pipeline.sales_agent = sales_teams.sales_agent)

AND sales_pipeline.deal_stage = "Won"

Table 21.3: Displaying records 1 - 10

manager Sales_Agent Account

Dustin Brinkmann Moses Frase Cancity

Melvin Marxen Darcel Schlecht Isdom

Melvin Marxen Darcel Schlecht Cancity

Dustin Brinkmann Moses Frase Codehow

Summer Sewald Zane Levy Hatfan

Dustin Brinkmann Anna Snelling Ron-tech

Celia Rouche Vicki La�amme J-Texon

Celia Rouche Markita Hansen Cheers

Melvin Marxen Niesha Hu�nes Zumgoity

Dustin Brinkmann Anna Snelling Bioholding

Let’s break down what happened.

• In FROM, we have two tables sales_teams and sales_pipeline. So we are

able to draw data from both.
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• In SELECT, we can now include variables from either sales_teams,

sales_pipline, or both. We use a tablename.variablename formulation

for such selections.

• In WHERE, we indicate how the join works by declaring which of the variables

from the two tables must be equal, AND and extra condition on data from one of

the tables.

The AS can be used to relabel the variables for extra readability. It can also be used to

relabel the tables. Note that although the AS in the FROM command relabels the tables,

we can use the relabels earlier in the SELECT command.

SELECT teams.manager,
pipeline.sales_agent AS agent,
pipeline.account

FROM sales_teams AS teams, sales_pipeline AS pipeline
WHERE (pipeline.sales_agent = teams.sales_agent)

AND pipeline.deal_stage = "Won"

Table 21.4: Displaying records 1 - 10

manager agent Account

Dustin Brinkmann Moses Frase Cancity

Melvin Marxen Darcel Schlecht Isdom

Melvin Marxen Darcel Schlecht Cancity

Dustin Brinkmann Moses Frase Codehow

Summer Sewald Zane Levy Hatfan

Dustin Brinkmann Anna Snelling Ron-tech

Celia Rouche Vicki La�amme J-Texon

Celia Rouche Markita Hansen Cheers

Melvin Marxen Niesha Hu�nes Zumgoity

Dustin Brinkmann Anna Snelling Bioholding

Using WHERE in this way to make a join works, but SQL does also have an explicit

JOIN command so we can separate conceptually the join from the �ltering condition. The

USING keyword then explicity tells us what variable to use in bring the tables together.

SELECT DISTINCT teams.manager,
pipeline.sales_agent AS agent,
pipeline.account

FROM sales_teams AS teams
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JOIN sales_pipeline AS pipeline USING (sales_agent)
WHERE pipeline.deal_stage = "Won"

Table 21.5: Displaying records 1 - 10

manager agent Account

Dustin Brinkmann Moses Frase Cancity

Melvin Marxen Darcel Schlecht Isdom

Melvin Marxen Darcel Schlecht Cancity

Dustin Brinkmann Moses Frase Codehow

Summer Sewald Zane Levy Hatfan

Dustin Brinkmann Anna Snelling Ron-tech

Celia Rouche Vicki La�amme J-Texon

Celia Rouche Markita Hansen Cheers

Melvin Marxen Niesha Hu�nes Zumgoity

Dustin Brinkmann Anna Snelling Bioholding

What if our foreign key had a di�ernt name in the second table? Then instead of using

USING, we would join the tables with ON which allows us to specify names.

SELECT DISTINCT teams.manager,
pl.sales_agent AS agent,
pl.account

FROM sales_teams AS teams
JOIN sales_pipeline AS pl
ON pl.sales_agent = teams.sales_agent

WHERE pl.deal_stage = "Won"

Table 21.6: Displaying records 1 - 10

manager agent Account

Dustin Brinkmann Moses Frase Cancity

Melvin Marxen Darcel Schlecht Isdom

Melvin Marxen Darcel Schlecht Cancity

Dustin Brinkmann Moses Frase Codehow

Summer Sewald Zane Levy Hatfan

Dustin Brinkmann Anna Snelling Ron-tech

Celia Rouche Vicki La�amme J-Texon

Celia Rouche Markita Hansen Cheers

Melvin Marxen Niesha Hu�nes Zumgoity

Dustin Brinkmann Anna Snelling Bioholding
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21.2 Outer Joins

Inner joins only return observations where the value for a particular column appears

in both tables. Outer joins return observations where the value for a particular column

appears at least once. For left outer joins the value has to appear in the left table, for

right outer joins it must appear in the right, and for full outer joins it could appear in

either table.

In SQL, OUTER is a keyword that modi�es JOIN, which can then be further modi�ed

by LEFT, RIGHT, or FULL.

For instance, to do a left outer join on the tables:

SELECT DISTINCT sales_teams.sales_agent AS agent,
sales_pipeline.deal_stage

FROM sales_teams
LEFT OUTER JOIN sales_pipeline
ON sales_teams.sales_agent = sales_pipeline.sales_agent

WHERE sales_pipeline.deal_stage = "In Progress"

Table 21.7: Displaying records 1 - 10

agent Deal_Stage

Anna Snelling In Progress

Cecily Lampkin In Progress

Versie Hillebrand In Progress

Lajuana Vencill In Progress

Moses Frase In Progress

Jonathan Berthelot In Progress

Marty Freudenburg In Progress

Gladys Colclough In Progress

Niesha Hu�nes In Progress

Darcel Schlecht In Progress

A left outer join is appropriate here since we are not interested in all of the sales agents,

only those that have a deal at some stage.

The use of right outer joins is rare: of course any right outer join can be written as a left

outer join simply by swapping the order of the two tables. As of 2019-03-22, right outer

joins are not supported by SQLite in R Markdown, so you have to use the swap trick when

working in this format.

21.3 Self Join

The need for a self join arises when the values of a key for a table are used are entries in

another column. For instance, suppose that I have a variable which is the employee ID.
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Then this ID number might be used to also indicate a manager.

SELECT *
FROM employees

Table 21.8: Displaying records 1 - 10

emp_id name mgr_id Regional_O�ce Status

10001 Anna Snelling 10036 Central Current

10002 Cecily Lampkin 10036 Central Current

10003 Versie Hillebrand 10036 Central Current

10004 Lajuana Vencill 10036 Central Current

10005 Moses Frase 10036 Central Current

10006 Jonathan Berthelot 10037 Central Current

10007 Marty Freudenburg 10037 Central Current

10008 Gladys Colclough 10037 Central Current

10009 Niesha Hu�nes 10037 Central Current

10010 Darcel Schlecht 10037 Central Current

A self join can be used to pull out the name of each manager of each employee.

SELECT emp.name AS employee,
mgr.name AS manager

FROM employees AS emp
JOIN employees AS mgr ON emp.mgr_id = mgr.emp_id

Table 21.9: Displaying records 1 - 10

employee manager

Anna Snelling Dustin Brinkmann

Cecily Lampkin Dustin Brinkmann

Versie Hillebrand Dustin Brinkmann

Lajuana Vencill Dustin Brinkmann

Moses Frase Dustin Brinkmann

Jonathan Berthelot Melvin Marxen

Marty Freudenburg Melvin Marxen

Gladys Colclough Melvin Marxen

Niesha Hu�nes Melvin Marxen

Darcel Schlecht Melvin Marxen
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21.4 Aggregations

To apply functions to variable values in the tidyverse, we used mutate or summarize. In

the SQL framework, these are called aggregations.
SUM Adds together the non ‘NULL‘ values.

COUNT Counts non ‘NULL‘ values.

AVG Averages non ‘NULL‘ values.

MIN Minimum of non ‘NULL‘ values.

MAX Maximum of non ‘NULL‘ values.

GROUP_CONCAT Concatenate strings.

For example, to get the total monetary value of deals closed:

SELECT SUM(close_value)
FROM sales_pipeline

Table 21.10: 1 records

SUM(close_value)

10005534

The total number of won deals:

SELECT COUNT(*)
FROM sales_pipeline

WHERE deal_stage = "Won"

Table 21.11: 1 records

COUNT(*)

4238

The average value of the deals won:

SELECT AVG(close_value)
FROM sales_pipeline

WHERE sales_pipeline.deal_stage = "Won"

Table 21.12: 1 records

AVG(close_value)

2360.90939122227
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The smallest deal won:

SELECT MIN(close_value)
FROM sales_pipeline

WHERE sales_pipeline.deal_stage = "Won"

Table 21.13: 1 records

MIN(close_value)

38

21.5 GROUP BY

The GROUP BY command in SQL performs the same function as group_by in the tidy-

verse: it partitions the observations by the values of a particular variable. For instance, to

�nd the average deal size for each sales agents, we could use:

SELECT sales_agent,
AVG(close_value)

FROM sales_pipeline
WHERE sales_pipeline.deal_stage = "Won"
GROUP BY sales_agent
ORDER BY AVG(close_value) DESC

Table 21.14: Displaying records 1 - 10

Sales_Agent AVG(close_value)

Elease Gluck 3614.938

Darcel Schlecht 3304.338

Rosalina Dieter 3269.486

Daniell Hammack 3194.991

James Ascencio 3063.207

Rosie Papadopoulos 2950.885

Wilburn Farren 2866.182

Reed Clapper 2827.974

Donn Cantrell 2821.899

Corliss Cosme 2806.907

Once you join data from another table, you can equally well group by the adding data.

So if we wanted average deal by manager:
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SELECT sales_teams.manager,
AVG(sales_pipeline.close_value)

FROM sales_teams
JOIN sales_pipeline ON (sales_teams.sales_agent = sales_pipeline.sales_agent)

WHERE sales_pipeline.deal_stage = "Won"
GROUP BY sales_teams.manager

Table 21.15: 6 records

manager AVG(sales_pipeline.close_value)

Cara Losch 2354.269

Celia Rouche 2629.339

Dustin Brinkmann 1465.011

Melvin Marxen 2553.209

Rocco Neubert 2837.258

Summer Sewald 2372.886

For �ltering observations, we used WHERE, but if we want to use these �ltered ob-

servations within a GROUP BY, we need to surround the WHERE with a FILTER. For

instance, to get the nummber of deals won that had a value greater than 1000, we could use

SELECT sales_agent,
COUNT(sales_pipeline.close_value) AS total,
COUNT(sales_pipeline.close_value)

FILTER(WHERE(sales_pipeline.close_value > 1000)) AS ‘over 1000‘
FROM sales_pipeline

WHERE sales_pipeline.deal_stage = "Won"
GROUP BY sales_pipeline.sales_agent

To �lter observations after aggregation has occurred, we need the HAVING keyword.

SELECT sales_agent,
COUNT(sales_pipeline.close_value) AS ‘number won‘

FROM sales_pipeline
WHERE sales_pipeline.deal_stage = "Won"
GROUP BY sales_pipeline.sales_agent
HAVING COUNT(sales_pipeline.close_value) > 200
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Table 21.16: 4 records

Sales_Agent number won

Anna Snelling 208

Darcel Schlecht 349

Kary Hendrixson 209

Vicki La�amme 221

21.6 Set operations in SQL

In the tidyverse, the set operations union, intersect and setdi� �nd the union, intersec-

tion, and set di�erence respectively of observations that belong to di�erent tables, but have

the same variables. The corresponding commands in SQL are UNION, INTERSECT, and

MINUS.

Up until now, we have been using sQL queries that only have one SELECT command.

Each time we use the SELECT command it creates a table. We can then use the set

operations to combine these tables.

For instance, suppose that international accounts were located in one table, and domestic

in another. You could use two SELECT commands to put the data from both tables into

the same form, then UNION to combine them.

SELECT intl_accounts.account,
intl_accounts.office_location AS location

FROM intl_accounts
UNION

SELECT accounts.account,
"USA" AS location

FROM accounts

Table 21.17: Displaying records 1 - 10

account location

AWOLEX USA

Acme Corporation USA

Betasoloin USA

Betatech Kenya

Betatech USA

Bioholding Philipines

Bioholding USA

Bioplex USA

Blackzim USA

Bluth Company USA
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Program control
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Chapter 22

Principles of the tidyverse

Summary

One way of viewing the tidyverse is as a collection of functions that keep common principles

in mind. Such a collection is also known as an API.

22.1 Application programming interface

De�nition 71
An API (application programming interface) is a collection of functions and tools that

allow the creation of applications that access other base functionality.

For instance, there are API’s for

• accessing the operating system,

• accessing a graphics card,

• accessing a hard drive,

and in the case of the tidyverse,

• accessing the base functions of R.

The purpose of an API is to make life easier for both the programmer who must create

code, the updater who must maintain the code, and the end user who receives the output

of the code.

In the case of the tidyverse, Hadley Wickham had four principles in mind when creating

the packages therein.

1. It should reuse existing data structures.

2. Compose simple functions with pipes.

3. The API should embrace functional programming.
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4. It should be designed with humans in mind.

Let’s look at each of these principles in turn.

22.2 Reusing existing structures

Data has been collected for millennia. While a census count of France in the 17th century

might only be of interest to historians, data from ten or even a hundred years ago is often

still of great importance today.

Therefore it is important that any tools work with systems for organizing information

that already exist. In the context of R, that means that any new tools should work within

the context of the data frame, which is the primary data type for storing data in R.

That is why the tibble, the preferred data storage form in the tidyverse extends the data

frame rather than replacing it. Any package in the tidyverse can take as an argument either

a tibble or a data frame,

22.3 Pipes make code easier

No one can hold a complex series of transformations entirely in their heads. Pipes give us

a semantic way of breaking down such a series into their component parts. That way we

can handle large tasks one step at a time.

So what does this mean when we begin writing functions of our own? There are a couple

things to keep in mind

• Keep functions simple. That means it should have as few inputs as possible, and

return only one thing. That makes it easy to chain functions together using pipes.

• Function names should be verbs when possible. That makes the piped code easier to

read. The function �lter �lters out observations, select selects variables, and son

on.

Of course, these are guidelines, not hard and fast rules. Most of the geom_ functions in

ggplot2 for instance, are nouns rather than verbs, because they are adding a particular

thing to the canvas.

22.4 Use functional programming

This is a big one, and so will take some explanation. There are two main types of program-

ming paradigms.

1. Imperative programming Here the focus of the programmer is how to modify the

state of the system in order to accomplish a task. Most commands are destructive,

they remove an existing portion of the state and replace it with a new one. The

Turing machine is the canonical example of imperative programming.

2. Functional programming Here the focus is on listing the transformations needed to

get from the current state to the �nal state. Commands are non-destructive, they
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indicate what to do to the existing state to move it in the desired direction. The

Lambda Calculus is the canonical example of functional programming.

Note that neither of these paradigms is “right” or “better”. Instead, they have di�erent

strengths and weaknesses that encourage the user to think about their problem and write

code to solve it in di�erent ways.

Most procedural and object-oriented languages are imperative. On the other hand, since

a statistic is a function of the data, many statistical analyses have a clearer form when

written as a functional program.

So what makes a language functional? There are several properties that a functional

language must have.

• Functions are mathematical functions, also known as pure.

• Variables are immutable, meaning they cannot be changed once assigned. This leads

to referential transparency, where each variable name returns a unique value.

• Recursion is used for loops.

• Functions are First-Class and can also be Higher-Order. This means you can pass

functions as input to other functions.

Functions are mathematical functions

In imperative programming, a function can either be like a mathematical function (for

example: y = x2) or it can be a set of commands that alters the state of the system in a

destructive fashion.

De�nition 72
In a programming language, a function is pure if it always produces the same output

with the same input, and if their are no side-e�ects. That is, it does not change the value

of the input variables or any global state.

In functional programming, functions are all just mathematical functions. Consider:

y <- function(x)
return(x^2)

This code in R incorporates the function y(x) = x2. It returns one thing, the output of

the function.

Note that R is designed to assist in this type of programming by only allowing the return

of a single object.
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Variables are immutable

In a functional program, it is not permitted to change the value of a variable! Once you

have assigned a variable, you cannot change its value.

De�nition 73
Say that variables in a programming language are immutable if they can only be

assigned once.

This is again to bring variables in line with how they are used in mathematics. For

instance, if I write

y = x2

y = −|x| − 2,

that does not make any sense, as y cannot be both of those things simultaneously.

Of course, R does not enforce variable immutability. It happily allows you to change the

values of variables within a function or use functions to change the variable values.

So if you are going to use this principle, you will have to do it yourself. That means

writing code like

x <- 4
y1 <- x*x
y2 <- 3*y1 + 2
y3 <- -y2

instead of

x <- 4
y <- x*x
y <- 3*x + 2
y <- -y

So why make variables immutable? It leads to a great advantage of functional program-

ming called referential transparency

De�nition 74
A programming language has referential transparency if every assigned variable has

the same value throughout the program.

In other words, a particular name only references one value of the variable. That means

that when writing code, you never have to worry about the same variable being used in

two di�erent ways, or the same function name being used for two di�erent functions. You

are guaranteed that the result will always stay the same.
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This prevents you from accidentally changing the value of a variable and then expecting

it to be the same as it was before. Or if you are collaborating in writing code on a large

project, it prevents you from changing a variable in one part of the code that you are

working on, thereby breaking code that your collaborator had �nished.

Recursion is used instead of loops

But wait a minute, one of the most common constructions in programming languages is

the loop, which executes a series of commands more than once. For instance, consider the

following snippet of C code:

#include <stdio.h>

int main () {

int a, s = 0;

/* for loop execution */
for( a = 10; a < 20; a = a + 1 ){

s = s + a;
}
printf("%d\n",s);

return 0;
}

I don’t want to get too much into the details of this code, but I will say that this code

calculates

∑19
a=10 a = 145. It does this by keeping track of the sum at each stage of the

computation, and changing the variable a at each step. So what can go wrong? Well,

suppose that I had a bug in my code:

#include <stdio.h>

int main () {

int a, s = 0;

/* for loop execution */
for( a = 10; a < 20; a = a + 1 ){

s = s + a;
a = a - 1;

}
printf("%d\n",s);

return 0;
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}

Inside the for loops, the value of a is being reduced by one at each step, so in the

execution of the for loop, it undoes the addition of 1 to a. This code will never stop, it will

run forever!

That’s bad! Remember that functional languages cannot change the values of variables

once assigned, so they use the notation of recursion to solve this problem.

De�nition 75
A function is de�ned recursively if it includes itself in the de�nition.

Let’s see how we could build that same for loop using recursion. To do this, let’s make

the function a bit more general. Say that

s(n) =
n∑

a=10

a.

Then mathematically we can de�ne s(n) recursively as follows:

s(10) = 10

s(n) = n+ s(n− 1) when n > 10.

Note that like in induction proof, we have a base case s(n) = 10) and a recursive case
s(n) = n+ s(n− 1). Now we build code where the function calls itself:

s <- function(n) {
if (n == 10)

return(10)
else
return(n + s(n - 1))

}

s(19)

## [1] 145

Note that we never had to rede�ne a variable in this program! Now, that being said, R
does have a for loop, which we will see later on. However, it is partially recursive, in the

sense that what happens inside a particular execution of the for loop stays in the for loop.

That means that it is not possible to create the bug that we saw in C where the for loop

variable was altered resulting in an in�nite loop.
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Functions are first-class and higher order

In R, we have seen that we use the assignment operator <- to assign the function to a

particular name. So functions and variables are really the same type of object. This is what

we mean by a function being �rst-class.

De�nition 76
In a programming language, a function is �rst-class if it is treated like any other variable.

Since it is treated like any other variable, we can take functions as input to another

function, and return functions as results. We call functions like these higher-order.

De�nition 77
A function which takes a function as input, or returns a function as output, it called

higher-order.

We have seen this behavior with the ggplot function, which takes a parameter mapping

which is set equal to a function aes with its own parameters.

Functional programming and data science

So that’s functional programming in a nutshell.

• R itself is not a fully functional language, but it incorporate enough features of

functional languages that it is possible to do functional programming. Sticking to

this paradigm is very helpful both for code readability and in large collaborative

projects.

• Functional programming �ts in very nicely with the data science view that we are

transforming our data to make patterns obvious. Many languages such as Haskell

used in data science are fully functional languages for this reason.

22.5 Designing the API for humans

The last principle for the design of the tidyverse is that it will be used by humans. We have

not talked much about computational complexity in this course. That is partially because

that would lead us deeper into the algorithm for accomplishing tasks than we plan to go

here, but also because in practice most of the di�culty of data analysis comes from the

human time, not the computer time.

Therefore, it is essential that you make your analysis as transparent as possible to

humans, sometimes even at the cost of making the code slower.

This also informs the choice of function names. For instance, the geometry functions

all begin with geom_. This makes them easier for people to remember, and also has the

added bene�t of making the autocomplete more powerful, as a user can scroll through a

set of possibilities in order to decide what is appropriate.
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In naming your functions, do not be afraid to have a lengthy name if the description

power of the name is needed. Save short names for functions that will be used very often,

and then overall your code will be much easier to read and use by others.
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Writing Functions in R

Summary Users of R can write their own functions that then operate on an equal

basis with the built-in functions.

Functions and conditional execution

function Make a function.

if Execute the next command if the condition is true.

else Execute the next command if the condition is false.

all True if every element of a vector is true.

any True if any element of a vector is true.

identical True if variables are the same type and equal.

near True if �oating point variables are close in value.

switch Switch among several di�erent commands based on a variable.

So far we’ve been relying on the commands and functions built into the tidyverse to

accomplish tasks. But there will eventually come a time when you just doesn’t exist a tool

that does what you need it to do. At this point, you can write your own function!

The rule of thumb for writing your own functions is as follows. If you plan to use a

particular bit of code three or more times, write it as a function. This will make your code

more readable, and avoid unnecessary repetition.

As an example, consider the following:

set.seed(123456) # make same random choices every time
df <- tibble::tibble(
a = rnorm(5),
b = rnorm(5),
c = rnorm(5),
d = rnorm(5)
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)
dfs <- df

dfs$a <- (df$a - min(df$a, na.rm = TRUE)) /
(max(df$a, na.rm = TRUE) - min(df$a, na.rm = TRUE))

dfs$b <- (df$b - min(df$b, na.rm = TRUE)) /
(max(df$b, na.rm = TRUE) - min(df$a, na.rm = TRUE))

dfs$c <- (df$c - min(df$c, na.rm = TRUE)) /
(max(df$c, na.rm = TRUE) - min(df$c, na.rm = TRUE))

dfs$d <- (df$d - min(df$d, na.rm = TRUE)) /
(max(df$d, na.rm = TRUE) - min(df$d, na.rm = TRUE))

dfs

## # A tibble: 5 x 4
## a b c d
## <dbl> <dbl> <dbl> <dbl>
## 1 0.456 0.441 0.0515 0.330
## 2 0.0303 0.608 0. 0.
## 3 0. 1.02 0.462 0.693
## 4 0.170 0.558 1.00 1.00
## 5 1.00 0. 0.947 0.539

This code generates independent, identically distributed (iid) standard normal random

variables as toy data to play with. We then rescale the data values so that they all lie

between 0 and 1. There’s several problems with this.

• First, it’s hard to read. Even if you understand what you are doing when you write

the code, it is not clear that you will understand six months or a year from now.

• Second, it’s repetitive. That not only is poor style, but writing essentially the same

thing down four times makes mistakes easy to slip in to just one out of the four.

To write the function, we �rst identify what the input to the function should be. In this

case, the only thing that changes from line to line is df$a, df$b, df$c, df$d. So we

really only need one input which is the variable vector of values that we are changing.

We write a function in R by assigning it to a variable name. The keyword function is

followed by parenthesis that enclose the input to the function. The value that we wish to

return is then passed back to the user using a return command.

The other thing to remember is that you can group commands together using curly

braces, { and }. Everything between these symbols will be executed in turn, one after the

other. Since most functions need more than one command, most times the function will

start with { and end with }. The result is something like this.

232 400



Mark Huber Notes on the Foundations of Data Science

scale01 <- function(x) {
a <- min(x, na.rm = TRUE)
b <- max(x, na.rm = TRUE)
return((x - a)/(b - a))

}

Let’s try it out on some examples:

scale01(c(-5, 0, 5))

## [1] 0.0 0.5 1.0

scale01(c(0,1,2,3,4,5))

## [1] 0.0 0.2 0.4 0.6 0.8 1.0

Seems to be doing the right thing!

Now that we have a function, we can use it the way we would any other function to

mutate our tibble.

df %>%
mutate(a = scale01(a), b = scale01(b), c = scale01(c),

d = scale01(d))

## # A tibble: 5 x 4
## a b c d
## <dbl> <dbl> <dbl> <dbl>
## 1 0.456 0.430 0.0515 0.330
## 2 0.0303 0.594 0. 0.
## 3 0. 1.00 0.462 0.693
## 4 0.170 0.544 1.00 1.00
## 5 1.00 0. 0.947 0.539

One of the big advantages of using functions is that if we decide later to alter the function,

we only have to change the function in one place. For instance, if we want to rescale from

0 to 100 percent instead of from 0 to 1, we modify the function as follows:

scale01 <- function(x) {
a <- min(x, na.rm = TRUE)
b <- max(x, na.rm = TRUE)
return(100*(x - a)/(b - a))

}
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Now our output would be

df %>%
mutate(a = scale01(a), b = scale01(b), c = scale01(c),

d = scale01(d))

## # A tibble: 5 x 4
## a b c d
## <dbl> <dbl> <dbl> <dbl>
## 1 45.6 43.0 5.15 33.0
## 2 3.03 59.4 0. 0.
## 3 0. 100. 46.2 69.3
## 4 17.0 54.4 100. 100.
## 5 100. 0. 94.7 53.9

23.1 Things to keep in mind when writing functions

There are several things to think about when writing your own function.

• Don’t make function names too long. If you have a function like

scale.one.hundred.numbers.in.vector you will make your code

too long to read and unwieldly to use.

• Don’t make function names too short. If you call your function f you won’t be able

to easily remember what it does.

• In general, your function names should be verbs when possible, and the inputs should

be nouns.

• Pick a style: separate words by _ (as the tidyverse does) or . (as most of the base R

functions do) or by using lower and upper case as functionName. But do not mix

styles within your function or your code will quickly become unreadable!

• Do comment your code when you can. Remember that any line after the # symbol is

not executed by rsoft. Use that to �ll out and explain what’s going on with your

code.

scale01 <- function(x) {
# This function scales data to lie between 0 and 1
a <- min(x, na.rm = TRUE)
b <- max(x, na.rm = TRUE)
return(100*(x - a)/(b - a))

}
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• Don’t comment on the function of basic commands in R. Your audience will know

what min, max, sum, and mean do. The following is too much:

scale01 <- function(x) {
a <- min(x, na.rm = TRUE) # find the min value of x
b <- max(x, na.rm = TRUE) # find the max value of x
return(100*(x - a)/(b - a))

}

23.2 If and else

Sometimes you only want commands to execute if a certain condition is true. That’s when

you want to use the if command. Consider the following.

sqrt_abs <- function(a) {
if (a > 0)
return(sqrt(a))

else
return(sqrt(-a))

}

Let’s try it out!

sqrt_abs(4)

## [1] 2

sqrt_abs(-9)

## [1] 3

From this example, you can see how the form of the keywords if and else work.

• Put the condition inside parentheses. Here (a > 0) is the condition under which

the if statement executes the following command.

• After the command you want executed when the condition is true, you can then

(optionally) place a else keyword. After the else, put the command that you want to

execute if the condition is not true.

• Remember that if you want more than one command to execute after an if statement,

just enclose them in curly braces.

Two common errors to watch out for:
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• The condition in the if command must evaluate to be either TRUE or FALSE. If it

evaluates to a vector of possibilities, you will get an error.

sqrt_abs(c(4,-9))

## Warning in if (a > 0) return(sqrt(a)) else return(sqrt(-a)):
## the condition has length > 1 and only the first element will
## be used

## Warning in sqrt(a): NaNs produced

## [1] 2 NaN

• You will also get an error in this function if you pass something that is not a number.

sqrt_abs("a")

## Error in sqrt(a): non-numeric argument to mathematical function

Previously we used | for logical or and & for logical and to apply to vectors. Inside an if
statement, we use || and &&, which only return the �rst element of a vector of TRUE and

FALSE values.

Now the equality testing operator == is also vectorized, so it will also return more than

one TRUE/FALSE value. You can use the command any to require that at least one equality

works, or all to require that at every equality works. We can use this to rewrite our

function:

sqrt_abs <- function(a) {
if (any(a < 0))
a <- abs(a)

return(sqrt(a))
}

sqrt_abs(c(4, -9))

## [1] 2 3

An alternative to the equality operator is identical, which only matches if its inputs are

the same value and the same type. For instance, by default 0 is a �oating point number,

while 0L is an integer. So:
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identical(0, 0)

## [1] TRUE

identical(0L, 0)

## [1] FALSE

When doing �oating point computations, we can use near to detect numbers that are

very close together.

sqrt(2)^2 == 2

## [1] FALSE

near(sqrt(2)^2, 2)

## [1] TRUE

Multiple conditions

The basic if works with a condition with two choices: TRUE or FALSE. To deal with more

than two possibilities, one thing we can do is chain if statements together.

three_choices <- function(a) {
if (a < 4) {
if (a < 2)
print("Less than 2.")

else
print("At least 2 but less than 4.")

} else
print("4 or greater.")

}

three_choices(1)

## [1] "Less than 2."

three_choices(3)

## [1] "At least 2 but less than 4."
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three_choices(5)

## [1] "4 or greater."

Another way is to break into choices based on the value of a variable with the switch
command. For example:

four_choices <- function(a, op) {
switch(op,
double = 2*a,
square = a^2,
absolute = abs(a),
cube = a^3,
stop("Unknown operation.")

)
}

four_choices(4, "cube")

## [1] 64

four_choices(4, "triple")

## Error in four_choices(4, "triple"): Unknown operation.

Notice the code style that we are using. We put the leading { on the end of the line it

starts, but the ending } goes at the beginning of a line. It stays on its own line with nothing

except possibly an else keyword following it.

Everything inside a function is indented two spaces, and then inside an if is two more

spaces, and so on.

23.3 Arguments

For a function arguments, we can assign a default value that is given to the function if we

do not assign a value. For instance, we can modify our previous parameter:

four_choices <- function(a, op = "double") {
switch(op,
double = 2*a,
square = a^2,
absolute = abs(a),
cube = a^3,
stop("Unknown operation.")
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)
}

four_choices(4)

## [1] 8

Note the order we put the arguments in. It is good form to put arguments with default

values after those that do not. Usually arguments that take in data come �rst, while those

that modify what the function does come later. Often arguments with defaults are called

parameters.

When naming your arguments and parameters, try to use the same names as base R
functions or tidyverse functions when possible. If setting a parameter to TRUE in your

function removes all the NA values �rst, then call the parameter na.rm as in mean.

23.4 Arbitrary numbers of arguments

Some commands in R take an arbitrary number of arguments. For instance:

min(5,4,3)

## [1] 3

min(5,4,3,2,1)

## [1] 1

To do this in your own code, we use a special argument name ... that is three dots

in a row. This can then be passed to other functions to deal with an unknown number of

parameters.

str_alternate <- function(...)
return(str_c(..., sep = "|"))

str_alternate("red", "green", "blue")

## [1] "red|green|blue"
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Modeling
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Figure 23.1: A map of the Claremont College

Summary A model is a simpli�cation of the real world that helps us make decisions

and predictions. The variables used to make predictions are called prediction vari-

ables, while the variables we are trying to predict are called response variables. If

these are numerical, the di�erence between a prediction and the response is called

the error or residual.

Modeling

optim Optimizes a function.

lm Optimizes coe�cients of a linear model.

data_grid Creates grid of unique prediction values.

add_predictions Gives predictions based upon a model.

add_residuals Gives the residuals from the predictions and response variables.

You’ve tidied and cleaned your data, done some visualizations to see what’s going on,

and think you have a pattern. What next? One of the key pieces of data science is modeling
your data. A model is an simplifcation of the real world that allows us to predict outcomes.

For instance, a map is a model that is very useful.

A map does not try to incorporate every building, every tree, every bush. It does not

record the markings on the middle of a road because they do not matter to the purpose of

the map. That is because the location of the roads is useful when planning a route, while

knowing the trees on the side of the road are not.

Instead, a model seeks to capture what is important about the thing that it is modeling.

It allows the user to make informed decisions, and understand what is important in the

data, and what is not.

This notion is captured by a famous quote of George Box: “All models are wrong, but
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some are useful.” No model completely captures the nature of the thing it is modeling. A

useful model strips away unnecessary information to leave you with a bare bones skeleton

that tries to capture the essence of what it going on.

23.5 Linear models

The simplest relationship between two observed variables is linear. Sometimes this rela-

tionship is formed by de�nition. Since an inch is 2.54 centimeters, one’s height in inches

varies linearly with one’s height in centimeters.

Other times the connection is more tenuous: does one’s performance on a test vary

linearly with the amount of time one studies? This simple model can be written as

y = c0 + c1x.

Here we have two parameters, c0 and c1. Of course, such a line never �ts real data precisely,

so instead we could write

yi = c0 + c1xi + εi,

where (xi, yi) is the ith oberservation, and εi is what is called an error or random e�ect.
We model εi as a random variable. A random variable is a variable about which we have

partial information. So we don’t know it exactly, but we do know something about it. For

instance, we might model εi as having equal chance of being positive or negative.

In the modelr package, there is a simulated dataset sim1. Let’s take a look at this data:

# install.packages{"modelr"}
library(modelr)
ggplot(sim1, aes(x, y)) +
geom_point()
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242 400



Mark Huber Notes on the Foundations of Data Science

Now that’s what we’ve been talking about: the yi values look like they are varying

roughly linearly on the xi values. But here’s an important note: don’t get too caught up

in the x versus y distinction. If I had swapped the axis of x and y that vary linearly, we

would also have a linear relationship!

ggplot(sim1, aes(y, x)) +
geom_point()
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7.5

10.0

10 20
y

x

That being said, note that there does exist an asymmetry in the data: for each value

x can take on, y can take on multiple values. And the values that the xi can take on are

positive integers.

sim1

## # A tibble: 30 x 2
## x y
## <int> <dbl>
## 1 1 4.20
## 2 1 7.51
## 3 1 2.13
## 4 2 8.99
## 5 2 10.2
## 6 2 11.3
## 7 3 7.36
## 8 3 10.5
## 9 3 10.5
## 10 4 12.4
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## # ... with 20 more rows

Therefore, in this case in makes more sense to model yi = c0 + c1xi + εi. This raises

the question: what should c0 and c1 be?

A simple way of doing this would be to choose the line that passes through the middle y
value when x = 1, and the middle y value when x = 10.

sim1 %>%
filter(x == 1 | x == 10) %>%
arrange(y)

## # A tibble: 6 x 2
## x y
## <int> <dbl>
## 1 1 2.13
## 2 1 4.20
## 3 1 7.51
## 4 10 22.0
## 5 10 23.3
## 6 10 25.0

So this line is yi = (x − 1)(23.34 − 4.2)/(10 − 9) + 4.2 = 2.12x + 2.08. We can put

this on the plot of the data with the geom_abline function.

sim1 %>%
ggplot(aes(x, y)) +
geom_point() +
geom_abline(aes(intercept = 2.08, slope = 2.12),

col = "blue", lwd = 1)
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Looks okay, but maybe a little lower than we would think. One way to see how well we

are doing is to measure the errors εi.

10

20

2.5 5.0 7.5 10.0
x1

y

De�nition 78
Given a model yi = c0+c1xi+εi and estimates ĉ0 and ĉ1 for c0 and c1, call ŷi = ĉ0+ ĉ1xi
the prediction, yi the response, and yi − ŷi the error or residual.

In an ideal world, all the errors would be zero and the prediction would exactly match

the response. This never happens in real data though: too many ways for the measurement

to go wrong or for the model to not exactly capture the process.
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So we instead just try to make the magnitude of the error as small as possible. Without

going into too much detail, the most common way of modeling the error is to use a normal
random variable centered at 0. This leads to something in statistics called the maximum
likelihood estimate, or MLE. For us, the important thing about the MLE is that it occurs at

the place where the sum of the squares of the residuals are as small as possible.

De�nition 79
In a model, the choice of parameters than minimizes the sum of the squares of the errors

is called the least squares �t.

To �nd these errors, let’s make a function that is our model that takes a tibble or data

frame with variable x, and returns a prediction given the slope and intercept of a linear

model.

model1 <- function(c, data) {
return(c[1] + c[2] * data$x)

}
model1(c(2.07, 2.13), sim1)

## [1] 4.20 4.20 4.20 6.33 6.33 6.33 8.46 8.46 8.46
## [10] 10.59 10.59 10.59 12.72 12.72 12.72 14.85 14.85 14.85
## [19] 16.98 16.98 16.98 19.11 19.11 19.11 21.24 21.24 21.24
## [28] 23.37 23.37 23.37

Those are the predicted values. Now let’s measure the sum of the squares of the error,

when the response values are in variable y.

sum_square_error <- function(mod, data) {
diff <- data$y - model1(mod, data)
return(sum(diff^2))

}
sum_square_error(c(2.07, 2.13), sim1)

## [1] 226.0735

So let’s see if we can make this smaller by pushing the line up a little bit.

sum_square_error(c(2.1, 2.13), sim1)

## [1] 223.0058

Better! By playing around with the intercept and slope, we can make this smaller and

smaller. In fact, R has a built in function to do exactly that. It is called optim, and it works

using a method called Newton-Raphson. When we try it would on our data:

246 400



Mark Huber Notes on the Foundations of Data Science

optimal_coef <- optim(c(2.07, 2.13), sum_square_error,
data = sim1)

optimal_coef

## $par
## [1] 4.220708 2.051585
##
## $value
## [1] 135.8746
##
## $counts
## function gradient
## 65 NA
##
## $convergence
## [1] 0
##
## $message
## NULL

We can see that the variable optimal_coef is a list of di�erent outputs. In order to

just display the parameters of the best �t, we can use the $:

optimal_coef$par

## [1] 4.220708 2.051585

So our slope was pretty good to start with, but our intercept needed to be quite a bit

higher! Plotting this line gives:

sim1 %>%
ggplot(aes(x, y)) +
geom_point() +
geom_abline(aes(intercept = 4.22, slope = 2.05),

col = "blue", lwd = 1)
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Note that we passed the function sum_square_error as a parameter to optim. That’s

Functional Programming in action!

The square root of the sum of squares of a vector is also called the L2-distance (or

Euclidean distance). Another way of measuring the distance is the L1-distance, which is

the sum of the absolute values of the vector. With this, we get a slightly di�erent line:

sum_abs_error <- function(mod, data) {
diff <- data$y - model1(mod, data)
return(sum(abs(diff)))

}

optimal_coef2 <- optim(c(2.07, 2.13), sum_abs_error,
data = sim1)

optimal_coef2$par

## [1] 4.364849 2.048918

sim1 %>%
ggplot(aes(x, y)) +
geom_point() +
geom_abline(aes(intercept = optimal_coef$par[1],

slope = optimal_coef$par[2]), col = "blue", lwd = 1,
alpha = 0.2) +

geom_abline(aes(intercept = optimal_coef2$par[1],
slope = optimal_coef2$par[2]), col = "red", lwd = 1,
alpha = 0.2)
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In this case, the two lines are pretty much on top of each other, but if I have an outlier, a

point far away from the group, it will drag the L2-distance (least squares) line much more

than the L1-distance line.

sim1aug <- sim1 %>% union(tibble(x = 10, y = 60))

optimal_coef3 <- optim(c(2.07, 2.13), sum_square_error,
data = sim1aug)

optimal_coef3$par

## [1] 2.113694 2.626334

optimal_coef4 <- optim(c(2.07, 2.13), sum_abs_error,
data = sim1aug)

optimal_coef4$par

## [1] 4.340730 2.056957

sim1aug %>%
ggplot(aes(x, y)) +
geom_point() +
geom_abline(aes(intercept = optimal_coef3$par[1],

slope = optimal_coef3$par[2]), col = "blue",
lwd = 1, alpha = 0.2) +

geom_abline(aes(intercept = optimal_coef4$par[1],
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slope = optimal_coef4$par[2]), col = "red",
lwd = 1, alpha = 0.2)
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It is important to note that neither of these lines are “right”, but they are both useful

in making predictions. The least squares line is used most often because it is easier to

calculate, but for small problems, the least absolute value line is less in�uenced by outliers.

23.6 Using more than one predictor

It is actually pretty rare to have a single prediction variable. If we have n di�erent such

predictor variables, our linear model can be expanded to

y = c0 + c1x1 + · · ·+ cnxn + ε.

We do not have to use optim to deal with this more complicated state. Instead, we can

use the lm command to �t a linear model. The ∼ character is used to designate the model.

The variable to be predicted goes on the left of ∼, and the variables used to predict go on

the right. So for this model, we can use:

sim1_mod <- lm(y ~ x, data = sim1)

Then coef can be used to pull out the �tted coe�cients for the intercept and slope from

the model.

coef(sim1_mod)

## (Intercept) x
## 4.220822 2.051533
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We can only do least squares with lm, not the L1 distance. This is because there exists a

polynomial time deterministic algorithm for calculating the values exactly for L2, but not

for L1. In order to �nd the L1 �t, we must use optim. That optim function is slower, but

applies to a wider variety of models.

23.7 modelr
The package modelr contains several functions designed to test how well a model �ts data.

The �rst is data_grid, which takes a tibble as an argument and returns all combinations of

the prediction variables. For instance,

sim1 %>% data_grid(x)

## # A tibble: 10 x 1
## x
## <int>
## 1 1
## 2 2
## 3 3
## 4 4
## 5 5
## 6 6
## 7 7
## 8 8
## 9 9
## 10 10

There are 10 di�erent unique values for x, and so that is our starting grid.

What if we were using y as our prediction variable?

sim1 %>% data_grid(y)

## # A tibble: 30 x 1
## y
## <dbl>
## 1 2.13
## 2 4.20
## 3 7.36
## 4 7.51
## 5 8.99
## 6 10.2
## 7 10.5
## 8 10.5
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## 9 11.3
## 10 11.7
## # ... with 20 more rows

Then these would be our prediction values.

Recall that we had a linear model stored in sim1_mod. For this model, we can use

the predictor variable values in order to give predictions for the response variable using

add_predictions.

grid_pred <-
sim1 %>%

data_grid(x) %>%
add_predictions(sim1_mod)

grid_pred

## # A tibble: 10 x 2
## x pred
## <int> <dbl>
## 1 1 6.27
## 2 2 8.32
## 3 3 10.4
## 4 4 12.4
## 5 5 14.5
## 6 6 16.5
## 7 7 18.6
## 8 8 20.6
## 9 9 22.7
## 10 10 24.7

Now we have predictions for several x values. Now let’s add these predicted values to

the plot of the data. In order to do so, we need to use the data parameter to geom_line.

That overrides the data value to come from the predictions rather using the sim1 data

that was fed initially to ggplot.

sim1 %>% ggplot() +
geom_point(aes(x = x, y = y)) +
geom_line(aes(x = grid_pred$x, y = grid_pred$pred),

data = grid_pred, color = "red", size = 1)
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Hooray! We got exactly what we did earlier with geom_abline. But this way of doing

things is far more general, and works with a variety of di�erent ways of modeling.

For instance, let’s generate some data from the model

y = 0.5− 0.8x+ 1.2x2 + ε.

Our original predication variable was x. We can use mutate to build a new variable

x_square with values equal to the squares of the x values.

set.seed(123456)
x <- 1:10
sim5 <- tibble(x = c(x, x)) %>%
mutate(x_square = x^2) %>%
mutate(y = 0.5 - 2 * x + 0.2 * x_square +

1.1 * rnorm(length(x)))

sim5 %>%
ggplot() +
geom_point(aes(x, y))
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Now suppose we try to �t this model to the data:

sim5_mod <- lm(y ~ x + x_square, data = sim5)
coef(sim5_mod)

## (Intercept) x x_square
## -0.8217856 -1.3251656 0.1528941

grid5_pred <-
tibble(x = 1:10, x_square = (1:10)^2) %>%
add_predictions(sim5_mod)

grid5_pred

## # A tibble: 10 x 3
## x x_square pred
## <int> <dbl> <dbl>
## 1 1 1 -1.99
## 2 2 4 -2.86
## 3 3 9 -3.42
## 4 4 16 -3.68
## 5 5 25 -3.63
## 6 6 36 -3.27
## 7 7 49 -2.61
## 8 8 64 -1.64
## 9 9 81 -0.364
## 10 10 100 1.22
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Now let’s plot the original data and the predictions.

ggplot(sim5, aes(x)) +
geom_point(aes(y = y)) +
geom_line(aes(x = grid5_pred$x, y = grid5_pred$pred),

data = grid5_pred, color = "red", size = 1)
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Summary The package modelr gives us tools for seeing models in action.

Modeling

add_residuals Gives the residuals from predictors and the model.

gather_residuals Bring together residuals from more than one model

for comparison.

gather_predictions Bring together predictions from more than one

model for comparison.

model_matrix The matrix X for a given model.

23.8 Understanding residuals

Once we have a prediction, we can turn to studying our residuals, the di�erence between

our predictions from our model, and our true value.

Let’s create our model for our simulated data again:
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library(tidyverse)
library(modelr)
sim1_mod <- lm(y ~ x, data = sim1)
sim1_mod

##
## Call:
## lm(formula = y ~ x, data = sim1)
##
## Coefficients:
## (Intercept) x
## 4.221 2.052

Now let’s look at how o� our predictions are from our model using add_residuals.

sim1 <- sim1 %>%
add_residuals(sim1_mod)

sim1

## # A tibble: 30 x 3
## x y resid
## <int> <dbl> <dbl>
## 1 1 4.20 -2.07
## 2 1 7.51 1.24
## 3 1 2.13 -4.15
## 4 2 8.99 0.665
## 5 2 10.2 1.92
## 6 2 11.3 2.97
## 7 3 7.36 -3.02
## 8 3 10.5 0.130
## 9 3 10.5 0.136
## 10 4 12.4 0.00763
## # ... with 20 more rows

If our model is working, we would expect some of the residuals to be positive, and some

to be negative. The least squares line that we �t is designed to make the mean of the

residuals equal to 0.

sim1 %>% summarize(average_resid = mean(resid))

## # A tibble: 1 x 1
## average_resid
## <dbl>
## 1 5.12e-15
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We would also expect them to be spread out. We can look at a kernel density plot or a

histogram to get an idea of what they are like.

sim1 %>% ggplot() + geom_density(aes(resid))
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If our model is correct, then the residuals should all be independent of each other, there

should not be a pattern. A scatterplot can show this:

sim1 %>% ggplot(aes(x, resid)) + geom_point()
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If there had been a pattern, it might have looked something like this instead:
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sim1 %>%
ggplot(aes(x = sort(x), y = sort(resid))) +
geom_point()
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Those values are not independent of each other!

23.9 Notation for models

We use statistical model notation to quickly describe how the response varies with the

predictors in the model. For instance,

y ∼ x

is the same as the model

y = c0 + c1x+ ε.

The mode

y ∼ x1 + x2 + x1x2

gives the model

y = c0 + c1x1 + c2x2 + c3x1x2 = ε.

We usually say that we have three predictors, x1, x2, and an interaction predictor x1x2.

The constant term is usually not considered a predictor.

De�nition 80
The process of choosing parameter values for a model based on the data is called �tting
a model.
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23.10 Linear Algebra

Suppose we have the following dat set.

df <- tribble(
~y, ~a, ~b,
4.2, 2.3, 5.2,
5.6, 1.1, 6.9,
2.2, -1.4, 2.6,
1.7, 0.3, 2.4

)
df

## # A tibble: 4 x 3
## y a b
## <dbl> <dbl> <dbl>
## 1 4.2 2.3 5.2
## 2 5.6 1.1 6.9
## 3 2.2 -1.4 2.6
## 4 1.7 0.3 2.4

If we build the model y ∼ a + b, then we have two predictor variables, and four

observations. We could write down the model mathematically as:

y1 = c0 + c1a1 + c2b1 + ε1

y2 = c0 + c1a2 + c2b2 + ε2

y3 = c0 + c1a3 + c2b3 + ε3

y4 = c0 + c1a4 + c2b4 + ε4,

Note that the c0, c1, c2, and c3 values are repeated in every equation. We can write this

more succintly using matrix notation. These same four equations can be written as:
y1
y2
y3
y4

 =


1 a1 b1
1 a1 b1
1 a2 b2
1 a3 b3
1 a4 b4


c0c1
c2

+


ε1
ε2
ε3
ε4


We can further abbreviate the equations by setting

Y =


y1
y2
y3
y4

 , X =


1 a1 b1
1 a1 b1
1 a2 b2
1 a3 b3
1 a4 b4

 , c =

c0c1
c2

 , ε =


ε1
ε2
ε3
ε4

 .
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Then we can write the �nal model as:

Y = Xc+ ε.

If we have n observations, and p predictor variables then Y is an n by 1 matrix (also

called a column vector), X is an n by p + 1 matrix, c is a p + 1 by 1 matrix (or column

vector), and ε is an n by 1 matrix (or column vector).

The modelr package can calculate the matrix X for you with the model_matrix()
function.

model_matrix(df, y ~ a)

## # A tibble: 4 x 2
## ‘(Intercept)‘ a
## <dbl> <dbl>
## 1 1 2.3
## 2 1 1.1
## 3 1 -1.4
## 4 1 0.3

Note that the �rst column is just 1’s. This indicates that no matter what the x1 value

is, the �rst column just returns the constant term of the model. We can make the matrix

more complicated by adding a second predictor:

model_matrix(df, y ~ a + b)

## # A tibble: 4 x 3
## ‘(Intercept)‘ a b
## <dbl> <dbl> <dbl>
## 1 1 2.3 5.2
## 2 1 1.1 6.9
## 3 1 -1.4 2.6
## 4 1 0.3 2.4

Finally, we add the interaction term:

model_matrix(df, y ~ a + b + a * b)

## # A tibble: 4 x 4
## ‘(Intercept)‘ a b ‘a:b‘
## <dbl> <dbl> <dbl> <dbl>
## 1 1 2.3 5.2 12.0
## 2 1 1.1 6.9 7.59
## 3 1 -1.4 2.6 -3.64
## 4 1 0.3 2.4 0.72
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It is represented by either a * b or a:b. This is known as Wilkinson-Rodgers notation

[WR73].

What about if the predictor is a categorical rather than a numerical value? For instance,

consider the following dataset.

df <- tribble(
~gender, ~response,
"male", 4.3,
"female", 2.1,
"male", 5.6

)

Because the gender variable is categorical, when creating the model matrix, it gets

translated to either 0 or 1 depending on it if it is male or female. It appends the level male
to the end of gender to form gendermale to indicate that a 1 means that the gender

level is male.

model_matrix(df, response ~ gender)

## # A tibble: 3 x 2
## ‘(Intercept)‘ gendermale
## <dbl> <dbl>
## 1 1 1
## 2 1 0
## 3 1 1

(Note that there is no point in creating a genderfemale variable. Since the sum of

the two vectors would be 1, the two columns together with the constant column would be

linearly dependent. Therefore all information needed is contained in the one variable.)

Consider the sim2 dataset from the modelr package.

print(sim2, n = 5)

## # A tibble: 40 x 2
## x y
## <chr> <dbl>
## 1 a 1.94
## 2 a 1.18
## 3 a 1.24
## 4 a 2.62
## 5 a 1.11
## # ... with 35 more rows
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The variable x has four levels, a, b, c, and d.

sim2 %>% ggplot() +
geom_point(aes(x, y))
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Be-

cause this is categorical data, a model will just try to �t the average value for each of the

levels.

mod2 <- lm(y ~ x, data = sim2)

grid <- sim2 %>%
data_grid(x) %>%
add_predictions(mod2)

grid

## # A tibble: 4 x 2
## x pred
## <chr> <dbl>
## 1 a 1.15
## 2 b 8.12
## 3 c 6.13
## 4 d 1.91

It turns out that the sample average of the values minimizes the sum of the squares of

the distance from the prediction. We can see this in the following plot:
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ggplot(sim2, aes(x)) +
geom_point(aes(y = y)) +
geom_point(data = grid, aes(y = pred), color = "red", size = 4)
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Note that if you try to predict the value where there are no observations, you will get an

error message:

tibble(x = "e") %>%
add_predictions(mod2)

## Error in model.frame.default(Terms, newdata, na.action = na.action, xlev = object$xlevels): factor x has new level e

23.11 Continuous and categorical

So what happens if you have both a continuous variable and a categorical variable in a

model? The dataset sim3 contains such a situation.

print(sim3, n = 5)

## # A tibble: 120 x 5
## x1 x2 rep y sd
## <int> <fct> <int> <dbl> <dbl>
## 1 1 a 1 -0.571 2
## 2 1 a 2 1.18 2
## 3 1 a 3 2.24 2
## 4 1 b 1 7.44 2
## 5 1 b 2 8.52 2
## # ... with 115 more rows
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Let’s visualize the data with a scatterplot colored based on the value in x2:

sim3 %>% ggplot() +
geom_point(aes(x1, y, col = x2))
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Here x1 is numerical, and x2 is categorical. Consider �tting a model both with and

without interactions.

mod1 <- lm(y ~ x1 + x2, data = sim3)
mod2 <- lm(y ~ x1 * x2, data = sim3)

The gather_predictions function can be used to get predictions from both models

simulataneously. We will �rst build a grid of x1 and x2 values, then bring the predictions

from the models together.

grid <- sim3 %>%
data_grid(x1, x2) %>%
gather_predictions(mod1, mod2)

print(grid, n = 5)

## # A tibble: 80 x 4
## model x1 x2 pred
## <chr> <int> <fct> <dbl>
## 1 mod1 1 a 1.67
## 2 mod1 1 b 4.56
## 3 mod1 1 c 6.48
## 4 mod1 1 d 4.03
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## 5 mod1 2 a 1.48
## # ... with 75 more rows

We can use two facets to look at these predictions for the two models.

ggplot(data = sim3, aes(x1, y, color = x2)) +
geom_point() +
geom_line(data = grid, aes(y = pred)) +
facet_wrap(~ model)
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Now we can see the e�ect of having an interaction versus not having an interaction. The

slope of each line in the �rst model is the same: the x2 variable e�ectively just changes

the y-intercept.

On the other hand, when there is interaction between the x1 and x2 variable, the slope

is allowed to change for each value of x2. This second model is clearly better, as the

fact that the slopes change so dramatically to �t the data means that the slope should be

changing with the value in x2.

A look at the residuals bears this out. The following scatterplots use facets to break it

down by level and model.

sim3 <- sim3 %>%
gather_residuals(mod1, mod2)

ggplot(sim3, aes(x1, resid, col = x2)) +
geom_point() +
facet_grid(model ~ x2)
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The second model (mod2) has residuals that look independent, while the residuals in

mod1 look like they have a strong pattern to them. Therefore one should use mod2.
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Chapter 24

Case study: predicting survival on the
Titanic

Summary

When we are building a model, we often split the observations into a training set that

we use to �t parameters, and a test set that we use to verify that the model is accurately

prediction the response that we are after.

Sources

This chapter is based upon a blog post of Andrew Kinsman found at h�ps://www.kaggle.
com/justge�ingstarted/predicting-titanic-deaths.

24.1 Training data

A good model is useful in predicting the value of a variable given the value of the predictor

variables. In order to test a particular model for data, one common method is to break data

into a training set and a testing set.

De�nition 81
Given a dataset, the training set is the subset of the data that is used to �t a model.

De�nition 82
Given a dataset, the testing set is the subset of the data used to determine how good

the model is at predicting observations that were not used to �t the model.

The training and testing set are disjoint observations.

Now, Kaggle is a online repository for data science that is owned by Google. It allows

users to post data sets, and occasionally has competitions to see who can model data in the

best way possible. In one particular competition, they challenged participants to predict

survival on the Titanic. In 1912, the Titanic hit an iceberg and sank on its maiden voyage.

Most of the passengers did not survive.
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Suppose that we have downloaded the data from Kaggle, and placed it into our working

directory. Then the following loads the training and test data for the problem into our

working session.

library(tidyverse)
train <- read_csv("train.csv")
test <- read_csv("test.csv")

The train data table contains the Survived variable that indicates whether that

passenger survived the sinking by recording 0 if perished and 1 if a survivor.

train

## # A tibble: 891 x 12
## PassengerId Survived Pclass Name Sex Age SibSp
## <dbl> <dbl> <dbl> <chr> <chr> <dbl> <dbl>
## 1 1 0 3 Brau~ male 22 1
## 2 2 1 1 Cumi~ fema~ 38 1
## 3 3 1 3 Heik~ fema~ 26 0
## 4 4 1 1 Futr~ fema~ 35 1
## 5 5 0 3 Alle~ male 35 0
## 6 6 0 3 Mora~ male NA 0
## 7 7 0 1 McCa~ male 54 0
## 8 8 0 3 Pals~ male 2 3
## 9 9 1 3 John~ fema~ 27 0
## 10 10 1 2 Nass~ fema~ 14 1
## # ... with 881 more rows, and 5 more variables:
## # Parch <dbl>, Ticket <chr>, Fare <dbl>,
## # Cabin <chr>, Embarked <chr>

When you use 0 and 1 to denote FALSE and TRUE, this is called an indicator variable.
In the test data table does not contain the Survived variable (it is hidden) so that it

can be used to testing purposes.

test

## # A tibble: 418 x 11
## PassengerId Pclass Name Sex Age SibSp Parch
## <dbl> <dbl> <chr> <chr> <dbl> <dbl> <dbl>
## 1 892 3 Kell~ male 34.5 0 0
## 2 893 3 Wilk~ fema~ 47 1 0
## 3 894 2 Myle~ male 62 0 0
## 4 895 3 Wirz~ male 27 0 0
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## 5 896 3 Hirv~ fema~ 22 1 1
## 6 897 3 Sven~ male 14 0 0
## 7 898 3 Conn~ fema~ 30 0 0
## 8 899 2 Cald~ male 26 1 1
## 9 900 3 Abra~ fema~ 18 0 0
## 10 901 3 Davi~ male 21 2 0
## # ... with 408 more rows, and 4 more variables:
## # Ticket <chr>, Fare <dbl>, Cabin <chr>,
## # Embarked <chr>

We can use setdi� to verify that the variable names for the training set is the same as

that of the testing set excepted for Survived.

setdiff(names(train), names(test))

## [1] "Survived"

setdiff(names(test), names(train))

## character(0)

First let’s look at how many passengers survived on average:

train %>% summarize(sur_rate = mean(Survived, na.rm = TRUE))

## # A tibble: 1 x 1
## sur_rate
## <dbl>
## 1 0.384

So only 38.4% of passengers survived. Which means the simple prediction that the

chance of survival is 0 will be right approximately 61.6% of the time. In fact, if we tried

this simple model on the test data, we would be right 62.7% of the time. We can consider

this a baseline for any usable model.

baseline_solution <- test %>%
select(PassengerId) %>%
mutate(Survived = 0)

Let’s take a look:
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baseline_solution

## # A tibble: 418 x 2
## PassengerId Survived
## <dbl> <dbl>
## 1 892 0
## 2 893 0
## 3 894 0
## 4 895 0
## 5 896 0
## 6 897 0
## 7 898 0
## 8 899 0
## 9 900 0
## 10 901 0
## # ... with 408 more rows

Now let’s put this in a .csv �le:

write_csv(baseline_solution, "baseline_model.csv")

At this point, we could submit this prediction back to Kaggle, and they would give it a

score of 0.62679. That means that the choice of Survived was correct for 62.679% of the

passengers in the test data set.

That is our baseline: any prediction, any model that we try to build has to do at least as

well as the constant prediction that does best. Now we know what we need to beat, let’s

bring the data together with a full join.

titanic <- full_join(train, test)

## Joining, by = c("PassengerId", "Pclass", "Name", "Sex", "Age", "SibSp",
## "Parch", "Ticket", "Fare", "Cabin", "Embarked")

Since we used a full join, the Survived variable now is for all observations, although

they will not be assigned a default value for the test data:

titanic[890:895,]

## # A tibble: 6 x 12
## PassengerId Survived Pclass Name Sex Age SibSp
## <dbl> <dbl> <dbl> <chr> <chr> <dbl> <dbl>
## 1 890 1 1 Behr~ male 26 0
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## 2 891 0 3 Dool~ male 32 0
## 3 892 NA 3 Kell~ male 34.5 0
## 4 893 NA 3 Wilk~ fema~ 47 1
## 5 894 NA 2 Myle~ male 62 0
## 6 895 NA 3 Wirz~ male 27 0
## # ... with 5 more variables: Parch <dbl>,
## # Ticket <chr>, Fare <dbl>, Cabin <chr>,
## # Embarked <chr>

24.2 Gender

We want to let whatever model we use know that the Sex variable is actually a factor with

levels. So we add a new column that is a factor.

titanic2 <- titanic %>% mutate(Gender = fct_recode(Sex, "Female" = "female", "Male" = "male"))

Next, we want to treat Survival at a categorical variable rather than as a numerical value.

We can do this by turning it into a factor, then recoding the levels.

titanic3 <- titanic2 %>%
mutate(Survived = factor(Survived)) %>%
mutate(Survived = fct_recode(Survived, "No" = "0", "Yes" = "1"))

Now let’s look at survival by gender:

titanic3 %>%
filter(!is.na(Survived)) %>%
ggplot() +

geom_bar(aes(Gender, fill = Survived), position = "fill") +
ylab("Survival Rate") +
geom_hline(yintercept = mean(train$Survived), col = "white", lty = 2) +
ggtitle("Survival Rate by Gender")

271 400



Mark Huber Notes on the Foundations of Data Science

0.00

0.25

0.50

0.75

1.00

Female Male
Gender

S
ur

vi
va

l R
at

e

Survived

No

Yes

Survival Rate by Gender

Wow, women really did survive more than men! Here’s our new mode: if you were a

woman, you survived, if you were a man, you did not.

24.3 What’s in a name?

Next, let’s look at the names of passengers, at least the �rst �ve passengers.

train %>% select(Name) %>% print(n = 5)

## # A tibble: 891 x 1
## Name
## <chr>
## 1 Braund, Mr. Owen Harris
## 2 Cumings, Mrs. John Bradley (Florence Briggs Thayer)
## 3 Heikkinen, Miss. Laina
## 4 Futrelle, Mrs. Jacques Heath (Lily May Peel)
## 5 Allen, Mr. William Henry
## # ... with 886 more rows

This is an interesting combination. We have the last name (surname), followed by a title

(if they have one), followed by the �rst and middle name (if they have one), followed by a

maiden name, if they have one.

There are many ways to tidy up this data, let’s start by pulling out the title of the

passengers.
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titanic4 <- titanic3 %>%
mutate(Title = str_extract(Name, ", [a-zA-Z ]+")) %>%
mutate(Title = str_replace(Title, ", ", ""))

Let’s count the number of times each title appears.

titanic4 %>%
group_by(Title) %>%
summarize(count = n()) %>%
arrange(desc(count))

## # A tibble: 18 x 2
## Title count
## <chr> <int>
## 1 Mr 757
## 2 Miss 260
## 3 Mrs 197
## 4 Master 61
## 5 Dr 8
## 6 Rev 8
## 7 Col 4
## 8 Major 2
## 9 Mlle 2
## 10 Ms 2
## 11 Capt 1
## 12 Don 1
## 13 Dona 1
## 14 Jonkheer 1
## 15 Lady 1
## 16 Mme 1
## 17 Sir 1
## 18 the Countess 1

A little research into other languages reveals that some of these titles are in the same

area. We can use forcats to break these down into fewer categories.

titanic5 <- titanic4 %>%
mutate(Title = factor(Title)) %>%
mutate(Title = fct_collapse(Title,
"Miss" = c("Mlle", "Ms"),
"Mrs" = "Mme",
"Ranked" = c( "Major", "Dr", "Capt", "Col", "Rev"),
"Royalty" = c("Lady", "Dona", "the Countess", "Don", "Sir", "Jonkheer")))
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Now we can break Survival rates down by title:

titanic5 %>%
filter(!is.na(Survived)) %>%
ggplot(aes(x = Title, fill = Survived)) +

geom_bar(position = "fill") +
ylab("Survival Rate") +
geom_hline(yintercept = 0.3838,
col = "white", lty = 2) +
ggtitle("Survival Rate by Title")
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So Royalty (big surprise), those with Master in their title, and the titles associated with

women, all had a more likely chance of survival.

24.4 Missing Data

So far we have not looked much at missing data. We can use map_dbl to locate the places

in numerical data where there are missing values.

titanic5 %>% map_dbl(~sum(is.na(.)))

## PassengerId Survived Pclass Name Sex Age
## 0 418 0 0 0 263
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## SibSp Parch Ticket Fare Cabin Embarked
## 0 0 0 1 1014 2
## Gender Title
## 0 0

The 418 folks missing data in Survived are just our test set. The other big missing

are the Cabin and the Age. Because so many of these are missing, we should be wary of

trying to model based on the Cabin variable, especially since we also the passenger class

anyway.

Speaking of which, let’s see how the passenger faired by the class of their ticket.

titanic5 %>%
filter(!is.na(Survived)) %>%
ggplot(aes(x = Pclass, fill = Survived)) +
geom_bar(position = "fill") +
ylab("Survival Rate") +
geom_hline(yintercept = 0.3838, col = "white", lty = 2) +
ggtitle("Survival Rates by Passenger Class")
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Not exactly a huge surprise there.
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24.5 Fare

Now let us take a look at the survival rate versus the fare. This is slightly more informative

than the passenger class, since the fare is a numerical variable. So instead of using a bar

plot like we have been, we can use a kernel density plot to try to visualize what is going on.

titanic5 %>%
filter(!is.na(Survived)) %>%
ggplot(aes(x = Fare, fill = Survived)) +
geom_density(alpha = 0.4) +
ggtitle("Density Plot of Fare related to Sruvival")
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The fares go way out to the right in this data set. That is emblematic of heavy-tailed
data. The price of a �rst class ticket can be order of magnitude higher than a typcial third

class ticket. This type of behavior never shows up in light-tailed data such as that coming

from the normal distribution.

This happens because things like prices tend to grow exponentially over time. So the

di�erence between a steerage class ticket and a �rst class ticket can be exponentially

far apear. An easy way to convert heavy-tailed data to light-tailed is to take the natural

logarithm of the data.

titanic5 %>%
filter(!is.na(Survived)) %>%
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ggplot(aes(x = log(Fare), fill = Survived)) +
geom_density(alpha = 0.4) +
ggtitle("Density Plot of Fare related to Survival")

## Warning: Removed 15 rows containing non-finite values (stat_density).
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Now it is clear that higher ticket prices translated into higher survival rates. How about

age? Were the old and young treated better?

titanic5 %>%
filter(!is.na(Survived)) %>%
ggplot(aes(x = Age, fill = Survived)) +

geom_density(alpha = 0.4) +
ggtitle("Density Plot of Fare related to Survival")

## Warning: Removed 177 rows containing non-finite values (stat_density).
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Here Age is not a heavy tailed-value, it is light-tailed. So no need for the logarithm.

Moreover, great age did not seem to confer any bene�t, to the contrary, it was those in

their twenties who did the best. Being a child did give a slight boost, however.

24.6 Building a model

Now that we have an idea of what variables might be useful in predicting the survival

rates, it is time to build a model.

train1 <- titanic5 %>%
filter(!is.na(Survived))

Now we have to pick which model to use. For this example, I will use a conditional
inference tree. Any type of tree model operates by partitioning the data space into pieces

and then looking for regions where the survival rate is high.

For instance, the partition might be by passenger class, or by gender. The tree uses

non-arametric statistical tests in order to decide which factor to split the space on next.

We will use the cforest function in the partykit package to accomplish this. This

package operates randomly. To make sure that I get the same model each time, I will set

the seed for the random number generator to a constant.

set.seed(123456)
library(partykit)
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## Warning: package ’partykit’ was built under R version 3.5.3

## Warning: package ’libcoin’ was built under R version 3.5.3

## Warning: package ’mvtnorm’ was built under R version 3.5.2

Now we build the model. Note this could take a while, depending on the size of the data

set.

cf_model1 <- cforest(Survived ~ Fare, data = train1)

Once this model is �nished building, we will use the functions from the modelr package

to test it.

library(modelr)

## Warning: package ’modelr’ was built under R version 3.5.3

Now we can use add_predictions to make predictions about the model.

train1_pred <- train1 %>%
add_predictions(cf_model1)

## Warning in model.frame.default(object$predictf, data = newdata, na.action =
## na.pass, : variable ’Survived’ is not a factor

Since add_predictions creates a new variable named pred, we can compare the

predictions to the actual data as follows.

train1_pred %>% select(Survived, pred)

## # A tibble: 891 x 2
## Survived pred
## <fct> <fct>
## 1 No No
## 2 Yes No
## 3 Yes No
## 4 Yes Yes
## 5 No No
## 6 No No
## 7 No No
## 8 No No
## 9 Yes Yes
## 10 Yes Yes
## # ... with 881 more rows
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They are similar, but not exact. Let us look at how often the prediction matched the true

value in the training set.

train1_pred %>%
mutate(right = (Survived == pred)) %>%
summarize(mean(right))

## # A tibble: 1 x 1
## ‘mean(right)‘
## <dbl>
## 1 0.749

So just by using the Fare of the ticket, we have improved our accuracy to 75.85%, at least

on the training data. Can we do better? Let us put a few more predictors in our model.

train1

## # A tibble: 891 x 14
## PassengerId Survived Pclass Name Sex Age SibSp
## <dbl> <fct> <dbl> <chr> <chr> <dbl> <dbl>
## 1 1 No 3 Brau~ male 22 1
## 2 2 Yes 1 Cumi~ fema~ 38 1
## 3 3 Yes 3 Heik~ fema~ 26 0
## 4 4 Yes 1 Futr~ fema~ 35 1
## 5 5 No 3 Alle~ male 35 0
## 6 6 No 3 Mora~ male NA 0
## 7 7 No 1 McCa~ male 54 0
## 8 8 No 3 Pals~ male 2 3
## 9 9 Yes 3 John~ fema~ 27 0
## 10 10 Yes 2 Nass~ fema~ 14 1
## # ... with 881 more rows, and 7 more variables:
## # Parch <dbl>, Ticket <chr>, Fare <dbl>,
## # Cabin <chr>, Embarked <chr>, Gender <fct>,
## # Title <fct>

cf_model2 <- cforest(
Survived ~ Gender + Age + Fare + Pclass + Title,
data = train1

)

Now let us see how we did!
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train1_pred2 <- train1 %>%
add_predictions(cf_model2)

## Warning in model.frame.default(object$predictf, data = newdata, na.action =
## na.pass, : variable ’Survived’ is not a factor

train1_pred2 %>%
mutate(right = (Survived == pred)) %>%
select(PassengerId, Survived, pred, right) %>%
summarize(mean(right))

## # A tibble: 1 x 1
## ‘mean(right)‘
## <dbl>
## 1 0.860

We matched it 86.3% of the time with the extra information about the passenger. Of

course, the model parameters were �tted to the training set, which means that this model

is unlikely to do as well when applied to the test data set.

Only one way to �nd out: use the model to make predictions for the test set. First we

get these values.

test1 <- titanic5 %>%
filter(is.na(Survived))

test1

## # A tibble: 418 x 14
## PassengerId Survived Pclass Name Sex Age SibSp
## <dbl> <fct> <dbl> <chr> <chr> <dbl> <dbl>
## 1 892 <NA> 3 Kell~ male 34.5 0
## 2 893 <NA> 3 Wilk~ fema~ 47 1
## 3 894 <NA> 2 Myle~ male 62 0
## 4 895 <NA> 3 Wirz~ male 27 0
## 5 896 <NA> 3 Hirv~ fema~ 22 1
## 6 897 <NA> 3 Sven~ male 14 0
## 7 898 <NA> 3 Conn~ fema~ 30 0
## 8 899 <NA> 2 Cald~ male 26 1
## 9 900 <NA> 3 Abra~ fema~ 18 0
## 10 901 <NA> 3 Davi~ male 21 2
## # ... with 408 more rows, and 7 more variables:
## # Parch <dbl>, Ticket <chr>, Fare <dbl>,
## # Cabin <chr>, Embarked <chr>, Gender <fct>,
## # Title <fct>
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Now we make our predictions.

test1_pred2 <- test1 %>%
select(-Survived) %>%
add_predictions(cf_model2)

## Warning in model.frame.default(object$predictf, data = newdata, na.action =
## na.pass, : variable ’Survived’ is not a factor

test1_pred2

## # A tibble: 418 x 14
## PassengerId Pclass Name Sex Age SibSp Parch
## <dbl> <dbl> <chr> <chr> <dbl> <dbl> <dbl>
## 1 892 3 Kell~ male 34.5 0 0
## 2 893 3 Wilk~ fema~ 47 1 0
## 3 894 2 Myle~ male 62 0 0
## 4 895 3 Wirz~ male 27 0 0
## 5 896 3 Hirv~ fema~ 22 1 1
## 6 897 3 Sven~ male 14 0 0
## 7 898 3 Conn~ fema~ 30 0 0
## 8 899 2 Cald~ male 26 1 1
## 9 900 3 Abra~ fema~ 18 0 0
## 10 901 3 Davi~ male 21 2 0
## # ... with 408 more rows, and 7 more variables:
## # Ticket <chr>, Fare <dbl>, Cabin <chr>,
## # Embarked <chr>, Gender <fct>, Title <fct>,
## # pred <fct>

We used “No” and “Yes” for Survived earlier to make the bar plots more informative.

But to submit to Kaggle, the factor levels need to be named the same way they were initially.

The following does the trick.

cf_model2_solution <-test1_pred2 %>%
select(PassengerId, Survived = pred) %>%
mutate(Survived = fct_recode(Survived, "1" = "Yes",

"0" = "No"))
cf_model2_solution

## # A tibble: 418 x 2
## PassengerId Survived
## <dbl> <fct>
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## 1 892 0
## 2 893 0
## 3 894 0
## 4 895 0
## 5 896 1
## 6 897 0
## 7 898 1
## 8 899 0
## 9 900 1
## 10 901 0
## # ... with 408 more rows

Now we write it out to a comma separated �le:

write_csv(cf_model2_solution, "cf_model2.csv")

When submitted to Kaggle, this model returns a score of 77.511%. Much better than the

baseline, but much worse than the result for the �tted training data.

24.7 Considerations

When you are constructing a model for your data, there are two primary goals you are

looking for.

1. Accuracy of predictions (small residuals).

2. Simplicity of the model.

These are usually at cross purposes. The more complicated the model, the closer you can

�t your data in your training set. However, this can lead to over�tting, when you have too

many parameters in your model. These types of models tend to be brittle, in the sense that

the model, when faced with data outside of the carefully modeled observations, completely

falls apart.

How can you know when you have over�tted you model? It is not east. There are

statistical test that you can use, but essentially it boils down to experience and an awareness

that you should always keep in mind the following. Make a model as sophisticated as it

needs to be to capture the features of the data you are interested in, and not more complex

than that.

Another thing to keep in mind: these models only give predictions through correlation.

Typically they do not say that the variables cause the left hand side to be the value it is.

In the Titanic model, we have social reasons why someone with a �rst class ticket might

be more likely to survive. So that is why it is important when working with data from

a domain (such as economic, medical, or sociology) to have some knowledge of how the

domain works in order to understand what is causing what in our models.
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Machine learning

Summary

Machine learning is the term for algorithms that learn from the data how to build a

model.

Modeling

lm Create a linear model.

rlm Creats a robust linear model less sensitive to outliers.

svm Creates a support vector maching model.

glm With family = "binomial", does logistic regression.

Introduction

So far we have been using a traditional approach to modeling and predicting. Visualize

and try to understand the data, and then build an explicit model that picks out the factors

that are most important in getting the response.

Machine learning is an alternate approach to this traditional procedure.

De�nition 83
Machine learning is the area of computer science that deals with algorithms designed

to learn from datasets how to accomplish various tasks.

A good machine learning algorithm will improve its results as more data is fed into

the system. We often say that the algorithms gain experience as they learn from the data.

There are still models in machine learning, but they are designed to be much more �exible

than the classic linear models. Often machine learning algorithms go beyond just �tting

parameters to deciding the more basic question of which factors serve as the best predictor

variables in the �rst place.

The four main tasks of machine learning are the following.

1. Classi�cation. In this case, our response is a categorical variable with a �nite set

of possibilities. We want to know which possible outcome is the best class for our

observation.
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2. Prediction. This applies when our response is numerical. Here we are usually trying

to minimize some measure of how far away our prediction is from the true answer.

3. Density estimation. Often our observations do not have factors spread over all possible

values, but instead concentrate in a particular area. The goal here is to understand

where the density of input values is highest.

4. Pattern recognition. Our observations are in general very high dimensional. For

instance, a photograph might have 16 million pixels. A 16 million dimensional model

is too much to handle! Instead, we look for lower dimensional behavior within the

set of model. This allows us to project the data onto a much lower dimensional data

set.

Remember in its most basic form, a model is a mathematical function:

(y1, y2, . . . , yk) = f(x1, x2, . . . , xp) + ε.

In machine learning, the function f is created partially by looking at the data itself.

There are two types of machine learning.

De�nition 84
In supervised learning we have a training set that has labeled data. For each set of

possible predictors, the output is known in the training set.

De�nition 85
In unsupervised learning there is no labeled dataset. The goal is learn about the data

solely from the data values themselves.

Some common methods for supervised learning include:

• Decision Trees and Random Forests

• Linear Regression

• Logistic Regression

• Boosting

• Support Vector Machines

• Bayesian Classi�ers/Bayesian Networks

• Neural Networks

• Deep learning

Some common methods for unsupervised learning include:
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• Clustering

• Anomaly detection

• Topic modeling

• Neural Networks

25.1 Supervised learning

Let’s break down some of these methods into more detail.

Decision Trees and Random Forests

In this method, the goal is to split the state space of inputs into two equal parts, where the

response variable is as similar as possible to each other over the space.
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In the data above, there is a clear break in the y values for x < 5 and x ≥ 5. On either

side of this split, the y values are much closer to one another.

De�nition 86
Each node of a decision tree breaks the input space into two pieces where the response

is closer to its center in each of the two trees than in the overall space.

In the toy example above, the decision tree idea works very well. Unfortunately, in

real data it can be prone to over�tting. To solve this problem, a random forest works by

performing the decision tree process multiple times. Each time a tree is created, a bit of

randomness is intentionally injected into the tree process.

The set of trees together is called a random forest. When a user then inputs a new

observation and wants a prediction of the response, each tree is run separately. The �nal
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result can then be found by looking at the level most commonly seen for categorical

response, or the average of the predictions from each tree for a numerical response.

De�nition 87
A random forest is a collection of decision trees where at each step in their formation,

some random choices were made.

It is well known that a survey of a group of individuals can sometimes perform better

than a single expert on a topic. Each individual member of the group has less information

about the subject, but some are biased high and some are biased low as to the true answer.

By averaging their information, the result is often better than a single person whose biases

are unknown. This phenomenon sometimes goes by the name wisdom of the crowd.

In the same way, each individual decision tree in the random forest might be biased

towards some response or another based on how it was created. However, since the process

has been done randomly multiple times, some trees will be biased in a certain way while

some trees will be biased in the opposite way. Together their average is close to the true

value.

Linear regression

The nice thing about random forests is that we need to know very little about the structure

of the data in order to make accurate predictions. If we do no more about the structure of

the data, then a linear regression model might be in order.

For instance, consider the following data set.

y2 <- 3 + x + rnorm(length(x), 0, 0.5)
tibble(x, y2) %>%

ggplot(aes(x, y2)) +
geom_point()
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A decision tree would have to break this down into many pieces to get an accurate

read, while a simple linear model does better with only a slope parameter and y-intercept

parameters.

De�nition 88
Suppose we have n observations and p predictor variables. Call the column vector of the

response variable values Y . Then form a model matrix whose i, (j + 1)th entry is the

value of the jth predictor variable in the ith observation, and whose i, 1 entry is always

1. Then the model

Y = Xβ + ε,

where Y is an n by 1 matrix, X is an n by p+ 1 matrix, β is a p+ 1 by 1 matrix, and

ε is an n by 1 matrix. This is called a linear model of the data, and β are called the

parameters of the model.

One reason that linear models are widely used is that if our goal is the minimize the sum

of the squares of the ε, it is possible to solve for the β values exactly given Y and X . If

there are many observations and predictors, these computations can still take a long time,

however, it is still possible to approximate the values of β that is the best �t.

Logistic regression

Linear models do better with numerical data and decision trees do better with categorical

data. Is there a way to use linear models for categorical data? Consider the best least

squares �t for the following data where the response is either 0 or 1.

library(modelr)
y3 <- (runif(length(x)) < (.3 * (x < 5) + 0.7 * (x > 5))) + 0
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mod1 <- lm(y3 ~ x)
df3 <- tibble(x, y3)

df3_pred <- df3 %>%
add_predictions(mod1)

tibble(x, y3) %>%
ggplot(aes(x, y3)) +

geom_point() +
geom_line(data = df3_pred, aes(x, pred), color = "red",

lwd = 1)
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Instead of directly modeling the data using a linear model, we let p be the probability

that the data is 1, 1− p be the probability that it is 0.

De�nition 89
If the probability of one outcome is p, and the probability of another outcome is 1− p,

then the logit function is the logarithm of the odds of the �rst outcome to the second

outcome. That is,

logit(p) = log

(
p

1− p

)
.

Note that logit(p) can be any positive or negative real number. The idea of logistic

regression is to model logit(p) as

logit(p) = log

(
p

1− p

)
= β0 + β1x1 + · · ·+ βpxp.
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In R, we can create such a model with the glm, generalized linear models function. First

we make sure that R knows that we are dealing with a categorical variable by making the

data a factor.

df4 <- df3 %>%
mutate(y = factor(y3))

## Warning: package ’bindrcpp’ was built under R version 3.5.2

mod_logit <- glm(y ~ x, data = df4, family = "binomial")

Now we create the new model

df4_pred <- df3 %>%
data_grid(x) %>%
add_predictions(mod_logit, type = "response")

# mutate(pred = predict(mod_logit, newdata = ., type = ’response’))

df4_pred

## # A tibble: 101 x 2
## x pred
## <dbl> <dbl>
## 1 0 0.0725
## 2 0.1 0.0759
## 3 0.2 0.0794
## 4 0.3 0.0831
## 5 0.4 0.0869
## 6 0.5 0.0909
## 7 0.6 0.0950
## 8 0.7 0.0993
## 9 0.8 0.104
## 10 0.9 0.109
## # ... with 91 more rows

Graphing this is a bit tricky. We use as.numeric to convert the labels 0 and 1 to

numbers. The numbers will be 1 and 2 (if we had three levels the numbers would be 1, 2,

and 3.) So we subtract 1 to get them back to 0 and 1.

ggplot(data = df4, aes(x)) +
geom_point(aes(y = as.numeric(y) - 1)) +
geom_line(data = df4_pred, aes(x, pred), color = "red", lwd = 1) +
scale_y_continuous(’default’, breaks = 0:1)
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A simple prediction method is then: if p ≥ 0.5 predict 1, otherwise predict 0. Note that

this is very close to what the decision tree would do for this data set.

Other methods

There are many other approaches as well to supervised learning.

Boosting
Boosting tries to improve methods such as logistic regression by repeating them over

multiple levels of prediction. We begin with some weak classi�er that does not over�t.

Logistic regression is often used for this.

At this point, if we just look at the predictions for our classi�er on our training data

set, we have made mistakes. So build a second classi�er that gives more weight to the

observations where we were mistaken. This gives us a second classi�er.

We can repeat this process to obtain a family of classi�ers. Now, just as in the random

forests, we can run each of these classi�ers to obtain a family of predictions. Then go with

the prediction that is most popular among the family.

Support Vector Machines
A support vector machine classi�es by trying to split the data into two groups using a

hyperplane. In some cases, this is very easy, and the hyperplane can be used directly.

In other cases, the groups are separated by a curve. In order to deal with data like this,

we need to develop a feature, a function of the predictors that gives a new predictor. Then

we apply the hyperplane to this new feature.

De�nition 90
A feature is a new predictor whose value is a function of other predictors.
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Bayesian Classi�ers/Bayesian Networks
Suppose we know given which class we are in, the probability of certain predictor

values appearing. Then Bayes Rule allows us to turn this around: given that we say certain

predictor values, what is the chance that we are in a particular class.

These methods are in some sense the gold standard of classi�cation. However, applying

Bayes’ Rule to complex models is computationally very expensive.

So often instead of a general model we make simplifying assumptions. The most basic

assumption is that the predictors are conditionally independent given the class of the

observation. That is, once we know which class we are in, all the predictors are independent

of each other! Although this is a very powerful assumption, it can actually give models

that are very useful for making predictions.

Neural Networks
A neural network tries to understand how the input and output variables of a model

connect through a graph. In mathematics, a graph consists of nodes (also called vertices)

that are connected by edges. Inputs to nodes become outputs to other nodes through the

weights on the edges.

This process was inspired by biological neurons, which �re to other neurons when they

are excited. Although mathematical neural networks are somewhat di�erent from this

process, the name has stuck, which is why they are called neural networks.

By using the data in observations, the weights on the edges are �ne-tuned to make the

�nal output of the graph equal to the input.

Deep Learning
Neural networks turned out to be di�cult to use in complex situations. However, by

�rst broadening the classi�cations to larger groups, a neural network works quite well.

Then these broader classes can be re�ned. Do this three or four times, and we can get back

to the original classes that we had in mind.

This is the basic idea behind deep learning. Use a nested set of neural networks (or other

models) to slowly move from the input space to the output space. This idea has proved

especially e�ective in areas such as computer vision, speech recognition, and natural

language processing where the data naturally lends itself to large groups, then smaller

more re�ned groups.

25.2 Unsupervising learning

In unsupervised learning, we are not given any labeled data. It is up to the algorithm to

construct the classes that the observations fall into.

Clustering

An example of this type of learning is cluster analysis or more simply, clustering. Here

the goal is to determine which observations in the sample space are close together to one

another.
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As with most models, there is no one “right clustering”. Instead, di�erent clustering

algorithms will achieve di�erent results. In the end, the question is whether or not the

clustering is useful for the purposes that the person analyzing the data is trying to achieve.

For example, a simple way to cluster is to calculate for observations which are numerical

n-tuples the distance between each pair of points. Then for a given threshold value, connect

any pairs of points whose distance is below that threshold. The number of clusters equals

the number of points when the threshold is 0, and decreases as the threshold is raised.

Another type of clustering is based upon kernel density estimation. Here a normal density

is placed on top of each point in the data set and then added up. For instance, suppose we

have some x values drawn using a normal distribution centered at 3, and others draw using

a normal distribution centered at 8. Then the kernel density plot might look as follows.

x <- c(rnorm(50) + 3, rnorm(150) + 8)

ggplot() +
geom_density(aes(x))
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This kernel density plot has two local maxima, which separated the data points into two

clusters. More generally this idea is known as density-based clustering.
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Chapter 26

Exploration: introduction to R

Summary

This lab is an introduction to the R programming environment using RStudio, with a goal

of learning about how to submit commands, write scripts, and create documents using R

Markdown. In this lab, your will learn about

• The console: where you can directly enter commands into the R programming

environment.

• R Markdown: a light markup language that you can use to include R code in your

typeset documents.

• LATEX: how to add mathematics to your R Markdown document using LATEX.

• Packages and libraries: how to expand what R can do through packages and libraries.

• pdf output: how to have R Markdown create a .pdf �le instead of HTML output.

• notebooks: how to use your R Markdown �le as a notebook

• functions: how to write basic functions in R Markdown

Instructions

This lab is a tutorial for using the R programming environment. It does not assume any

prior knowledge about R. You are welcome to ask questions of myself or your neighbors

during the lab. When you are done, please answer the questions at the end of the lab and

turn it in. If you have not �nished the lab by the end of the period, please complete the lab

outside of the time and turn it in the next class period.

The console

Begin by starting RStudio on either your desktop computer or laptop if you brought it. If you

have not yet installed R on your laptop, you can obtain R from h�ps://www.r-project.org/
and RStudio from h�ps://www.rstudio.com/.

Once you start RStudio, you will various windows called panes. One of these panes will

have a tab marked Console. By default it appears at the left pane or lower left pane. Type

the following three commands into the console and hit return after each one.
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x <- 8
y <- -6
x + y

The <- that appears in the commands is the assignment operator in R. The command

x <- 8 tells R that moving forward, we want to assign the value of 8 to x. In the upper

right pane there is a tab labeled Environment. In this pane there should be a part labeled

Values that now tells us that x is 8.

The second command assigned the value -6 to y. The last command then added the two

numbers together, and printed the result to the console. It should have looked like

[1] 12

The [1] part indicates that the result is a vector, and one this line the �rst component

of the vector is given. Of course, this result is a number, that is, a vector of length 1. So

there only is the �rst component! To see what happens with a result that is a vector with

more components, try

seq(100, 1, by=-1)

which generates a length 100 sequence of numbers starting at 100, going down to 1 and

changing by -1 at each step.

Any command, function or variable built in to R has help information that can be

accessed by putting a question mark in front of the command. Try

?seq

to get the help for the seq function.

The seq command creates a variable that is a vector. Often we just want a vector like

(1, 2, 3, 4, 5). A shorthand for the command seq(a, b, by = 1) is 1:5.

Try

1:100

You can also manually create your own vectors. Try

x <- c(6, 2, 3)

to get a vector of length 3. Most calculator commands such as+ (addition), - (subtraction),

* (multiplication), / (division), ˆ (raising to a power) operate on each component at a time.

Try
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x <- c(-1, 2, 3)
2*x
x^2
x^(1/2)

Note that the �rst result for the last command was NaN which stands for Not a Number.
This is the result since the square root of -1 is not a real number.

The most often used statistical operations on a vector are length (how many numbers

in the vector are there), sum (adds the numbers), mean (adds the numbers then divides by

the length of the vector), and sd (�nd the sample standard deviation of the numbers). Try

mean(x)
sd(x)

to get the mean and sample standard deviation of (−1, 2, 3).

Questions

1. What command generates a sequence from 2 to 50 changing by 2 at each step?

2. What commands would assign the value 7 to z, 8 to w, and then print their product?

3. What command would �nd the square of the numbers (−1, 4, 2)?
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R Markdown

R Markdown allows you to create professional looking reports that include the use of R

code. It also helps by having you break up your code to make it easier to understand.

In general, a markup language allows you to use a text �le to create a document that

will be typeset by an appropriate application. For instance, LATEXis an extremely powerful

markup languge know for its ability in typesetting mathematics, and hypertext markup

language (HTML) is the standard for typesetting webpages.

Markdown is a markup language that (as the down part of the name implies) was

intended to be extremely simple to use. R Markdown is an implementation of markdown

that is designed speci�cally for working with the R programming environment.

We can get started with R Markdown in a fashion similar to when we wrote our �rst

script. Use

File→ New File→ R Markdown

to open a new R Markdown �le. The �rst thing is a window will pop that asks for a title,

and asks you to choose one of three publishing options, HTML, pdf, or Word. In fact,

both these options can be changed later, so don’t feel that you are locking yourself in by

choosing at this stage. For now, title your new document Lab 1 and use HTML.

In the newly created pane (entitled Untitled 1), the �rst six lines are put in by default

using a form which is called a serialization language. The di�erence between this and a

markup language is that it is the syntax of the lines that determines the result. You cannot

just (for instance) start a new section in a serialization language. For instance, you can see

a line that begins title: and author:.

This particular format is called YAML, which stands for YAML Ain’t Markup Language.

This is a perfect illustration of a recursive acronym because it contains itself in its own

abbreviation. The YAML heading is followed by three strange lines of code. These set

certain defaults for how code will be displayed in your document, and you don’t have to

worry about them for now.

Next you will see a line that reads

## R Markdown

The two ## symbols (read as number sign or hashtag) indicate that R Markdown is

a section heading. Since there are two # symbols, it is a level 2 header. To see how this

works in practice, try pressing the Knit button that appears in the pane right below the

list of �les that are open. First RStudio will ask you to save your �le, use markdown1 for

now. RStudio will automatically add the standard .Rmd �le extension to whatever name

you give it. Next, RStudio will knit together your �le and open it in a new window.

This is an HTML document that you can print to pdf or use on a webpage or send to a

collaborator.

One of the next things you’ll see is something called a code chunk. Such a chunk starts

with “‘, ends with “‘, and the command in between (summary(cars)). In the HTML

generated by knit, you see the command against a grey box, and then the consequences of

the command in a white box.
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Try changing the {r cars} part of the line to {r cars, echo = FALSE} and

reknit the document. You can see that it still shows the output generated by the command,

but does not copy the command itself into the HTML document. Now change it to {r
cars, results="hide"}. You can see that now we see the code itself, but not the

results of the code.

If you change it to {r card, include = FALSE}, then neither the code nor the

results of the code will appear, but the code will still be evaluated.

The next code chunk in the default R Markdown �le is a plotting command. If you do not

like the default size of the plot generated, the fig.width and fig.height commands

come in handy. Try altering the code chunk to say the following and see what happens to

the size of the �gure created when you knit the document.

‘‘‘{r, echo = FALSE, fig.height = 4, fig.width = 8}
plot(pressure)
‘‘‘

Questions

4. Modify the last code chunk to make the �gure twice as high as it was before.

Simple markdown

Markdown also lets you easily modify text. Surround a word with a * in order to emphasize
that word. Try putting

Emphasis given to *this* word.

into your R Markdown document, and see what happens when you knit it.

Similarly, to make a word bold, put two asterisks at the beginning at end.

Fortune favors the **bold**.

Bulleted lists can be created by starting each line with an asterisk.

* First item

* Second item

* Third item

If you leave lines between your bulleted items, that will put more space in your bulleted

list.
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* First item

* Second item

* Third item

Numbered lists are similar. You can either number the list yourself:

1. First item
2. Second item
3. Third item

or you can let R Markdown number things for you:

@. First item
@. Second item
@. Third item

Mathematics and LATEX

Mathematics can be added to an R Markdown format using LATEX. There are two types of

mathematics that you can create. The �rst is called inline mathematics and to create it,

you surround the math with dollar signs. Try adding

This is inline math $a + b$.

anywhere in the markdown1 document. Knit together to see the result.

The other type of mathematics is display style. To create this type of math, we do

something like

\[
a + b.
\]

Try adding this line to the markdown document and knit to see the result.

Most of the symbols and notation of mathematics can be created in LATEXby using the

backslash, \ followed by the command. For instance, less than or equal to is \leq, so

$a \leq b$

creates a ≤ b. Most of the Greek letters are in LATEX, and can be modi�ed in various

ways. So

$\bar\mu$

yields µ̄ for instance.
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Questions

5. Google to �nd the LATEXcommand that generates sin(x), the sine function.

6. Google (or think about how \leq gives ≤) to �nd the LATEXcommand that generates

the symbol ≥.

7. A useful link is h�p://detexify.kirelabs.org/classify.html. Use this website to �nd the

LATEXcommand that gives the capital Greek letter pi, Π.

Libraries

Libraries (which are also known as packages) give users a way to expand what the R

programming environment can do by adding in new functions, commands, and variables.

For instance, by using the proper package we can add the ability to knit together your

document from the console. Using libraries/packages requires a two step process:

1. First make sure that the library is part of the software installation of R. This can be

accomplished using the command install.packages("nameofpackage").

This only needs to be done once for your R installation. Once you’ve installed a

package, it can be used on your computer until you uninstall R.

2. Second, each time you start the program R, you need to load the package into R. This

can be done with the command libarary(nameofpackage). Note that in the

install.packages command we used quotes, and in this command we do not.

Let’s practice this by using the library rmarkdown, which will add the ability to render

from the console.

install.packages("rmarkdown")

If the package is installed already, this will try to update the package to the latest version.

To begin, type the command
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library(rmarkdown)

into the console. This will load the package rmarkdown into the R programming

environment so that we can use it moving foward.

At this point, you can use the render command (instead of the knit button) to knit the

document together:

render("~/markdown1.Rmd")

Important note: The above command uses the ~ symbol, which refers to the default

home directory for R. It will fail if your markdown1.Rmd �le is not in that directory. For

instance, if you are using an Apple machine and saved your �le on the Desktop, you would

use

render("~/Destop/markdown1.Rmd")

instead.

Use can use the menu option

File→ Save as...

to locate under which directory you have placed your �le.

Notebooks

R Markdown �les also operate as a notebook. A notebook is a list of commands that

include code chunks that can be evaluated individually. Go back to your markdown1.Rmd
�le. If you press the little green play arrow to the right of the cars code chunk, then

the summary(cars) command in the chunk will be evaluated. This will immediately

display the results below the code chunk. This allows you to play around with code on a

chunk-by-chunk basis so you don’t have to knit the whole thing together every time you

make a change.

In the subwindow displaying the result of the code chunk, in the upper right corner is a

tiny x that you can press to close the subwindow again.

Often your code chunks will depend up code chunks above the one you are looking at.

To the left of the green play arrow is another button that when pressed, not only evaluates

that code chunk, but also every code chunk above it. This can be helpful when your current

code chunk depends on the higher up chunks being evaluated.

Question

8. Create a code chunk that �nds the square root of 13, and play that code chunk. What

is the result?
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26.1 Bonus Lab

If you’ve made it this far great! If you have time remaining, then please continue working

on this bonus lab material. If you are out of time, you can turn in your lab at this point to

receive full credit.

Functions

Commands like sum and mean are actually functions in R. Now we will discuss how to

create your own functions. First, just as with numbers, we assign functions to a name using

the assignment operator <-. The di�erence between a function and a set of commands is

that a function has input variables and can return a single variable. Consider the following

function in R.

add <- function(a = 2, b = 4) {
s <- a + 2*b
return(s)

}

Now that this function has been de�ned, we can use it in commands.

add(5, 6)

## [1] 17

The two input variables here are a and b. The return variable is s. Note that I gave

default values for the parameters a and b. So if I don’t specify those parameters, then they

get their default values. Also, I do not have to give the variables in order, I can rearrange

them by specifying the name. Try the following to see how these ideas work in practice.

add(5)
add(b = 2)
add(4, -10)
add(b = -10, a = 4)
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Questions

9. What does add(0, 10) return?

10. Create a function that takes two inputs x and y, and returns xˆy.

pdf output

Up until now, we have been working with HTML, which is great for websites, not so great

for reports, articles, and books. These types of documents typically are broken up into

pages, while HTML tends to create one long document.

A di�erent markup language is LATEX, and once its compiler is installed, we can use R

Markdown to create .pdf �les with pages.

In order for R Markdown to knit to a .pdf �le, we need to have a version of TEXinstalled.

If you have LATEXinstalled on your computer, then you can skip the following step.

If you do not already have LATEXinstalled, the easiest way to install it is to use the

tinytex package. Unfortunately the installation procedure does not always work for all

systems, but let us give a try! Here is what to do. First, use the commands

install.packages("tinytex")
library(tinytex)
is_tinytex()

If the answer is FALSE, then we can install tinytex with

install_tinytex()

At this point, hopefully you have a working TEX$installation that R Markdown can

connect with. Otherwise, you just won’t be able to complete the bonus lab work.

Assuming that LATEXis installed, we need to tell R Markdown to make a .pdf rather than

an HTML document. In the YAML heading, change the last line to
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output: pdf_document

If you knit the document now, it will tell the application pandoc to create an HTML �le.

It is possible that you will need to have RStudio load a package when creating this �le. R

Markdown utilizes the pd�atex compiler to do this. Therefore, once you change the output

to pdf format, if you are familiar with LATEXcommands, then you can any such code and it

should compile. For instance, try adding

\begin{center}
This is a test of pdf document mode.

\end{center}

and see what happens when you compile.

Questions

11. See if you can recreate the following pdf document. You do not need to record your

entire .Rmd document, just note if you succeeded.
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26.2 Useful Links

Some links that you might �nd useful as you learn R, R Markdown, and LATEX.

• Basic R cheat sheet: h�ps://www.rstudio.com/wp-content/uploads/2016/10/
r-cheat-sheet-3.pdf

• Reference for R Markdown: h�ps://rmarkdown.rstudio.com/authoring_basics.html

• Reference for LATEXsymbol commands: h�ps://oeis.org/wiki/List_of_LaTeX_
mathematical_symbols

• Find a LATEXsymbol by drawing it: h�p://detexify.kirelabs.org/classify.html
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Chapter 27

Exploration: Using graphical grammars
in the tidyverse

Summary

In this lab you will learn how to create many of the common visualizations using the

ggplot2 package.

Setup

First let’s make sure that the ggplot2 package has been installed. Try

library(ggplot2)

If you receive an error when you try this command, you might have to install the package

using

install.packages("ggplot2")

Once you have completed the installation, try the library(ggplot2) command

again.

Sca�erplots

Our code for graphs begins with a call to the ggplot function. This sets up the canvas

upon which we shall create our graphs. Next we use various geom_ functions to say how

the data is to be presented.

g1 <- ggplot(data = midwest, aes(x = area, y = poptotal)) +
geom_point(aes(col = state, size = popdensity))

g1
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Questions

1. What is the data set that is being plotted?

2. How many U.S. states are represented in the data?

Changing labels

There are many ways to change the x and y labels on the plot. One can use the labs
function, which transforms the plot and allows for changing everything from the axis

labels to the title.

g2 <- g1 +
labs(subtitle = "Area Versus Population",

y = "Population",
x = "Area",
title = "Scatterplot",
caption = "Source: midwest")

g2
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Questions

3. What would you change to make the title "Example: Scatterplot"?

Changing the limits of the plot

Now let’s change the y-axis so that it only covers values up to 1,000,000, and the x-axis up

to 0.1.

g3 <- g2 +
xlim(c(0, 0.1)) +
ylim(c(0, 10^6))

g3

## Warning: Removed 5 rows containing missing values (geom_point).
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Questions

4. How many data points were removed by the restrictions on x and y?

Highlighting selected values

Suppose that we wanted to circle some of the values in this plot that have high populations,

say greater than 800,000. This can be done with the filter function from the dplyr
package to select the points and the geom_encircle function from the dplyr package

to draw the circle on the graph.

First let’s load in our libraries (remember that if they are not already installed on your

system, you will need to use the install.packages command to do that �rst.)

library(dplyr)
library(ggalt)

Okay, now let’s �lter out those points with a high population.

midwest_filter <- filter(midwest, poptotal > 8*10^5)
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Questions

5. How many data points have population greater than 800,000?

Now we encircle our points.

g4 <- g3 +
geom_encircle(aes(x=area, y=poptotal),
data=midwest_filter,
color="red",
size=2,
expand=0.04)

g4

## Warning: Removed 5 rows containing missing values (geom_point).

## Warning: Removed 4 rows containing missing values (geom_encircle).
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Questions

6. How many data points were encircled?

Kernel Density plots

Given data from a distribution, it is helpful to have a way of estimating the density of the

distribution. To see how this can be accomplished with ggplot2, �rst let us create some

random data. (Note that we use set.seed so that the random numbers generated are

the same every time you run the code.)

set.seed(1234)
df <- tibble(
gender = factor(rep(c("F", "M"), each = 200)),
weight = round(c(rnorm(200, mean=55, sd=5),

rnorm(200, mean=65, sd=5)))
)

df

## # A tibble: 400 x 2
## gender weight
## <fct> <dbl>
## 1 F 49
## 2 F 56
## 3 F 60
## 4 F 43
## 5 F 57
## 6 F 58
## 7 F 52
## 8 F 52
## 9 F 52
## 10 F 51
## # ... with 390 more rows

This simulates 200 draws for the weight of male subjects, and 200 draws for the weights

of female subjects.

The basic density plot in ggplot2 is called geom_density(). Try
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p <- ggplot(df, aes(x = weight)) +
geom_density()

p
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We can also add in a vertical line indicating the mean.

p + geom_vline(aes(xintercept = mean(weight)),
color = "blue", linetype = "dashed", size =1)

As with most geom functions, the color parameter changes the color of the line, while

fill changes the color of the area under the line.

ggplot(df, aes(x = weight))+
geom_density(color = "darkblue", fill = "lightblue")

This mix of normals is hiding the di�erence in average weight between men and women.

To break out the data, we need only declare that the two groups should be treated separately

in the plot:

ggplot(df, aes(x = weight, color = sex)) +
geom_density()

Questions

7. Use

values <- rexp(100,rate=2)
df <- data.frame(values)
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to generate some random data in the variable df. Write code to plot a kernel density

estimate and a vertical line at the sample mean.

8. Use the following code to examine the mpg of various cars using di�ering numbers

of cylinders.

theme_set(theme_classic())

# Plot
g <- ggplot(mpg, aes(cty))
g + geom_density(aes(fill = factor(cyl)), alpha=0.8) +

labs(title="Density plot",
subtitle = "City Mileage Grouped by Number of cylinders",
caption = "Source: mpg",
x = "City Mileage",
fill = "# Cylinders")

From your plot, which variable has more spread, the mpg with 5 cylinders, or the mpg

with 6 cylinders?

27.1 Bonus Lab

Moving the legend around

By default the legend is on the right hand side, but can be moved or eliminated with the

theme function.

p + theme(legend.position="top")
p + theme(legend.position="bottom")
p + theme(legend.position="none") # Remove legend
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Questions

9. Using the theme function, change the aspect ratio of the plot to 4:3.

Animation

You can add a �fth component to your plots by using animation which changes how much

information is displayed at each time step.

p <- ggplot(
airquality,
aes(Day, Temp, group = Month, color = factor(Month))
) +
geom_line() +
scale_color_viridis_d() +
labs(x = "Day of Month", y = "Temperature") +
theme(legend.position = "top")
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To animate this, we will need the gganimate package. We will also need the magick
package to see our animation in html.

library(gganimate)
library(magick)
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## Linking to ImageMagick 6.9.9.14
## Enabled features: cairo, freetype, fftw, ghostscript, lcms, pango, rsvg, webp
## Disabled features: fontconfig, x11

Now we can use the transition_reveal function to build an animated graph.

p + transition_reveal(Day)

Once you knit your code, you will be able to see your animation. Note that your code

will take a long time to knit, since it is not just generating one plot, but multiple plots!

Questions

10. What happens if you try to compile your document in pdf format instead of html?
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Exploration: Transforming data with
dplyr

Summary

In this lab you will learn how to manipulate data using the dplyr package.

• Start by loading in the dplyr library (installing the package �rst if necessary.)

# install.packages("dplyr")
library(dplyr)

• The dplyr package contains tools for manipulating data contained in a data.frame

or tibble. Let’s look at the starwars variable.

starwars

## # A tibble: 87 x 13
## name height mass hair_color skin_color eye_color
## <chr> <int> <dbl> <chr> <chr> <chr>
## 1 Luke... 172 77 blond fair blue
## 2 C-3PO 167 75 <NA> gold yellow
## 3 R2-D2 96 32 <NA> white, bl... red
## 4 Dart... 202 136 none white yellow
## 5 Leia... 150 49 brown light brown
## 6 Owen... 178 120 brown, gr... light blue
## 7 Beru... 165 75 brown light blue
## 8 R5-D4 97 32 <NA> white, red red
## 9 Bigg... 183 84 black light brown
## 10 Obi-... 182 77 auburn, w... fair blue-gray
## # ... with 77 more rows, and 7 more variables:
## # birth_year <dbl>, gender <chr>, homeworld <chr>,
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## # species <chr>, films <list>, vehicles <list>,
## # starships <list>

The data in this tibble consists of some of the characters that appear in the Star Wars

movies. Since it is 87 by 13, there are 87 data values, and 13 variables (also called factors).

Select

We might not be interested in all the variables, and the select function allows us to only

look at the variables that are important. For instance, if we only wanted the name, mass,

species, and homeworld, we could use

select(starwars, name, mass, species, homeworld)

The result is a tibble that just contains the 4 variables listed. We can also use helper

functions like starts_with, ends_with, and contains. Try

select(starwars, ends_with("color"))

to see the variables that end with the string "color", and

select(starwars, contains("a"))

to see those variables that have the string "a" somewhere in the name.

The �rst parameter we pass to select is the name of the variable, but it also possible

to use pipes to accomplish the same task. The following command pipes the variable

starwars into the select function:

starwars %>% select(contains("a"))

Questions

1. Give a command that returns the data from starwars that includes the factors:

name, gender, and homeworld.

2. Give a command that returns the factors of starwars that contains an "e". How

many such factors are there?
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Filter

First, let’s search for the droid characters. To �nd the droids that we are looking for, try

starwars %>%
filter(species == "Droid")

## # A tibble: 5 x 13
## name height mass hair_color skin_color eye_color
## <chr> <int> <dbl> <chr> <chr> <chr>
## 1 C-3PO 167 75 <NA> gold yellow
## 2 R2-D2 96 32 <NA> white, bl... red
## 3 R5-D4 97 32 <NA> white, red red
## 4 IG-88 200 140 none metal red
## 5 BB8 NA NA none none black
## # ... with 7 more variables: birth_year <dbl>, gender <chr>,
## # homeworld <chr>, species <chr>, films <list>,
## # vehicles <list>, starships <list>

Of course this search was practically instantaneous because there are so few rows of

data. In practice, there are often more data rows than variables. So it can be helpful to

insert a select function before the filter function. We then connect the select
function to the filter functin with a pipe.

starwars %>%
select(name, mass, species, gender) %>%
filter(species == "Droid")

## # A tibble: 5 x 4
## name mass species gender
## <chr> <dbl> <chr> <chr>
## 1 C-3PO 75 Droid <NA>
## 2 R2-D2 32 Droid <NA>
## 3 R5-D4 32 Droid <NA>
## 4 IG-88 140 Droid none
## 5 BB8 NA Droid none

Logical operators

We can also use �lters to search for more than one characteristic with the & logical operator.

This represents logical and, which is true only if both of the expressions are true. So

TRUE & TRUE equals TRUE, FALSE & TRUE is FALSE, TRUE & FALSE is FALSE,

and FALSE & FALSE is FALSE.

Try
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starwars %>%
select(name, mass, species, gender) %>%
filter(species == "Droid" & mass > 50)

## # A tibble: 2 x 4
## name mass species gender
## <chr> <dbl> <chr> <chr>
## 1 C-3PO 75 Droid <NA>
## 2 IG-88 140 Droid none

to �nd the droids that have mass greater than 50.

The logical operator | is true if either one (or both) of the expressions it connects is true.

So TRUE | TRUE equals TRUE, FALSE | TRUE is TRUE, TRUE | FALSE is TRUE,

and FALSE | FALSE is FALSE. Try

starwars %>%
select(name, mass, species, gender) %>%
filter(species == "Droid" | mass == 136)

## # A tibble: 7 x 4
## name mass species gender
## <chr> <dbl> <chr> <chr>
## 1 C-3PO 75 Droid <NA>
## 2 R2-D2 32 Droid <NA>
## 3 Darth Vader 136 Human male
## 4 R5-D4 32 Droid <NA>
## 5 IG-88 140 Droid none
## 6 Tarfful 136 Wookiee male
## 7 BB8 NA Droid none

This should pick up the well known Darth Vader and the less well-known Tar�ul, Wookie

general during the Clone Wars.

You will notice that some of the droids are missing values for factors. For instance, BB8

does not have a height, mass, birth_year, or homeworld value. These entries are listed as

NA (not available). To locate these values, we can use the is.na function. Try

starwars %>%
select(name, mass, species, gender) %>%
filter(is.na(mass) & species == "Droid")

## # A tibble: 1 x 4
## name mass species gender
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## <chr> <dbl> <chr> <chr>
## 1 BB8 NA Droid none

to �nd all the data where the height is not available.

Another useful logical operator in this context is !, which means not. So the following

will tell us the droids where the mass does not equal NA.

starwars %>%
select(name, mass, species, gender) %>%
filter(!is.na(mass) & species == "Droid")

## # A tibble: 4 x 4
## name mass species gender
## <chr> <dbl> <chr> <chr>
## 1 C-3PO 75 Droid <NA>
## 2 R2-D2 32 Droid <NA>
## 3 R5-D4 32 Droid <NA>
## 4 IG-88 140 Droid none

Logical operators are evaluated from left to right. So for instance,

starwars %>%
select(name, mass, species, gender) %>%
filter(species == "Droid" & mass > 100 | mass < 40)

## # A tibble: 6 x 4
## name mass species gender
## <chr> <dbl> <chr> <chr>
## 1 R2-D2 32 Droid <NA>
## 2 R5-D4 32 Droid <NA>
## 3 Yoda 17 Yoda’s species male
## 4 IG-88 140 Droid none
## 5 Wicket Systri Warrick 20 Ewok male
## 6 Ratts Tyerell 15 Aleena male

For Wicket, it was false that his species is a droid, and false that his mass is greater than

100. So the �rst two clauses become false. But the �nal mass value is less than 40, and

FALSE | TRUE evaluates to TRUE.

If instead we are interested in only those droids who have mass greater than 100 or mass

less than 40, then
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starwars %>%
select(name, mass, species, gender) %>%
filter(species == "Droid" & (mass > 100 | mass < 40))

does the job.

Questions

3. Create a command to �nd the characters who are female. How many are there in

the data?

4. Create a tibble from the variable starwars that has the factors name, gender,

hair_color, and homeworld, and only characters with blond hair from Tatooine.

Mutate

Mutate alters a tibble by adding an extra variable that can be some function of other

variables. For instance, suppose we are interested in how the mass varies with height. We

could compute the ratio as follows.

starwars %>%
select(name, mass, height) %>%
mutate(massweightratio = mass/height)

## # A tibble: 87 x 4
## name mass height massweightratio
## <chr> <dbl> <int> <dbl>
## 1 Luke Skywalker 77 172 0.448
## 2 C-3PO 75 167 0.449
## 3 R2-D2 32 96 0.333
## 4 Darth Vader 136 202 0.673
## 5 Leia Organa 49 150 0.327
## 6 Owen Lars 120 178 0.674
## 7 Beru Whitesun lars 75 165 0.455
## 8 R5-D4 32 97 0.330
## 9 Biggs Darklighter 84 183 0.459
## 10 Obi-Wan Kenobi 77 182 0.423
## # ... with 77 more rows
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Note that if either the mass or the height variable is NA, then their ratio will also be NA

starwars %>%
select(name, mass, height) %>%
mutate(massweightratio = mass/height) %>%
filter(is.na(massweightratio))

## # A tibble: 28 x 4
## name mass height massweightratio
## <chr> <dbl> <int> <dbl>
## 1 Wilhuff Tarkin NA 180 NA
## 2 Mon Mothma NA 150 NA
## 3 Arvel Crynyd NA NA NA
## 4 Finis Valorum NA 170 NA
## 5 Rugor Nass NA 206 NA
## 6 Ric Olié NA 183 NA
## 7 Watto NA 137 NA
## 8 Quarsh Panaka NA 183 NA
## 9 Shmi Skywalker NA 163 NA
## 10 Bib Fortuna NA 180 NA
## # ... with 18 more rows

Questions

5. Currently the mass is in kilograms. Create a new variable where the mass is measured

in pounds by multiplying by 2.20462.

6. How many pounds does Darth Vader weigh?

7. What happens if you try to add a categorical variable like hair_color to height?

Arrange

Another way to transform the data is through the arrange function. This sorts the data

by a particular variable so we can learn about the highest or lowest values. The following

sorts the variable by mass.
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starwars %>%
select(name, mass, height) %>%
arrange(mass)

As you can see, this arranges the data from low mass to high mass.

When you arrange based on a categorical variable like hair_color, it sorts things

alphabetically.

starwars %>%
select(name, hair_color, mass, height) %>%
arrange(hair_color)

If we want to reverse the sort, we use the helper function desc. By putting this around

the variable name, we reverse the order of the sorting.

starwars %>%
select(name, hair_color, mass, height) %>%
mutate(massweightratio = mass/height) %>%
arrange(desc(hair_color))

To break ties, we can add another variable to the arrange function.

starwars %>%
select(name, hair_color, mass, height) %>%
mutate(massweightratio = mass / height) %>%
arrange(desc(hair_color), mass)

## # A tibble: 87 x 5
## name hair_color mass height massweightratio
## <chr> <chr> <dbl> <int> <dbl>
## 1 Yoda white 17 66 0.258
## 2 Dooku white 80 193 0.415
## 3 Ki-Adi-Mundi white 82 198 0.414
## 4 Jocasta Nu white NA 167 NA
## 5 Captain Phasma unknown NA NA NA
## 6 Ratts Tyerell none 15 79 0.190
## 7 Sebulba none 40 112 0.357
## 8 Dud Bolt none 45 94 0.479
## 9 Wat Tambor none 48 193 0.249
## 10 Sly Moore none 48 178 0.270
## # ... with 77 more rows

Note that entries with NA will appear last whether you are arranging either in ascending

or descending order.
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Questions

8. Which of the characters in the starwars variable are the tallest?

9. What character(s) in the starwars variable weigh the least?

28.1 Bonus Lab

group_by and summarize

The group_by function takes a tibble and partitions the data based on a particular variable.

For instance, group_by(species) breaks the tibble into 9 groups based on the species

of the character.

starwars %>%
group_by(species)

Now group_by by itself does not do anything, what it does is allow other functions to

work on the groups. For instance, the summarize function operates by group.

starwars %>%
group_by(species) %>%
summarise(

mass = mean(mass, na.rm = TRUE)
)

The n function here can be useful in counting the number of data points in each group.

starwars %>%
group_by(species) %>%
summarise(

n = n(),
mass = mean(mass, na.rm = TRUE)

)
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Questions

10. What is the mean mass of the Ewok characters?

11. How many Cerean characters are there in the variable?

Using filter, we selected observations based conditions that they had. A command

that pulls out observations based on their row is slice.

starwars %>% slice(1:4)

## # A tibble: 4 x 13
## name height mass hair_color skin_color eye_color
## <chr> <int> <dbl> <chr> <chr> <chr>
## 1 Luke... 172 77 blond fair blue
## 2 C-3PO 167 75 <NA> gold yellow
## 3 R2-D2 96 32 <NA> white, bl... red
## 4 Dart... 202 136 none white yellow
## # ... with 7 more variables: birth_year <dbl>, gender <chr>,
## # homeworld <chr>, species <chr>, films <list>,
## # vehicles <list>, starships <list>

Questions

12. What commands returns the �rst 15 rows of the table?

When you combine the slice command with group_by, you can pull out speci�ed

rows from each group. For instance, the following pulls out the �rst observation from each

homeworld.

starwars %>%
group_by(homeworld) %>%
slice(1) %>%
print(n = 5)
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## # A tibble: 49 x 13
## # Groups: homeworld [49]
## name height mass hair_color skin_color eye_color
## <chr> <int> <dbl> <chr> <chr> <chr>
## 1 Leia... 150 49 brown light brown
## 2 Ratt... 79 15 none grey, blue unknown
## 3 Lobot 175 79 none light blue
## 4 Jek ... 180 110 brown fair blue
## 5 Nute... 191 90 none mottled g... red
## # ... with 44 more rows, and 7 more variables:
## # birth_year <dbl>, gender <chr>, homeworld <chr>,
## # species <chr>, films <list>, vehicles <list>,
## # starships <list>

Questions

13. Modify the last command so that the person from each homeworld is the �rst in

alphabetical order.

327 400



Chapter 29

Exploration: Projects in R and Tibbles

Summary You can use good habits involving �le directories and R projects in order

to make �nding information easier later on. We will also show how to save �gures

and data sets in individual �les.

We then discuss some of the commands that apply to tibbles, the extension of the

data.frame variable type in the tidyverse. Content for this lab was drawn from

Chapters 8 and 9 of Grolemund and Wickham, R for Data Science h�ps://r4ds.had.co.
nz/.

The Workspace

• Open up RStudio and in the console, type

x <- 2

Now close RStudio.

• You will immediately be greeted with a question asking if you want to save your

workspace image before closing. Saving your workspace image will save your

variable de�nitions in the console. So the next time you open up RStudio, everything

is as you left it.

• Click on save. This will create a new �le with an extension .RData Now reopen

RStudio, click on

File→ Open File...

and navigate to the .RData �le that you just saved. (Unless you changed your

directory earlier, it should still be in your home directory.) Open it up. The value x
= 2 should now be back in your Global Environment. Great!

• Seems like a good feature, right? Well, it actually can lead to some bad habits, and

I’m going to recommend that you not save your Workspace each time you leave your

session. Instead, we’ll use a di�erent method that leads to better overall habits.

328 400

https://r4ds.had.co.nz/
https://r4ds.had.co.nz/


Mark Huber Notes on the Foundations of Data Science

Script and R Markdown

When we started the course, we said that typically the last thing we will do as a data

scientist is to communicate our results to other. But even though its the last thing we do, it

helps to prepare for it from the very start. That means instead of doing your analysis in

the console, use scripts and R Markdown �les for your analytical work.

• Work done in the console can be di�cult to reproduce later. It is also di�cult

to make sure that you haven’t made an error in typing parameters or commands

somehwere down the line. By putting all your commands in your analysis in a script

or R Markdown �le, you are automatically keeping a record of what you did and

accomplished.

• Suppose you have a �gure in your report or paper that needs changing a month or

two later. If you have the commands recorded in a script that created the �gure, then

all you have to do is go back and alter one or two things. But if not, you have to start

from scratch. And it is very possible that you will forget exactly how you created

the �gure in the �rst place, making it impossible to make your changes.

• This also makes sense if you are doing a preliminary analysis of data. If you get

more data later, incorporating that into a preset work�ow will be a breeze. Starting

from scratch will be painful.

• Everytime you Source a script or Knit an R Markdown �le, you are also saving it.

That means that in order to make progress in your analysis, you are automatically

keeping a record of what you have done! That’s a good habit to get into.

File Directories

Directories are used to organized the many �les on your computer. If all your �les were in

one place, things would quickly become a mess.

• If you look at the console pane, just beneath the word console is a directory. This is

your working directory. If you cannot �nd it, try

getwd()

Your working directory might be as short as "~/". We’ll talk more about that directory

in a minute

Questions

1. What is your current working directory?

There are two di�erent ways of handling directories, based on whether you have a

Windows or a Mac/Unix machine. In fact, they have slightly di�erent conventions.
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1. In windows, the �le directory symbol is a backward slash \, while for Mac/Linux it

is a forward slash /. But, when you are using R, you should always use the forward

slash.

2. Remember ~? When used as a �le directory, this points to your home directory. In

Mac and Linux, this is the highest directory for your username. In Windows, this is

your Documents directory.

3. You can also use what are called absolute paths. In Windows, you start an absolute

path using either the drive letter (such as C:) or two backslashes if you are getting

data from a server (for example \\myserver). In Mac/Linus, the absolute paths

start with a slash, for example /home/mhuber. Despite just giving you this in-

formation, I recommend never using absolute paths. The reason is that it makes it

di�cult to send and share your projects with other people. By using ~, it is must

easier to write scripts and markdown �les that work across multiple computers.

Questions

2. What’s the home directory for a Windows computer?

3. What’s the home directory for a Mac/Linux computer if your username is smile42?

RStudio projects

It makes sense when working on a large project to keep all your �les in one place. This

means

• input data

• R Scripts

• R Markdown �les

• Figures and analytical results

To help you out in this endeavor, RStudio has a method called a project. To start a project,

use

File→ New Project...

You will be asked if you want to create a new directory, use an existing directory, or use a

version control system (such as Git). Just create a new directory for now.
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• You will be asked to name the new directory and where you want it to be a subdi-

rectory of. You can call it something like "datascience" and put it under your

home directory.

• Once you create your project, RStudio gives you a blank slate upon which to work. In

the lower right hand pane, on the Files tab, it should say datascience.Rproj
since that is your project.

• Try opening a new script called script1 in your console, and type a few commands.

Now close RStudio. Open RStudio, Your script1.R tab should still be there.

Questions

4. Create a new project datascience2 in the existing directory ~/datascience.

Create a new script �lescript2.R. Now switch back to the projectdatascience
and note that it has the scripts associated with the �rst project you made.

Saving files for a project

Now that you have a project, you can use it to store the output of your scripts (and

markdown �les).

• Go back to your datascience project and script1.R. Inside the script, put

library(tidyverse)

ggplot(diamonds, aes(carat, price)) +
geom_hex()
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ggsave("diamonds.pdf")

write_csv(diamonds, "diamonds.csv")

• Now use either the File Explorer (in Windows) or the Finder (in Mac) or what-

ever GUI or command window you are using in Linux to navigate to the folder

~/datascience.

• You should �nd �les diamond.pdf and diamonds.csv there. Open them up

and see if they were what you expected.

Question

5. While diamonds.pdf is open, try running script1 again. What error message

do you get?

6. The bins in geom_hex are hexagonally shaped. Try changing geom_hex to

geom_bin2d. What shape are the bins now?
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Tibbles

When R was built, the data.frame data type was the primary way that data could be

stored. In the tidyverse, the data.frame has been upgrade to a tibble, which has

some nice properties.

• Begin by loading in the tidyverse package.

library(tidyverse)

• Type iris into the console. Since iris is a data.frame, it tries to list the entire

variable. Now try in the console:

as_tibble(iris)

The result is much more nicely formatted.

We can use the function head to only print the �rst few lines of a data.frame. But

data.frames by default will change the character type of strings. So for instance consider

the built in variable letters in R:

## [1] "a" "b" "c" "d" "e" "f" "g" "h" "i" "j" "k" "l" "m"
## [14] "n" "o" "p" "q" "r" "s" "t" "u" "v" "w" "x" "y" "z"

If we put it in a data frame, the strings get turned into levels for the factor x.

head(data.frame(x = letters))

Whereas if we make it a tibble, the values in x stay as strings (<chr> type):

tibble(x = letters)

Unlike data frames, tibbles can use weirder variable names that are not valid for

data.frame variables. Try

tb <- tibble(
‘:)‘ = "smile",
‘ ‘ = "space",
‘2000‘ = "number"

)
tb

to see an unusual tibble.

You can load a tibble either column by column:
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df <- tibble(
x <- runif(5),
y <- rnorm(5)

)

or you can load by row using the tribble (short for transposed tibble) function:

tb <- tribble(
~x, ~y, ~z,
#--|--|----
"a", 2, 3.6,
"b", 1, 8.5

)
tb

## # A tibble: 2 x 3
## x y z
## <chr> <dbl> <dbl>
## 1 a 2 3.6
## 2 b 1 8.5

Note that we use ~x to indicate that x is the name of this particular variable.

If we are unsure if we are dealing with a tibble, is_tibble can be used to check.

is_tibble(tb)

## [1] TRUE

df <- data.frame(x = c(1,2,3))
is_tibble(df)

## [1] FALSE

Printing tibbles

If you actually need to print an entire tibble, just use the print function. The parameter

n controls the number of lines, and width the number of columns

print(as_tibble(iris), n = 15, width = 40)

You can also load the tibble into its own pane with the View function:
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View(as_tibble(iris))

When printing out tibbles, sometimes it helps to have the variables on the rows, and the

�rst few data values in each row. The glimpse function does exactly this.

glimpse(as_tibble(iris))

## Observations: 150
## Variables: 5
## $ Sepal.Length <dbl> 5.1, 4.9, 4.7, 4.6, 5.0, 5.4, 4.6, 5.0, 4.4, 4.9,...
## $ Sepal.Width <dbl> 3.5, 3.0, 3.2, 3.1, 3.6, 3.9, 3.4, 3.4, 2.9, 3.1,...
## $ Petal.Length <dbl> 1.4, 1.4, 1.3, 1.5, 1.4, 1.7, 1.4, 1.5, 1.4, 1.5,...
## $ Petal.Width <dbl> 0.2, 0.2, 0.2, 0.2, 0.2, 0.4, 0.3, 0.2, 0.2, 0.1,...
## $ Species <fct> setosa, setosa, setosa, setosa, setosa, setosa, s...

Selecting rows and columns

As with a data.frame, you can use $ to pull out the value of a particular column/variable.

tb$y

You can also use double square brackets to pull out rows. For instance, since y was

variable number 2:

tb[[2]]

Backward compatibility

Some older R functions might not work with tibbles, in which case you need to convert

back to a data.frame. Try

as.data.frame(df)

to see how that is done.

Questions

7. Give two di�erent commands that yield the z variable in tb.
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Plo�ing data

(This part of the lab taken from h�ps://monashbioinformaticsplatform.github.io/r-more/
topics/tidyverse.html.)

When plotting categorical versus categorical data, the tile geometry can be used to get

an idea of how categories interact with one another.

Download the �le fastqc.csv and place it in your working directory. Use

bigtab <- read_csv("~/fastqc.csv")

to input the data into the tibble bigtab.

Lets see how the grade changes based on the test and file categorical variables.

ggplot(bigtab, aes(x = file, y = test, color = grade)) +
geom_point()

The tile geom is better as displaying this type of graph.

ggplot(bigtab, aes(x = file, y = test, fill = grade)) +
geom_tile()

This is better, but still is not professional quality. There’s still some problems.

• The �le names along the horizontal style overlap.

• The vertical axis names have the �rst names alphabetically at the bottom.

• We don’t need the gray background behind the graph anymore.

• Grid lines would help in reading the data,

Using the factor function allows us to accomplish this

# y axis plots from bottom to top, so reverse
y_order <- sort(unique(bigtab$test), decreasing = TRUE)
bigtab$test <- factor(bigtab$test, levels = y_order)

x_order <- unique(bigtab$file)
bigtab$file <- factor(bigtab$file, levels = x_order)

# Give PASS the color green and FAIL the color red
color_order <- c("FAIL", "WARN", "PASS")
bigtab$grade <- factor(bigtab$grade, levels = color_order)

myplot <- ggplot(bigtab, aes(x = file, y = test, fill = grade)) +
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geom_tile(color = "black", size = 0.5) + # Black border on tiles
scale_fill_manual( # Colors, as color hex codes

values=c("#ee0000","#ffee00","#00aa00")) +
labs(x = "", y = "", fill = "") + # Remove axis labels
coord_fixed() + # Square tiles
theme_minimal() + # Minimal theme, no grey background
theme(panel.grid = element_blank(), # No underlying grid lines

axis.text.x = element_text( # Vertical text on x axis
angle=90, vjust=0.5, hjust=0))

Now you can just use myplot to see your plot.
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Exploration: tidying data with tidyr

The content of this lab are based on Chapter 12.6 of R for Data Science by Hadley Wickham

and Garrett Grolemund.

Tidy data

Data is said to be tidy if it satis�es:

1. Each row contains an observation.

2. Each column contains a variable.

3. Each entry (row and column) contains a single value.

In this lab we will practice tidying data using the elements of the tidyr package.

• As usual, start by loading in the tidyverse:

# install.packages("tidyverse")
library(tidyverse)

The WHO Tuberculosis Data Set

• The data set we’ll be using here comes from the World Health Organization (WHO)

and is their Global Tuberculosis Report from 2014. It is located in the variable ‘who’

in the ‘tidyr’ package which is part of the ‘tidyverse’ group of packages.

Take a look with

who
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Questions

1. How many observations are there?

2. How many variables are there?

The Data Dictionary

• There are many variables that seem to actually be values rather than variables. For

instance, consider ‘new_sp_m014’ and ‘new_sp_m1524’. They appear to both be ‘NA’

for most of the �rst few rows. Lets take a look at the �rst instances where they are

not ‘NA’:

who %>% filter(!is.na(new_sp_m014))

## Warning: package ’bindrcpp’ was built under R version 3.4.4

• At this point, we would need to consult a data dictionary, a description of what is

inside the data set, in order to understand what the data variables are telling us. In

this case, the �rst three letters are “new”" for new cases of TB, and “old” for old cases

of TB.

Questions

3. Does the data set contain any old cases of TB?

• Then there should be an underscore, followed by two or three letters indicating the

type of TB case it is. ** rel for relapse ** ep for extrapulmonary TB ** sn TB that

cannot be detected by a pulmonary smear (sn stands for smear negative) ** sp cases

that can be detected by a pulmonary smear (smear positive)

• Next there should be another underscore, followed by f for female patients and m
for male patients. Finally, there is a number which indexes the age of the patitients

in the group. For instance, 3544 indicates that the paitients are 35-44 years old.

• Okay, so there’s a lot to take in here, but the most important thing is that the variable

names are being used to encode data values. They should not be in the variable

names, they should be an entry which indicates what type of patient we are dealing

with.
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Questions

4. The relapse patients should (if they are following their naming scheme), have variable

names that start new_rel. Are there variables whose name start with new_rel,

or is there a typo in the data set?

Gather

• Let’s begin by taking the variable names that are encoding data properties, and

turn them into entries in a column. For now, we’ll give that column the name key.

Fortunately, all the variables that start with new are together sequentially, so we can

use our : notation to indicate which variables are which.

who1 <- who %>%
gather(new_sp_m014:newrel_f65, key = "key", value = "cases", na.rm = TRUE)

who1

Questions

5. How many new cases of TB among males aged 0-14 years where smear positive in

Afganistan in 2006?

Fixing value strings

• As we saw in an earlier question, new_rel has been written newrel in some of

the data entries. Fixing typos like this is not part of tidying data, it is part of cleaning
data. We will talk much more about how to change strings later on in the course,

but for now let’s just mutate the entries in our key variable to change newrel to

new_rel using the str_change funtion.

who2 <- who1 %>%
mutate(key = str_replace(key, "newrel", "new_rel"))

Those relapse observations will be towards the end of the data set, so let’s look at the

last observations:

who2[76000:76036,] %>% select(country,year,key,cases)
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## # A tibble: 37 x 4
## country year key cases
## <chr> <int> <chr> <int>
## 1 Rwanda 2013 new_rel_f65 131
## 2 Saint Kitts and Nevis 2013 new_rel_f65 0
## 3 Saint Lucia 2013 new_rel_f65 0
## 4 Samoa 2013 new_rel_f65 2
## 5 Sao Tome and Principe 2013 new_rel_f65 6
## 6 Saudi Arabia 2013 new_rel_f65 98
## 7 Serbia 2013 new_rel_f65 170
## 8 Seychelles 2013 new_rel_f65 2
## 9 Sierra Leone 2013 new_rel_f65 128
## 10 Singapore 2013 new_rel_f65 130
## # ... with 27 more rows

Questions

6. How many female relapse cases did Saudia Arabia have in 2013?

• In tidy data each entry contains only one value, but each key variable is actually

containing four pieces of information. We can break each single entry into four

entries by using separate.

who3 <- who2 %>%
separate(key, c("new", "type", "genderage"), sep = "_")

• Well, we broke it into three variables anyway, since the last two were not separated

by an underscore, gender and age are still intermixed. The last split needed takes

the �rst character and splits it o� into gender:

who4 <- who3 %>%
separate(genderage, c("gender", "age"), sep = 1)

who4 %>% select(iso2, year, new, gender, age)

## # A tibble: 76,046 x 5
## iso2 year new gender age
## <chr> <int> <chr> <chr> <chr>
## 1 AF 1997 new m 014
## 2 AF 1998 new m 014
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## 3 AF 1999 new m 014
## 4 AF 2000 new m 014
## 5 AF 2001 new m 014
## 6 AF 2002 new m 014
## 7 AF 2003 new m 014
## 8 AF 2004 new m 014
## 9 AF 2005 new m 014
## 10 AF 2006 new m 014
## # ... with 76,036 more rows

• One could argue that the new variable is unnecessary since all the entries are new.

To ver�y this, use count to �nd the number of distinct entries in the new variable.

who4 %>% count(new)

## # A tibble: 1 x 2
## new n
## <chr> <int>
## 1 new 76046

Questions

7. Use count to see how many observations come from the country of Andorra.

• Since new isn’t giving us any information let’s remove it. Also, the variables iso2
and iso3 are just other ways of identifying the county, so let’s remove them as well.

who5 <- who4 %>% select(-new, -iso2, -iso3)

That’s it, our data is now tidy!

Pew data set on religion and income

The Pew research center gathers data from a variety of sources. One such is a data set

on the religion of various income levels. Download the �le pew.txt from the web site to

your working directory, and read it into R. This �le is an example of a tab-delimited �le

where the values are all separated by tab characters. You can get a tab by using the escape

character “
�
’’. So the command to read the �le into a tibble is
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pew <- read_delim("pew.txt", delim = "\t")

## Parsed with column specification:
## cols(
## religion = col_character(),
## ‘<$10k‘ = col_double(),
## ‘$10-20k‘ = col_double(),
## ‘$20-30k‘ = col_double(),
## ‘$30-40k‘ = col_double(),
## ‘$40-50k‘ = col_double(),
## ‘$50-75k‘ = col_double(),
## ‘$75-100k‘ = col_double(),
## ‘$100-150k‘ = col_double(),
## ‘>150k‘ = col_double(),
## ‘Don’t know/refused‘ = col_double()
## )

• This is not an uncommon way to see data organized, as we saw this in the Tubercolosis

data set as well. Here there are two primary variables of interest, income and religion.

And so income is placed along one axis (in this case columns) while religion is placed

along the other (rows). It’s a very intuitive way of putting data, but it is not tidy!

Questions

8. Among those surveyed, which income level had the most responses among Catholics?

9. What command would you use to tidy the data?

UN Migrant stock total

Let’s go back to the UN now, and consider the number of migrants by country.

• Download the spreadsheet UN_MigrantStockTotal_2015.xlsx from the

website and place it in your working directory.

• Open the �le using a viewer that can read .xlsx �les. Move to Table 1. Note that the

�rst fourteen lines are given over to a picture, title of the report, and a copyright

notice.
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• In lines 15 and 16, some of the columns contain variable names, while other contain

three sets of the years from 1990 through 2015 (by 5 year intervals.) By clicking on

cell F15, you see it reads “International migrant stock at mid-year (both sexes)”. Cell

L14 gives male migrant stock, and R14 gives female migrant stock.

• Blank entries have two dots (..) in them. So we have to be sure to tell the reader to

treat these types of entries as NA.

• Therefore when we load it in, we must make sure that we eliminate the �rst �fteen

rows. First, make sure the pacakge readxl is installed. This package is considered

part of the tidyverse, but is not one of the core packages that is automatically read

in with the tidyverse. The current version of readxl is 1.3.0. If you are using an

older version of the packge, then some of the commands below might not work!

# install.packages("readxl")
library(readxl)

Now we load in the sheet labeled “Table 1”, skipping the �rst 15 rows.

ms <- read_excel("UN_MigrantStockTotal_2015.xlsx", sheet = "Table 1", skip = 15, na = "..")

## New names:
## * ‘‘ -> ‘..1‘
## * ‘‘ -> ‘..2‘
## * ‘‘ -> ‘..3‘
## * ‘‘ -> ‘..4‘
## * ‘‘ -> ‘..5‘
## * ... and 18 more

ms

## # A tibble: 265 x 23
## ..1 ..2 ..3 ..4 ..5 ‘1990..6‘ ‘1995..7‘ ‘2000..8‘
## <dbl> <chr> <chr> <dbl> <chr> <dbl> <dbl> <dbl>
## 1 1 WORLD <NA> 900 <NA> 152563212 160801752 172703309
## 2 2 Deve~ (b) 901 <NA> 82378628 92306854 103375363
## 3 3 Deve~ (c) 902 <NA> 70184584 68494898 69327946
## 4 4 Leas~ (d) 941 <NA> 11075966 11711703 10077824
## 5 5 Less~ <NA> 934 <NA> 59105261 56778501 59244124
## 6 6 Sub-~ (e) 947 <NA> 14690319 15324570 13716539
## 7 7 Afri~ <NA> 903 <NA> 15690623 16352814 14800306
## 8 8 East~ <NA> 910 <NA> 5964031 5022742 4844795
## 9 9 Buru~ <NA> 108 B R 333110 254853 125628
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## 10 10 Como~ <NA> 174 B 14079 13939 13799
## # ... with 255 more rows, and 15 more variables:
## # ‘2005..9‘ <dbl>, ‘2010..10‘ <dbl>, ‘2015..11‘ <dbl>,
## # ‘1990..12‘ <dbl>, ‘1995..13‘ <dbl>, ‘2000..14‘ <dbl>,
## # ‘2005..15‘ <dbl>, ‘2010..16‘ <dbl>, ‘2015..17‘ <dbl>,
## # ‘1990..18‘ <dbl>, ‘1995..19‘ <dbl>, ‘2000..20‘ <dbl>,
## # ‘2005..21‘ <dbl>, ‘2010..22‘ <dbl>, ‘2015..23‘ <dbl>

• Oops, we see some problems right away. First, the �rst column is redundant, it only

records the line of the �le. More seriously, we don’t want all the years, we only want

to study the male set of years for now. The new standard for excel �les is to end

each variable name with .. followed by the number of the column in the original

�le. This makes it easy for select to pick out speci�c columns. The following picks

out columns 2, 4, and 12 through 17.

ms2 <- ms %>% select(’..2’, ’..4’, ’1990..12’:’2015..17’)

• We’re now in better shape. Let’s get the �rst two variables named properly with the

rename command.

ms3 <- ms2 %>% rename(Area = ’..2’, Country_code = ’..4’)

Questions

10. What would the command have been if we had wanted to rename the ..2 variable

Region?

• Now let’s take the year variables and turn them into entries.

ms4 <- ms3 %>% gather(’1990..12’:’2015..17’, key = year, value = migrants)

• So far so good, but now the year has the extra column information hanging o� of it.

Let’s get rid of it with separate and select.

ms5<- ms4 %>% separate(year, into = c("year", "excelcol")) %>% select(-excelcol)
ms5

• That works, but leaves the year as a character string. Let’s �x that by using setting

the convert parameter to true in separate.
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ms5 <- ms4 %>% separate(year, into = c("year", "excelcol"), convert = TRUE) %>% select(-excelcol)
ms5

• Let’s indicate that these are the numbers for male migrants.

ms6 <- ms5 %>% mutate("gender" = "male")
ms6

• Is this data tidy at this point? Well, yes, and no. You see, some of the “observations”

are actually regions such as Eastern Africa rather than countries. So technically

we should have a region variable, a continent variable, and a developed
variable. The country codes for these regions are all 900 or later, so for now to get a

tidy data set we simply remove these fake observations.

ms7 <- ms6 %>% filter(Country_code < 900)
ms7

• The data is now tidy! Of course, we did not have to use all the intermediary variables,

we could have just done this in one fell swoop:

ms_tidy <- ms %>%
select(’..2’, ’..4’, ’1990..12’:’2015..17’) %>%
rename(Area = ’..2’, Country_code = ’..4’) %>%
gather(’1990..12’:’2015..17’, key = year, value = migrants) %>%
separate(year, into = c("year", "excelcol")) %>% select(-excelcol) %>%
mutate("gender" = "male") %>%
filter(Country_code < 900)

ms_tidy

## # A tibble: 1,392 x 5
## Area Country_code year migrants gender
## <chr> <dbl> <chr> <dbl> <chr>
## 1 Burundi 108 1990 163267 male
## 2 Comoros 174 1990 6717 male
## 3 Djibouti 262 1990 64242 male
## 4 Eritrea 232 1990 6228 male
## 5 Ethiopia 231 1990 607284 male
## 6 Kenya 404 1990 160852 male
## 7 Madagascar 450 1990 13348 male
## 8 Malawi 454 1990 546520 male
## 9 Mauritius 480 1990 1763 male
## 10 Mayotte 175 1990 8780 male
## # ... with 1,382 more rows

346 400



Mark Huber Notes on the Foundations of Data Science

• Remember that one of our goals is to make our analysis process as transparent as

possible. By keeping a record of how we tidyied the data, we allow ourselves the

possibility of improvement in the future, or for others to collaborate with us more

easily.

Test your knowledge (try if you have time)

11. Now try creating a variable that tidies the data for female migrants as well as the

table for male migrants.
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Exploration: Relational data in the
tidyverse

Summary

In this lab you will be taking a look at drawing data together from more than one table.

Bringing data together

• We’ll start with a small toy data set that describes the band members of the Beatles

and Rolling Stones. They are included as part of the package dplyr. So let’s load in

the tidyverse to start.

library(tidyverse)

## -- Attaching packages ----------------------------------------------------------------------------------------------------------- tidyverse 1.2.1 --

## v ggplot2 3.1.0 v purrr 0.2.5
## v tibble 2.0.1 v dplyr 0.7.8
## v tidyr 0.8.2 v stringr 1.3.1
## v readr 1.3.1 v forcats 0.3.0

## -- Conflicts -------------------------------------------------------------------------------------------------------------- tidyverse_conflicts() --
## x dplyr::filter() masks stats::filter()
## x dplyr::lag() masks stats::lag()

There are three tables, band_members, band_instruments, and

band_instruments2.

Questions

1. Take a look at band_members. Recall that a key is a single variable or set of

variables that once the values are known, the observation is known. What variable

or set of variables form a key for this set?
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2. Which variables do not form a key for this data table?

Checking keys

• To double check your answers above, let’s count the number of times each value

appears in each variable:

band_members %>% count(name)

## # A tibble: 3 x 2
## name n
## <chr> <int>
## 1 John 1
## 2 Mick 1
## 3 Paul 1

band_members %>% count(band)

## # A tibble: 2 x 2
## band n
## <chr> <int>
## 1 Beatles 2
## 2 Stones 1

Questions

3. For a variable to be a key, what is the largest the variable n can be in the

count(variablename) result?

Mutating joins

• Recall that a mutating join adds variables from one table to another. Let’s try the

four types of mutating joins with these tables. First the inner join.
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band_members %>% inner_join(band_instruments)

## Joining, by = "name"

## # A tibble: 2 x 3
## name band plays
## <chr> <chr> <chr>
## 1 John Beatles guitar
## 2 Paul Beatles bass

Question

4. What variable was used as the foreign key for band_members?

5. Why wasn’t Keith included in the inner_join?

• The next three joins are all types of outer joins. First the left join:

band_members %>% left_join(band_instruments)

## Joining, by = "name"

## # A tibble: 3 x 3
## name band plays
## <chr> <chr> <chr>
## 1 Mick Stones <NA>
## 2 John Beatles guitar
## 3 Paul Beatles bass

• Next the right join:

band_members %>% right_join(band_instruments)

## Joining, by = "name"

## # A tibble: 3 x 3
## name band plays
## <chr> <chr> <chr>
## 1 John Beatles guitar
## 2 Paul Beatles bass
## 3 Keith <NA> guitar
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Questions

6. Explain why there is a missing value in the right_join table.

• Now try the full join:

band_members %>% full_join(band_instruments)

## Joining, by = "name"

## # A tibble: 4 x 3
## name band plays
## <chr> <chr> <chr>
## 1 Mick Stones <NA>
## 2 John Beatles guitar
## 3 Paul Beatles bass
## 4 Keith <NA> guitar

Filtering joins

• The �ltering joins do not add variables to a table, rather, they select based on the

presence or abscence of the variable in the other table. For instance, consider the

semi_join:

band_members %>% semi_join(band_instruments)

## Joining, by = "name"

## # A tibble: 2 x 2
## name band
## <chr> <chr>
## 1 John Beatles
## 2 Paul Beatles

Questions

7. Are the variables in the semi_join taken from the left table or the right table?
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8. Why did Mick not appear in the semi_join?

• The next type of �ltering join is an anti join. Let’s try this out:

band_members %>% anti_join(band_instruments)

## Joining, by = "name"

## # A tibble: 1 x 2
## name band
## <chr> <chr>
## 1 Mick Stones

9. What table would be the union of the observations in the semi_join and the

anti_join tables?

Changing variable names

• Now the variable band_instruments2 contains the same information as

band_instruments, but the �rst variable name is now di�erent. To success-

fully use our joins on this table, we need to tell R what variables to compare.

band_members %>% full_join(band_instruments2, by = c("name" = "artist"))

## # A tibble: 4 x 3
## name band plays
## <chr> <chr> <chr>
## 1 Mick Stones <NA>
## 2 John Beatles guitar
## 3 Paul Beatles bass
## 4 Keith <NA> guitar

Questions

10. Suppose we had used by = c("band" = "artist") in the above command

by mistake. How many missing values would appear in the result?
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Working with non keys

• The join functions will still run when we do not use keys, but you will end up with

many more rows. Because the functions will not know which value is the ‘right’

observation, it is forced to include all possibilities. Enter the following tables:

t1 <- tibble(name = c(’AZI-3’, ’2-1B’, ’R2-Q5’, ’AZI-3’),
occupation = c(’med’, ’surgery’, ’astromech’, ’protocol’))

t2 <- tibble(name = c(’AZI-3’, ’R2-Q5’), location = c(’Kamino’, ’Death Star II’))

• Now consider what happens when we use name to add location data to t1:

t1 %>% full_join(t2, by = "name")

Questions

11. How many times does AZI-3 appear in the join?

12. Now suppose that AZI-3 appears twice in the data table we are joining:

t3 <- tibble(name = c(’AZI-3’, ’AZI-3’, ’R2-Q5’), location = c(’Kamino’, ’Coruscant’, ’Death Star II’))

How many times does AZI-3 appear in the full join of t1 and t3 by name?

Darwin’s Finch data

During his famous trip to the Galápagos Islands, Darwin recorded the presence or absence

of several species of �nches during his trip. The �le darwins_finches.xlsx records

this data.

• Download darwins_finchres.xlsx into the working directory.

• Load Sheet1 from this table into a variable finch.

library(readxl)
finch <- read_excel("darwins_finches.xlsx", skip = 1)

• Load Sheet2 from this table into a variable island.names.
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island.names <- read_excel("darwins_finches.xlsx", sheet = "Sheet2")

• Tidy the data from finch, into a table finch_tidy. In finch_tidy there

should be a new variable island.codes.

finch_tidy <- finch %>% gather(key = island.codes, value = presence, A:Q)

• Use a mutating join to create a new tibble finch_names which has both the

presence/absence data and the names of the island in it.

finch_name <- finch_tidy %>% left_join(island.names, by = c("island.codes" = "code"))

Question

13. Give a command to �nd out how many species of �nch are found on each island.

Flights from the New York area

Now let’s try some of these ideas with a real data set.

• Begin by loading in the nycflights13 package.

library(nycflights13)

• One of the data tables in the nycflights13 package is weather, which contains

the temp, dewpoint, humidity, and wind_dir for each hour of every day in 2013

recorded at Newark Airport.

Questions

14. Add the data from the weather table to the flights table to create a new table

flighttemp.

15. Give a command to �nd the mean temperature of the �ights by month.

16. Plot these temperatures as bars with a di�erent color for each month.
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Exploration: Working with strings and
stringr

Summary: Strings

• str_view shows in the Viewer panel the result of a match.

• str_subset only keeps those strings where there is a match.

• str_extract pulls out the match from the string.

• str_match pulls out matches to each regular expression in parentheses inside the

larger regular expression.

• str_split splits strings based upon matches in the regular expression.

• The helper function boundary("words") can be useful in taking out words from

sentences.

• Wildcards and repetition symbols can greatly expand the ability to create new

patterns.

• regex is implicitly called by many str_ functions. When you call it explicitly, you

can use parameters to give much greater power for how the string is transformed to

a regular expression.

• Globs are a type of pattern typically used for �lename matching. glob2rx can

convert a glob to a regular expression.

Viewing strings

• The stringr package is part of the tidyverse.

library(tidyverse)
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• The str_View command gives us the ability to see all the matches highlighted in

a vector of strings. Try the following.

s1 <- c("abc", "bcd", "cde")
str_view(s1, "b")

Escape characters

• Escape characters are tricky to use in regular expressions. For instance, to �nd a left

parenthesis, we �rst must use the escape formulation \(. But if we pass \( as part

of a string to a regular expression, it will just pass the ( and not the escape part!

• So we need to �rst pass a backslash, and then put a left parenthesis. The escape

character for a backslash is \\, which means the regular expression becomes \\(.

For instance,

s2 <- "(2 + (8 + x))*3"
str_view(s2, "\\(")

• Note that it only located the �rst left parenthesis in the string, and ignored the second

one. In order to highlight all of the matches, we can use str_view_all.

s2 <- "(2 + (8 + x))*3"
str_view_all(s2, "\\(")

• Many of the functions in stringr come in pairs in this fashion: str_function
for doing something on the �rst match, and str_function_all for doing the

same thing on all matches in the string.

Questions - strings

1. Give a command to view all the dollar signs in a string?

Wildcard characters

• Some characters are wildcards. In card games, when you designate a card or group

of cards wild, that means that you can substitute the card for any other card in the

deck. In regular expressions wildcard characters stand for certain character in the

string. For instance, \d will match any digit.
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str_view_all(s2, "\\d")

• You can form your own wildcards using square backets []. If you put characters in

square brackets, they will match any of the characters in the brackets, Try

str_view_all(s2, "[x23\\+]")

• If we use a - in brackets, it matches any character between the endpoints, including

the endpoints themselves. Try

str_view_all(s2, "[2-7]")

• If you use a dot ., that matches any symbol. Try

str_view_all(s2, "\\d.")

• This matches any digit that has a character following it. Note that the character

which follows becomes part of the match.

Questions - strings

2. What regular expression matches a left parenthesis followed by a digit?

str_extract,str_extract_all, and str_subset

• We can use str_extract to return strings which have the expression in them.

The regular expression “w.” matches the letter w followed by any character. Try

r1 <- c("white", "red", "willowy", "owl", "few", "tough")
str_match(r1, "w.")

• The NA values indicate that no match was found. In the third string “willowy”, it

found the �rst match “wi” but then quit before �nding “wy”. As with many of the

string commands, use the _all formuation to get all matches.

str_extract_all(r1, "w.")

• The character(0) is just another way of saying the empty string “”. We can

eliminate these by only considering strings with a match using str_subset.
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rg1 <- "w."
r1 %>% str_subset(rg1) %>% str_extract_all(rg1)

• We can put the results in a matrix rather than a list by using simplify = TRUE.

Try

r1 %>% str_subset(rg1) %>% str_extract_all(rg1, simplify = TRUE)

Questions - strings

3. What command would extract matches to the letter e followed by any letter from a

to z?

str_match and str_match_all

• Sometimes we want the string that matches together with the individual pieces that

made up the match. That is what str_match is for. The canonical application is

phone numbers. First let’s get some examples of phone numbers

r2 <- c("202 456-1111", "202-224-3121", "(909) 621-8088")

• Now we want a regular expression that �nds the area code, the three digit local code,

and the last four numbers for out problem.

rg2 <- "([2-9][0-9]{2})[- .]([0-9]{3})[- .]([0-9]{4})"

• Notice there are three expressions in parenthesis. So str_match will create a

matrix with four columns, the last three columns correspond to the wildcard matches

for the three parenthesis. The {2} means the last pattern should repeat 2 times.

There is also + which means repeat 1 or more times, ? which means repeat 0 times

or 1 time, and * (the Kleene star) which means repeat 0 or more times.

r2 %>% str_match(rg2)

• Note that our third phone number doesn’t match the pattern. We would need a more

advanced regular expression to deal with this type of input.
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Questions - strings

4. How many columns will the matrix resulting from regular expression

([a-z]+)-([A-Z]+) have?

Anchor symbols

• The ˆ symbol in regular expression matches only the begining of words. It anchors
the patter to the beginningTo get all strings in the words variable that begin with

the letter “w”, try

rg3 <- "^w"
words %>% str_subset(rg3) %>% str_view(rg3)

• To get words where the end matches, use a dollar sign. Try

rg5 <- "w$"
words %>% str_subset(rg5) %>% str_view(rg5)

• To match both the beginning and the end of the string, we need to use both.

rg5 <- "^w[a-z]*w$"
words %>% str_subset(rg5) %>% str_view(rg5)

Questions - strings

5. How many words in the words variable end in ay?

6. What words in the words variable start with the letter m and end with g?

Spli�ing strings

• Consider the following string:
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x1 <- c("This is a string.", "Another string.")

• This string can be split into multiple pieces using str_split.

str_split(x1, pattern = " ")

## [[1]]
## [1] "This" "is" "a" "string."
##
## [[2]]
## [1] "Another" "string."

• Note that this creates a list, which is a combination of data types of di�erent lengths.

(Constrast with a tibble or data frame, where each oberservation comes from the

same Cartesian product A1 × · · · ×An.) You access elements of a list using double

brackets.

str_split(x1, pattern = " ")[[1]]

## [1] "This" "is" "a" "string."

• Alternatively, we can split the string into a matrix by setting simplify = TRUE
in the call to str_split.

str_split(x1, pattern = " ", simplify = TRUE)

## [,1] [,2] [,3] [,4]
## [1,] "This" "is" "a" "string."
## [2,] "Another" "string." "" ""

• Note that for the shorter strings, null strings are used to �ll out the columns of the

matrix. By default the pattern is treated as a regular expression. For example, try

x3 <- "$43.25 $56.25 $4.03"
str_split(x3, pattern = "\\$")

## [[1]]
## [1] "" "43.25 " "56.25 " "4.03"

• Note we had to use two backslashes to turn into a single backslash, which then

combined with the dollar sign to form the character escape dollar sign, which is

what we were looking for in the string.
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Questions - strings

7. Give a command for separating “‘ab cd edf” using space bar as the separator symbol.

8. Give a command for separating “‘ab|cd|edf” using the vertical bar as the separator

symbol. Remember that the vertical bar needs escape character \|, and that to get a

\ requires \\ in the regular expression.

9. What would the command be to turn “‘ab|cd|edf” into a matrix? How many rows

and columns does the resulting matrix have?

• You can also set the maximum number of pieces that split breaks the string into.

Consider:

fields <- c("Name: Huber: Mark", "Country: US: CA", "Age: 47")
fields %>% str_split(": ", n = 2, simplify = TRUE)

## [,1] [,2]
## [1,] "Name" "Huber: Mark"
## [2,] "Country" "US: CA"
## [3,] "Age" "47"

• Note that after the �rst split since there are a max of two pieces, the remaining gets

put all in the second piece regardless of the presence or absence of another ‘:''.
The helper functionboundary‘ can also be used to split strings. For instance,

consider

x2 <- c("A string. Another string.")
str_split(x2, " ")

## [[1]]
## [1] "A" "string." "" "Another" "string."
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• With this split, the period (.) gets attached to the word it is ending. Often we are just

interested in the word itself. This is usually the case when we are doing an analysis

of a text. We can use boundary("word") to indicate that we wish to split the

string into words.

str_split(x1, boundary("word"))

## [[1]]
## [1] "This" "is" "a" "string"
##
## [[2]]
## [1] "Another" "string"

Regular expressions

• Consider the fruit list of strings:

fruit

Questions - strings

10. How many fruits are listed in the fruit variable?

• We can search for the berries within the fruit using a regular expression. The simplest

type of regular expression is just a string itself.

str_detect(fruit, "berry")

## [1] FALSE FALSE FALSE FALSE FALSE TRUE TRUE FALSE FALSE TRUE TRUE
## [12] FALSE FALSE FALSE FALSE FALSE FALSE FALSE TRUE FALSE TRUE FALSE
## [23] FALSE FALSE FALSE FALSE FALSE FALSE TRUE FALSE FALSE TRUE TRUE
## [34] FALSE FALSE FALSE FALSE TRUE FALSE FALSE FALSE FALSE FALSE FALSE
## [45] FALSE FALSE FALSE FALSE FALSE TRUE FALSE FALSE FALSE FALSE FALSE
## [56] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [67] FALSE FALSE FALSE TRUE FALSE FALSE TRUE FALSE FALSE TRUE FALSE
## [78] FALSE FALSE FALSE

• If you use a mathematical operation on TRUE/FALSE data, the TRUE values will

be converted to 1 and the FALSE values will be converted to 0. (This is called the

indicator function.) So for instance,
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sum(str_detect(fruit, "berry"))

## [1] 14

tells us the number of fruits in the list with “berry” in them.

The function mean applied to data that is 0 or 1 is the sum of the data (aka the

numbers of 1’s) divided by the number of data points, and so gives the percentage

of 1’s in the set. Applied to TRUE/FALSE vectors, it gives us the percentage of true

answers.

Questions

11. What percentage of terms in the list of strings sentences contains the word “the”

at least once?

Transforming other pa�ern types to regular expressions

• When you pass a string along as the regular expression, it actually goes through a

helper function regex by default. Try

sum(str_detect(fruit, "berry"))

and

sum(str_detect(fruit, regex("berry")))

to verify that they return the same result.

• If you want to use the string as is rather than a regular expression, you can use

fixed. This is especially helpful when dealing with characters that otherwise

require escape characters. For instance, try

x3
str_split(x3, pattern = regex("\\$"))
str_split(x3, pattern = fixed("$"))
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Questions - strings

12. Give a command for separating "ab|cd|edf" using the vertical bar
as the separator symbol using the�xed‘ helper function.

• Aside from avoiding complicated backslash expressions, the primary purpose of

using fixed is for speed: because it concentrates on �nding a particular case of a

regular expression, fixed can be quite a bit faster than using regex.

Using regex explicitly

• By calling regex explicitly, it is possible to use parameters to modify the way in

which it transforms patterns into regular expressions. For instance, try

x4 <- "Test 1\nTest 2\nTest 3\n"
cat(x4)
str_extract_all(x4, "^Test")[[1]]

• Even though x as a string contains four lines, a search for "Test" only �nds one

instance. By setting the parameter multiline = TRUE in an explicit call to

regex, we can force str_extract to treat each line separately.

str_extract_all(x4, regex("^Test", multiline = TRUE))

Questions - strings

13. Suppose the variable x5 is given by:

x5 <- "the heart\nthen brain\na spleen and the kidney\n"

Give a command to locate all the sentence fragments that start with “the”.

• When a regular expression becomes long, it can be di�cult to parse. The basic

regular expressions in R do not have a comment character, but by using the parameter

comments = TRUE, we can use the # character to mark o� comments that are

not part of the regular expression. Consider the following regular expression for

reading a phone number.
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phone <- regex("
\\(? # optional opening parens
(\\d{3}) # area code
[) -]? # optional closing parens, space, or dash
(\\d{3}) # another three numbers
[ -]? # optional space or dash
(\\d{3}) # three more numbers
", comments = TRUE)

str_match("514-791-8141", phone)
str_match("(514)791-8141", phone)

Questions - strings

14. Give three more forms of the phone number above that match the regular expression.

Globs

• The vector of strings that consists of all the �lenames in the working directory is

created by the dir command. Filenames have their own pattern matching methods

that are very di�erent from regular expressions. These are called globs. A glob is a

pattern that speci�es �lname strings. In particular, * is often the wildcard character

in a glob.

• So for instance, *.Rmd is a glob that matches all �lenames that end in .Rmd If

you want to use a glob pattern with parameter pattern, the function glob2rx
converts a glob pattern to a regular expression.

• For instance, the following locates all �les that end in .Rmd.

head(dir(pattern = glob2rx("*.Rmd")))

Questions - strings

15. What command �nds all �les that end in .R?
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Exploration: MySQL

To practice working with SQL queries, we will be using a relational dataset that is contained

in the Relational Dataset Repository. We will be accessing this using a dialect of SQL called

MySQL. This is an open source version of SQL.

Despite how it looks, the My in MySQL is not the English word My, instead one of the

creators named it after his oldest daughter whose name is My. Later, Oracle bought the

trademark MySQL, and so to keep the project open it was renamed to MariaDB because

Maria is the name of another daughter. The DB was added because there also used to be a

storage system named Maria. This storage system is now named Aria to avoid confusion.

Anyway, the point of this is that in order for R to use MySQL commands, we load in a

package called RMariaDB.

# install.packages("RMariaDB")
library(RMariaDB)

Accessing SQL tables remotely

Now we can form a database connection to the Relational Dataset Repository. This connec-

tion needs a host name (given by a URL), a username, a password, and a port, which allows

the data to be sent. Fortunately the site has a guest account set up that anyone can access.

# Connect to my-db as defined in ~/.my.cnf
con <- dbConnect(RMariaDB::MariaDB(),

host = "relational.fit.cvut.cz",
username = "guest",
password = "relational",
port = "3306",
dbname = "northwind")

In your Global Environment, you should at this point have a new variable con which is

of type Formal class MariaDBConnection.

To list the tables that are part of this relational database, use the following command:
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dbListTables(con)

The Northwind database is a �ctional set of data for Northwind Trading Co. intended to

learn SQL commands.

Questions

1. How many tables are there in the Northwind database?

Up until now, all of our code chunks start with three backticks: ``` followed by

{r}. The {r} tells R Markdown to use R to evaluate the code. If instead we use {sql,
connection = con}, then this tells R to treat the code chunk as an SQLite query to

the database de�ned in con.

Much of this part of the lab is based upon a tutorial available at h�ps://www.webucator.
com/tutorial/learn-sql/index.cfm.

Start with the following query

SELECT *
FROM Employees

Whitespace does not matter in SQL queries, so an equivalent command is:

SELECT * FROM Employees

We format the commands the way we do simply to make them easier to read.

We can also send SQL queries in R using the function dbSendQuery command to send

the query to the database, and then the dbFetch command to get the results of the query

back to the user.

df <- dbSendQuery(con, "SELECT * FROM Employees")
dbFetch(df)

Questions

2. How many employees are there in the company?

3. How many variables are there in the relation Employees?
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To select only the LastName and TitleofCourtesy factors, try

SELECT LastName, TitleofCourtesy
FROM Employees

To order by last name we can use the ORDER BY keyword:

SELECT LastName, TitleofCourtesy
FROM Employees

ORDER BY LastName

Once you have used SELECT to create column names, you can also order by the columns

by number:

SELECT LastName, TitleofCourtesy
FROM Employees

ORDER BY 2

The keyword DESC reverses the order:

SELECT LastName, TitleofCourtesy
FROM Employees

ORDER BY 2 DESC

Question

4. Which employee comes �rst when ordered by �rst name?

WHERE

WHERE allows us to pick out observations that meet certain criteria.

SELECT Title, FirstName, LastName
FROM Employees

WHERE Title = "Sales Representative"
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Table 33.1: 6 records

Title FirstName LastName

Sales Representative Nancy Davolio

Sales Representative Janet Leverling

Sales Representative Margaret Peacock

Sales Representative Michael Suyama

Sales Representative Robert King

Sales Representative Anne Dodsworth

Use <> for does not equals, so to get all the non-Sales Representatives, try:

SELECT Title, FirstName, LastName
FROM Employees

WHERE Title <> "Sales Representative"

Table 33.2: 3 records

Title FirstName LastName

Vice President, Sales Andrew Fuller

Sales Manager Steven Buchanan

Inside Sales Coordinator Laura Callahan

Ordering note: The WHERE command must preceed the ORDER BY command in an SQL

query.

Concatentation

Suppose that we have multiple factors that contain string values that we wish to bring

together. In the tidyverse, we used unite for this purpose, but in MySQL, we use the

CONCAT keyword. Try:

SELECT CONCAT(FirstName, " ", LastName) AS Name
FROM Employees

Table 33.3: 9 records

Name

Nancy Davolio

Andrew Fuller

Janet Leverling

Margaret Peacock
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Name

Steven Buchanan

Michael Suyama

Robert King

Laura Callahan

Anne Dodsworth

Arithmetic

The usual arithmetic commands apply. Suppose that if freight has a cost at least $500.00,

then it is taxed at 10%. The following gives the taxed freight amount.

SELECT OrderID, Freight AS ‘Freight Cost‘, Freight * 1.1 AS ‘Taxed Freight‘
FROM Orders

WHERE Freight >= 500

Questions

5. Suppose that freight with cost over $1000 is taxed at 12%. Create a query to �nd a

table with the taxed freight cost that only contains those observations where the tax

applies.

Grouped data

We can use COUNT, SUM, AVG, MIN and MAX to analyze data.

SELECT MAX(freight) AS max_freight,
MIN(freight) AS min_freight,
AVG(freight) AS avg_freight

FROM Orders

Table 33.4: 1 records

max_freight min_freight avg_freight

1007.64 0.02 78.2442

We can �nd the total number of employees with COUNT:
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SELECT COUNT(EmployeeID) AS num_emp
FROM Employees

By grouping employees, any function applied to them will be applied group by group.

For instance, to count the number of employees from each city:

SELECT City, COUNT(EmployeeID) AS num_emp
FROM Employees

GROUP BY City

Table 33.5: 5 records

City num_emp

Kirkland 1

London 4

Redmond 1

Seattle 2

Tacoma 1

Questions

6. Create an SQL query that returns for each product in the Order Details table,

the number of times that product was ordered. Note that for tables names like this

with a space in them, you must surround the name by backticks (‘) to indicate that it

is all one name.

To �lter observations by group, use the HAVING keyword. For instance, to �nd all the

cities which have more than one employee:

SELECT City, COUNT(EmployeeID) AS num_emp
FROM Employees

GROUP BY City
HAVING COUNT(EmployeeID) > 1

Table 33.6: 2 records

City num_emp

London 4

Seattle 2
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Note that there is a speci�c order that keywords must have in an SQL query: 1. SELECT

2. FROM 3. WHERE 4. GROUP BY 5. HAVING 6. ORDER BY

So WHERE �lters observations before the GROUP BY, while HAVING �lters afterwards.

So in order to �nd the number of cities employing more than 1 Sales Representative:

SELECT City, COUNT(EmployeeID) AS num_emp
FROM Employees

WHERE Title = "Sales Representative"
GROUP BY City
HAVING COUNT(EmployeeID) > 1

Table 33.7: 1 records

City num_emp

London 3

Any time you put the keyword DISTINCT in front of a factor name, it only returns the

levels of that factor, that is, distinct values that the factor takes on. You can use this to

count, for instance, the number of times each city appears in a table.

SELECT COUNT(DISTINCT City) AS num_city
FROM Employees

Subqueries

So far we’ve just worked with one query. But you can use a query within a query to further

re�ne a query. For instance, the following command �nds the CustomerID associated with

OrderID 10290.

SELECT CustomerID
FROM Orders

WHERE OrderID = 10290

Table 33.8: 1 records

CustomerID

COMMI

Now suppose we want the name of the company with that CustomerID. We could use

this result within a WHERE query to �nd it:

372 400



Mark Huber Notes on the Foundations of Data Science

SELECT CompanyName
FROM Customers

WHERE CustomerID = (SELECT CustomerID
FROM Orders

WHERE OrderID = 10290)

Table 33.9: 1 records

CompanyName

Comrcio Mineiro

In order for this type of construction to be valid, the subquery must return a single

column.

Questions

7. What is the name of the contact at the company that placed order with ID number

10292?

Joins

Another way to bring data from one table to another is by using joins. For instance, suppose

we have the employee and order ID from each order.

What we would like is the name of each employee that gives that order. So we join the

name variable from the Employees table to the Orders table. Since we are working

with more than one table, to indicate a factor we use the form

. to do this.

SELECT Employees.EmployeeID, Employees.FirstName,
Employees.LastName, Orders.OrderID, Orders.OrderDate

FROM Employees
JOIN Orders ON (Employees.EmployeeID = Orders.EmployeeID)

ORDER BY Orders.OrderDate

Using aliases for the table names can make queries more readable:

SELECT emp.EmployeeID, emp.FirstName,
emp.LastName, ord.OrderID, ord.OrderDate

FROM Employees AS emp
JOIN Orders AS ord ON (emp.EmployeeID = ord.EmployeeID)

ORDER BY ord.OrderDate
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By default, a join in SQL is an inner join. For outer joins we explicity put the word OUTER
in front of the JOIN keyword.

SELECT COUNT(DISTINCT e.EmployeeID) AS numEmployees,
COUNT(DISTINCT c.CustomerID) AS numCompanies,
e.City, c.City

FROM Employees AS e
LEFT JOIN Customers c ON (e.City = c.City)

GROUP BY e.City, c.City
ORDER BY numEmployees DESC

Unions

We can use UNION to combine reports as long as they have the same variables. For instance,

if we wan the name and phone number of all our shippers, customers, and suppliers, we

could use UNION to get it.

SELECT CompanyName, Phone
FROM Shippers

UNION
SELECT CompanyName, Phone
FROM Customers

UNION
SELECT CompanyName, Phone
FROM Suppliers

ORDER BY CompanyName

Questions

8. Create a report showing the contact name and phone numbers for all employees,

customers, and suppliers.
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Chapter 34

Exploration: Modeling Data

Summary

In this lab you will learn how to model data using the base R commands and the modelr
package.

Source

The content of this lab comes from Chapter 24 on Model building from R for Data Science
by Wickham and Grolemund (h�ps://r4ds.had.co.nz/).

Modeling data

• Start by loading in the modelr library (installing the package �rst if necessary.)

# install.packages("modelr")
library(modelr)

• We’ll also then add the tidyverse.

library(tidyverse)

Diamond prices

• Consider the dataset diamonds that is built in to the tidyverse. We can get a look

at the price versus quality through a boxplot approach. Try the following.

ggplot(diamonds, aes(cut, price)) + geom_boxplot()
ggplot(diamonds, aes(color, price)) + geom_boxplot()
ggplot(diamonds, aes(clarity, price)) + geom_boxplot()

• Recall that the line in the middle of the boxplot is the median of the values.
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Questions

1. What color has the highest median price?

2. What clarity has the highest median price?

• You might be surprised to learn that color J is considered the worst color for a

diamond (slightly yellow), and I1 is considered the worst quality since it indicates

that there exist inclusions visible to the naked eye.

• This is a perfect example of where there is another variable that confounds our

ability to predict price: the weight of the diamond, as measured by carat. The

weight is simultaneously the most important factor in the price of the diamond, and

poorer color diamonds also tend to be larger. We can visualize this with a hex plot.

diamonds %>% ggplot(aes(carat, price)) +
geom_hex(bins = 50)

• The graph shows that as the carat increases, the price of the diamonds increase as

well. How can we �t a linear model to this data? One thing to note is that if there is

a polynomial relationship between y and x, then

y = c0x
c1

for constants c0 and c1. If we take the logarithm base 2 of both sides, then

lg(y) = lg(c0) + c1 lg(x).

In other words, if x and y have a polynomial relationship, then lg(x) and lg(y) have

a linear relationship. Let’s see if that holds here:

diamonds2 <- diamonds %>%
mutate(lg_price = log2(price), lg_carat = log2(carat))

• Now let’s graph the log data:

diamonds2 %>%
ggplot(aes(lg_carat, lg_price)) +
geom_hex(bins = 50)

• That looks much more linear!. Let’s make a linear model out of it:
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mod_diamond <- lm(lg_price ~ lg_carat, data = diamonds2)
coef(mod_diamond)

## (Intercept) lg_carat
## 12.188841 1.675817

Questions

3. Write the above �tted model in the form

y = c0x
c1 .

• At this point, the predictions that we get are for the linear (log-log) model. To overlay

the original data on top of that, we need to take the inverse of the log base 2, which

is raising 2 to the value.

diamonds3 <- diamonds2 %>%
filter(carat <= 2.5)

grid <- diamonds3 %>%
data_grid(carat = seq_range(carat, 20)) %>%
mutate(lg_carat = log2(carat)) %>%
add_predictions(mod_diamond, "lg_price") %>%
mutate(price = 2 ^ lg_price)

Now for the actual plot.

diamonds3 %>% ggplot(aes(carat, price)) +
geom_hex(bins = 50) +
geom_line(data = grid, color = "red", size = 1)

• The model starts o� strong, but as a certain point, the red prediction line rises above

all known prices. This indicates that the model breaks down as the carat size grows

past about 2.3.

• As usual, we graph the residuals to see if they show a pattern. First calculat the

residuals.
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diamonds3 <- diamonds3 %>%
add_residuals(mod_diamond, "lg_resid")

Then plot the results.

diamonds3 %>% ggplot() +
geom_hex(aes(lg_carat, lg_resid), bins = 50)

• Now let’s go back to our original boxplots, this time with the residuals.

ggplot(diamonds3, aes(cut, lg_resid)) + geom_boxplot()
ggplot(diamonds3, aes(color, lg_resid)) + geom_boxplot()
ggplot(diamonds3, aes(clarity, lg_resid)) + geom_boxplot()

Questions

4. Which of the clarity classes has the lowest (worst) residuals?

5. Which of the color classes has the lowest (worst) residuals?

6. Which of the cut classes has the highest (best) residuals?

Including color, cut, and clarity in the model

• Now let’s add the properties of color, cut, and clarity to the model.

mod_diamond2 <- lm(lg_price ~ lg_carat + color + cut + clarity,
data = diamonds3)

We’ll pass along the model todata_grid in order to get a good sampling of possibilities.

grid <- diamonds2 %>%
data_grid(cut, .model = mod_diamond2) %>%
add_predictions(mod_diamond2)

grid
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## # A tibble: 5 x 5
## cut lg_carat color clarity pred
## <ord> <dbl> <chr> <chr> <dbl>
## 1 Fair -0.515 G VS2 11.2
## 2 Good -0.515 G VS2 11.3
## 3 Very Good -0.515 G VS2 11.4
## 4 Premium -0.515 G VS2 11.4
## 5 Ideal -0.515 G VS2 11.4

• Now let’s take a look at the residuals:

diamonds3 <- diamonds3 %>%
add_residuals(mod_diamond2, "lg_resid2")

And let’s plot them

diamonds3 %>% ggplot() +
geom_hex(aes(lg_carat, lg_resid2), bins = 50)

• Overall we have a pretty good model at this point. However, there are still some

cases where the log-residuals are either very large or very small, so it is not capturing

all situations.

The flights data set

• Now let’s consider an analysis of the flights data from the package

nycflights13. First let’s load in the data, and the package lubridate in

order to handle the data entries.

library(nycflights13)
library(lubridate)

• Next let’s break down the number of �ights by date.

daily <- flights %>%
mutate(date = make_date(year, month, day)) %>%
group_by(date) %>%
summarize(n = n())

daily

## # A tibble: 365 x 2
## date n
## <date> <int>
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## 1 2013-01-01 842
## 2 2013-01-02 943
## 3 2013-01-03 914
## 4 2013-01-04 915
## 5 2013-01-05 720
## 6 2013-01-06 832
## 7 2013-01-07 933
## 8 2013-01-08 899
## 9 2013-01-09 902
## 10 2013-01-10 932
## # ... with 355 more rows

• We can graph the data to look for a pattern. First we create an new factor weekday

based on the weekday using the wday function.

weekday <- daily %>%
mutate(wday = wday(date, label = TRUE))

• Now we can look at a boxplot of number of �ights by day of the week.

weekday %>% ggplot(aes(wday, n)) +
geom_boxplot()

• We strongly see the e�ect of the weekend. Most �iers are traveling for business, so

very few leave on a Saturday. Because this is categorical data, when we �t a model it

will just use the mean of the data for the prediction. First �t the model and add the

predictions.

mod <- lm(n ~ wday, data = weekday)

grid <- weekday %>%
data_grid(wday) %>%
add_predictions(mod, "n")

• Now we add the predictions to the model plot.

weekday %>% ggplot(aes(wday, n)) +
geom_boxplot() +
geom_point(data = grid, color = "red", size = 4)

• Now that we have predictions, we can look at the residuals to try and identify any

remaining patterns that need to be modeled.
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weekday <- weekday %>%
add_residuals(mod)

• For the plot, try

weekday %>%
ggplot(aes(date, resid)) +
geom_ref_line(h = 0) +
geom_line()

• There’s de�nitely a pattern there! For one thing, there are some spikes in the data.

Let’s take a closer look at those.

weekday %>%
filter(resid < -100)

## # A tibble: 11 x 4
## date n wday resid
## <date> <int> <ord> <dbl>
## 1 2013-01-01 842 Tue -109.
## 2 2013-01-20 786 Sun -105.
## 3 2013-05-26 729 Sun -162.
## 4 2013-07-04 737 Thu -229.
## 5 2013-07-05 822 Fri -145.
## 6 2013-09-01 718 Sun -173.
## 7 2013-11-28 634 Thu -332.
## 8 2013-11-29 661 Fri -306.
## 9 2013-12-24 761 Tue -190.
## 10 2013-12-25 719 Wed -244.
## 11 2013-12-31 776 Tue -175.

• You can see, July 4th (and July 5th) in the date, along with Thanksgiving, Christmas,

and Christmas Eve. There also seems to be more �ights in the summer in general and

fewer in winter. We can use the geom_smooth function to give a local estimate

for this behavior.

weekday %>%
ggplot(aes(date, resid)) +
geom_ref_line(h = 0) +
geom_line(colour = "grey50") +
geom_smooth(se = FALSE, span = 0.20)
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• To get a better idea of what’s going on, let’s concentrate on the Saturday �ights. First

let’s plot them over the course of the year.

weekday %>%
filter(wday == "Sat") %>%
ggplot(aes(date, n)) +
geom_point() +
geom_line() +
scale_x_date(NULL, date_breaks = "1 month", date_labels = "%b")

• The pattern is clear–people �y much more in the summer months (perhaps because

of school vacation), less in the Spring and even less in the Fall with a spike at the

edges of Christmas vacation. Since things appear to be school driven, let’s break up

our data into Spring, Summer, and Fall. First we create a function that calculates the

term:

term <- function(date) {
cut(date,

breaks = ymd(20130101, 20130605, 20130825, 20140101),
labels = c("spring", "summer", "fall")

)
}

• Next we apply it to our data.

weekday <- weekday %>%
mutate(term = term(date))

• Now we can graph our data broken up by term.

weekday %>%
filter(wday == "Sat") %>%
ggplot(aes(date, n, color = term)) +
geom_point(alpha = 1/3) +
geom_line() +
scale_x_date(NULL, date_breaks = "1 month", date_labels = "%b")

• To see if this new factor is useful, let’s look at the box plots broken down by term.

weekday %>%
ggplot(aes(wday, n, color = term)) +

geom_boxplot()
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• De�nitely some term e�ects going on there. But does it help the model? Let’s add in

term and see how the model changes.

mod1 <- lm(n ~ wday, data = weekday)
mod2 <- lm(n ~ wday * term, data = weekday)

• Put the residuals from both models together.

weekday <- weekday %>%
gather_residuals(without_term = mod1, with_term = mod2)

• Now plot them.

weekday %>%
ggplot() +

geom_line(aes(date, resid, color = model), alpha = 0.75)

• There’s a bit of di�erence, but not as much as one might have hoped.

Questions

7. How would you create a boxplot as earlier for the new residuals, but with a facet for

each term instead of a di�erent color?

Fi�ing a spline

• In the last section, we used our knowledge of school terms to induce an extra factor

in the data. As an alternative, we could use an automatic method to �t the data. One

such approach uses splines. First load in the library

# install.packages("splines")
library(splines)

• Next let’s �t a spline to the data. Instead of the basic lm (linear models) function,

we will use rlm which stands for robust linear models. This uses a more advanced

method of determining coe�cients called an M estimator. It tends to ignore outliers

automatically, so can be a useful tool for not letting days like the Fourth of July

dominate our estimate. The ns function uses a natural spline to try to match what

is happening across days.
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mod <- MASS::rlm(n ~ wday * ns(date, 5), data = weekday)

• With that in place, let’s go ahead and look at the predictions.

weekday <- weekday %>%
data_grid(wday, date = seq_range(date, n = 13)) %>%
add_predictions(mod, "pred")

weekday %>%
ggplot(aes(date, pred, color = wday)) +

geom_line() +
geom_point()

• This is part of the issue: we have a strong pattern on Saturday �ights that seemingly

is not replicated on the other days of the week where travel is more consistent.
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Chapter 35

Exploration: Support vector machines
with svm

Summary

In this lab you will learn how to classify data using a Support Vector Machine

Source

This lab is based upon a blog post at h�ps://www.datacamp.com/community/tutorials/
support-vector-machines-r.

Support Vector Machines

• Support vector machine or svm is an approach to supervised learning in order to

classify data. Let’s start simple. Suppose I have the following data set.

library(tidyverse)
df <- tibble(x = c(0.05, 0.4, 0.05, 0.9, 0.4, 0.5, 0.3),
y = c(1, 0.7, 0.8, 0.5, 0.05, 0.3, 0.05))

df %>% ggplot() +
geom_point(aes(x, y))
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• In supervised learning, we are given labels for our data. So for instance, suppose

that I know that the points in the upper left are of one type, and in the lower right

are another.

df <- df %>%
mutate(class = factor(c(1, 1, 1, 2, 2, 2, 2)))

g <- df %>%
ggplot() +
geom_point(aes(x, y, shape = class, col = class))

g
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• An svm works by drawing a hyperplane between the points in one class and the

other class. In three dimensions, a hyperplane is just a plane. In two dimensions, a

hyperplane is a line. So here are three possible svm’s for this data.

g +
geom_abline(aes(intercept = 0.25, slope = 1),

color = "red") +
geom_abline(aes(intercept = 0.1, slope = 1),

color = "green") +
geom_abline(aes(intercept = 0.15, slope = 1.2),

color = "blue")
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• All three of those lines separate the two classes. Let’s try it with some randomly

generated data. Try

set.seed(10111)
n <- 40
r <- rnorm(n)
df <- tibble(
x = c(r, r),
y = c(r+ rnorm(n), r + 10 + rnorm(40)),
class = factor(c(rep("1", n), rep("2", n)))

)

ggplot(df) +
geom_point(aes(x, y, shape = class, color = class))
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• We will load in the e1071 package which contains a function svm.

# install.packages("e1071")
library(e1071)

## Warning: package ’e1071’ was built under R version 3.4.4

Now for the model.

mod_svm <- svm(class ~ x + y, data = df, kernel = "linear")
print(mod_svm)

##
## Call:
## svm(formula = class ~ x + y, data = df, kernel = "linear")
##
##
## Parameters:
## SVM-Type: C-classification
## SVM-Kernel: linear
## cost: 1
## gamma: 0.5
##
## Number of Support Vectors: 4
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• The predictions are probably very good. At this point we will bring in modelr to

get our predictions

library(modelr)

## Warning: package ’modelr’ was built under R version 3.4.4

df %>%
add_predictions(mod_svm) %>%
ggplot() +

geom_point(aes(x, y, shape = class, color = class, size = pred))

## Warning: Using size for a discrete variable is not advised.
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Questions

1. What is the accuracy rate of the predictions on the training data?

• We did so well on this data table because the points of the clusters were so far apart.

What if it had been closer together?
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set.seed(123456)
n <- 40
r <- rnorm(n)
df2 <- tibble(
x = c(r, r),
y = c(r+ rnorm(n), r + 2 + 2 * rnorm(40)),
class = factor(c(rep("1", n), rep("2", n)))

)

ggplot(df2) +
geom_point(aes(x, y, shape = class, color = class))
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• Note that no basic svm can perfectly classify this data. No line cleanly separates the

triangles and the dots. We can try to get close, however.

mod_svm2 <- svm(class ~ x + y, data = df2, kernel = "linear")
print(mod_svm2)

##
## Call:
## svm(formula = class ~ x + y, data = df2, kernel = "linear")
##
##
## Parameters:
## SVM-Type: C-classification
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## SVM-Kernel: linear
## cost: 1
## gamma: 0.5
##
## Number of Support Vectors: 41

library(modelr)
df2 %>%
add_predictions(mod_svm2) %>%
ggplot() +

geom_point(aes(x, y, shape = class,
color = class, size = pred))

## Warning: Using size for a discrete variable is not advised.
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• It did its best, but you see some small triangles and some large circles there. Each

one of those is a failure.

Questions

2. Find the percentage of predictions that were correct.
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Features

• Of course, the situation could be even worse. Suppose your data looked like this:

# One cluster in center, one ring around it
set.seed(123456)
n <- 40
th1 <- 2 * pi * runif(n)
r1 <- sqrt(runif(n))
th2 <- 2 * pi * runif(n)
r2 <- 0.5 * runif(n) + 2
df3 <- tibble(
x = c(r1 * cos(th1), r2 * cos(th2)),
y = c(r1 * sin(th1), r2 * sin(th2)),
class = factor(c(rep("1", n), rep("2", n)))

)

ggplot(df3) +
geom_point(aes(x, y, shape = class, color = class)) +
coord_fixed()
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• It’s very easy for the human eye to pick out the clusters here, but any straight line

is doomed to either put too much together or too little. The solution is to create

an arti�cial feature. A feature is an extra predictor that is a function of the other

predictors. In this case, suppose we look at

z =
√
x2 + y2.
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Then an equation like z ≥ 2 (a hyperplane in the new space) looks like this on the

plot:

x1 <- seq(-1, 1, by = 0.01)
circle <- tibble(
x = x1,
y = 1.5 * sqrt(1 - x1^2)

)

ggplot(df3) +
geom_point(aes(x, y, shape = class, color = class)) +
geom_line(data = circle, aes(1.5 * x, y),

color = "blue") +
geom_line(data = circle, aes(1.5 * x, -y),

color = "blue") +
coord_fixed()
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• Let’s add our phantom coordinate and run the svm again:

df3_z <- df3 %>%
mutate(z = sqrt(x^2 + y^2))

mod_svm3 <- svm(class ~ x + y + z, data = df3_z,
kernel = "linear")

print(mod_svm3)

##
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## Call:
## svm(formula = class ~ x + y + z, data = df3_z, kernel = "linear")
##
##
## Parameters:
## SVM-Type: C-classification
## SVM-Kernel: linear
## cost: 1
## gamma: 0.3333333
##
## Number of Support Vectors: 4

Let’s see how we did!

df3_z %>%
add_predictions(mod_svm3) %>%
ggplot() +

geom_point(aes(x, y, shape = class, color = class,
size = pred)) +

coord_fixed()

## Warning: Using size for a discrete variable is not advised.
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Once again, we get 100% accuracy.

395 400



Mark Huber Notes on the Foundations of Data Science

Non-linear SVM

• We can try more general things than the feature addition that we did before. Con-

sider a data set from The Elements of Statistical Learning by Hastie, Tibshirani, and

Friedman. After downloading the �le from the course website, place it in the working

directory. It is an .rda �le, so loads directly into a data frame in R.

load(file = "ESL.mixture.rda")
df4 <- tibble(
x = ESL.mixture$x[, 1],
y = ESL.mixture$x[, 2],
class = factor(ESL.mixture$y)

)

df4 %>%
ggplot() +
geom_point(aes(x, y, color = class, shape = class))
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• This is a bit like our second example, so we’ll use a radial svm to model the points.

mod_svm4 <- svm(class ~ ., data = df4, scale = FALSE,
kernel = "radial", cost = 5)

To see how the area of separation works, create a grid of points, and shade them

according to the prediction
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grid <- df4 %>%
data_grid(x = seq_range(x, 100),

y = seq_range(y, 100)) %>%
add_predictions(mod_svm4)

ggplot() +
geom_point(data = df4, aes(x, y, color = class,

shape = class)) +
geom_point(data = grid, aes(x, y, color = pred),

alpha = 0.05)

−2

−1

0

1

2

3

−2 0 2 4

x

y

class

0

1

• The radial allows the region of separation to swerve.

Questions

3. The cost parameter is a penalty factor for getting points wrong. Change the cost to

1. Describe what happens to the red region.

4. What percentage of the points are correct with cost = 5? With cost = 1?
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