
re·cur·sion (ri’k@rZH@n)

(noun) See recursion.

Atul Vyas Memorial Lecture

How to roll a five-sided die

Mark Huber
Fletcher Jones Foundation Associate Professor of Mathematics
and Statistics and George R. Roberts Fellow
Claremont McKenna College
1 Nov, 2016

Work supported by NSF grant DMS 1418495

What
is

Recursion?

Breaking up the problem

Recursion is an essential mathematical tool that
breaks a problem into versions of the same problem.

A classic problem

How many ways are there to arrange n objects?
Example: n = 3

123

132

213

231

312

321

Each arrangement is called a permutation

Factorials

Definition
The number of ways to arrange n objects in a line is called n
factorial, and written n!.

So for example
3! = 6.

A classic problem

Think about which object gets put into position 1

1 2 3

I There are 3 choices for first position
I The remaining two boxes arrange 2 objects
I So 3! = 3 · 2!

More generally

Same idea with n objects gives a recursive formula for factorials

n! = n · (n− 1)!

Need also a base case:
1! = 1

Can use this recursive formula for calculation

5! = 5 · 4! = 5 · 4 · 3! = 5 · 4 · 3 · 2! = 5 · 4 · 3 · 2 · 1 = 120.

For a computer...

Factorial
Input: n
Output: n!

1) If n = 1 then output 1 and quit
2) Else output n · Factorial(n− 1)

Simulation via recursion

Problem
Suppose I want to generate uniformly from the set of permutations
of n objects. So

P(X = (x1, . . . , xn)) =
1

n!
.

Notation
I P means probability of
I (x1, . . . , xn) is an arbitrary permutation (ex: (1, 2, 3))
I X is a random variable that is the random permutation

Using recursion and symmetry
Using recursion to generate a random permutation:

I The first position is equally likely to be 1, 2, . . . , 1/n.
I Then generate the rest of permutation from items that are left.

For example:

Equally likely
to be {1, 2, 3}

2

Equally likely
to be {1, 3}

Equally likely
to be {3}

2 1 2 1 3

In pseudocode

Uniform_Permutation
Input: item set I = {i1, . . . , in}
Output: permutation (x1, . . . , xn)

1) If n = 0 then output ∅ and quit
2) Else
3) Choose i uniformly at random from {i1, . . . , in}
4) Remove i from the set I
5) Output (i, Uniform_Permutation(I))

Path counting
How many paths are there from (0,0)
to (4,3) that use only right moves or
up moves?

Answer: use recursion!
Each path to (x, y) either begins with...

I ...an up move. # of paths from (1, 0) to (x, y) same as paths
from (0, 0) to (x− 1, y), or...

I ...a right move. # of paths from (0, 1) to (x, y) same as paths
from (0, 0) to (x, y − 1).

= +

P (x, y) = P (x− 1, y) + P (x, y − 1), P (0, 1) = P (1, 0) = 1.

Table of paths
Using the recursive formula gives:

y

x

0

0

1

1

2

2

3

3

4

4

1 1

1

1

1

1

1 1 1

2 3 4 5

3 6 10 15

4 10 20 35

5 15 35 70 P (4, 3) = 35

Pascal’s Triangle
Turned 45 degrees, gives Pascal’s Triangle:

1

1 1

2 11

1 3 3 1

1 4 6 4 1

1 5 10 10 5 1

Uses: # of subsets of a set, Binomial coefficients

Simulation question
Sampling uniformly from grid paths

Need 4 right moves and 3 up moves

Randomly permuted

First move has a 4/(4 + 3) chance of being to the right

(Otherwise move up)

Recursively draw the rest of the path

The pseudocode

Up_Right_Grid_Path
Input: x, y
Output: path consisting of up and right moves

1) If x = y = 0 return ∅
2) With probability x/(x+ y)
3) P ← Up_Right_Grid_Path(x− 1, y)
4) Output (right, P)
5) Otherwise
6) P ← Up_Right_Grid_Path(x, y − 1)
7) Output (up, P)

Structure

So far, our recursions have two elements:
I A recursive call to the same algorithm
I A base case

What if we don’t have a base case!

Infinite Recursion

A fair six sided die
Suppose I have a die with six sides

I am equally likely on a roll to get one of {1, 2, 3, 4, 5, 6}

I can roll the die as many times as I want

How can I use this to roll a five sided die?

Use infinite recursion

Intuitive answer:
1. Roll a six sided die. If the answer is in {1, 2, 3, 4, 5}, output

answer and stop.
2. Otherwise, recursively roll a five sided die.

In pseudocode

Fair_five_sided_die
Output: X uniform draw from {1, 2, 3, 4, 5}

1) Let X the roll of a fair six sided die
2) If X ∈ {1, 2, 3, 4, 5}, output X and quit
3) Else
4) X ← Fair_five_sided_die
5) Output X and quit

Remember our earlier code for permutations

Uniform_Permutation
Input: item set I = {i1, . . . , in}
Output: permutation (x1, . . . , xn)

1) If n = 0 then output ∅ and quit
2) Else
3) Choose i uniformly at random from {i1, . . . , in}
4) Remove i from the set I
5) Output (i, Uniform_Permutation(I))

The first line is the base case

Infinite recursion

Fair_five_sided_die does not have a base case!
I Could call recursives twice...
I ...or a million times...
I ...or a billion times.
I Very unlikely to do so, but it could happen!
I There is no upper bound on the number of recursions

Our intuition is that this works

Theorem (H. 2015)
The Fundamental Theorem of Perfect Simulation [FTPS] says
essentially that when proving a recursive probabilistic algorithm
works, as long as the algorithm terminates with probability 1, you
can assume that the recursive call generates from the correct
distribution.

Applying the FTPS to Fair_five_sided_die
Fact
The output of Fair_five_sided_die is equally likely to be any of
{1, 2, 3, 4, 5, 6}

Fair_five_sided_die
Output: X uniform draw from {1, 2, 3, 4, 5}

1) Let X the roll of a fair six sided die
2) If X ∈ {1, 2, 3, 4, 5}, output X and quit
3) Else
4) X ← Fair_five_sided_die
5) Output X and quit

Applying the FTPS to Fair_five_sided_die
Fact
The output of Fair_five_sided_die is equally likely to be any of
{1, 2, 3, 4, 5}

Proof
The only way the algorithm never terminates is if we roll an infinite
number of 6’s in a row:

6, 6, 6, 6, 6,

The chance of this happening is

1

6
· 1
6
· 1
6
· · · = lim

n→∞

(
1

6

)n

= 0.

So the FTPS can be applied!

Applying the FTPS to Fair_five_sided_die

Proof (continued)
Now consider, what is P(X = 3)? Well, X could equal three in line
1, which happens with probability 1/6. Or X = 6 (which happens
with probability 1/6), and we roll X recursively at line 4. The
FTPS says that we can assume the line 4 call has the correct
probability, so

P(X = 3) =
1

6
+

1

6
· 1
5
=

5 + 1

30
=

1

5

The same argument gives P(X = i) = 1/5 for i ∈ {1, 2, 3, 4, 5}, so
we’re done!

More about the FTPS

The Fundamental Theorem of Perfect Simulation
I Very useful in proofs for probabilistic recursive algorithms
I Another term for probabilistic recursive algorithm is perfect

simulation
I Hence the name
I Why does it work?

Fundamental Theorem of Perfect Simulation proof

Original algorithm uses recursion a random number of times R:

Recursion
level 0

Recursion
level 1

Recursion
level 2

· · ·

Recursion
level R

Call the output of this algorithm X

Fundamental Theorem of Perfect Simulation proof
Set n, and if R > n, use magic (oracle) instead of recursion.

Example: n = 2 and R = 1

Recursion
level 0

Recursion
level 1

Example: n = 2 and R = 4

Recursion
level 0

Recursion
level 1

Recursion
level 2

Oracle

Call the output of this algorithm Yn

Fundamental Theorem of Perfect Simulation proof

Outline of proof of FTPS
I Because we used the oracle, Yn has the target distribution
I Now consider as n becomes larger and larger...
I Because R is finite with probability 1,

lim
n→∞

Yn = X (with probability 1)

I So X also must have the correct distribution!

Flipping a biased coin

Biased coin
Suppose that I want to simulate an event

I The event happens 28% of the time.
I Represent by a picture:

0

0.28

1

I All I have is my trusty six sided die

Divide probability using the die

0

0.28

1

0

1/6

2/6

3/6

4/6

5/6

1

1

2

3

4

5

6
Let X be a roll of the die

If X = 1 definitely in red region

If X ≥ 3 definitely in white region

If X = 2 could be either red or white

What to do when X = 2? Recursion!

When X = 2, the bar looks like:

0.28

1/6

2/6

I The percentage of red area is (0.28− 1/6)/(2/6− 1/6) = 0.68

I Flip a new coin recursively with probability 68%

Divide probability using the die

0

0.68

1

0

1/6

2/6

3/6

4/6

5/6

1

1

2

3

4

5

6
Let X be a roll of the die

If X ≤ 4 definitely in red region

If X = 6 definitely in white region

If X = 5 could be either red or white

How to find regions
Floor function rounds down to nearest integer:

b4.2c = 4, b3c = 3

Ceiling function rounds up to nearest integer:

d4.2e = 5, d3e = 3.

For p = 0.68,
I X ≤ b6 · 0.68c = b4.08c = 4 in red region
I X ≥ d6 · 0.68e+ 1 = 6 in white region

Pseudocode

Event_decision
Input: p (probability event occurs)
Output: S or F (Success or Failure)

1) Randomly draw X uniformly from {1, 2, 3, 4, 5, 6}
2) If X ≤ b6pc
3) Output S and quit
4) Elseif X ≥ d6pe+ 1
5) Output F and quit
6) Output Event_decision(6p− b6pc)

Notes on Event_decision

The input p can change at every level of recursion:

0.28→ 0.68→ 0.08→ 0.48→ 0.88→ 0.28→

Sequence cycles if and only if original p is a rational number.

Can use FTPS to prove that algorithm is correct

Independent Sets of a Graph

Graphs

Definition
A graph consists of nodes and edges which connect pairs of nodes

A line graph with 5 nodes

Independent sets

Definition
An independent set of a graph is a subset of nodes, no two of
which are adjacent.

Not an independent set An indpendent set

Question: how many independent sets are there in aline graph with n nodes?
The node on one end can be out of the ind. set, leaving n−1 nodes

· · ·

The node on the end is in the ind. set, so the node next is out,
leaving n− 2 nodes

· · ·

The recursive formula is

F (n) = F (n− 1) + F (n− 2).

Fibonacci

Number of independent sets in a line graph with n nodes:

F (n) = F (n− 1) + F (n− 2), F (0) = F (−1) = 1.

This gives rise to the famous Fibonacci sequence

1, 1, 2, 3, 5, 8, 13, 21, 34, 55, . . .

Leonardo of Pisa aka Fibonacci

1170-1250

In the Liber Abaci (Book of Calcula-
tion), he introduced Hindu-Arabic nu-
merals to Europe, and introduced the
Fibonacci sequence as an example.

Simulating uniformly over the independent sets
Can try acceptance rejection:

I For each node, flip a fair coin
I If heads, try to put the node in the independent set
I If result is actually an independent set accept, otherwise reject

and start again
Draw a sample

reject and try again

accept as independent set!

One tiny problem...

This is very, very, slow!

Speeding things up....

Suppose that I break the line graph into two pieces

This is called a cut of the graph

Piece by piece AR

Draw independent sets for the two sides of the cut

Bringing the two halves together

Accept!

Reject!

Accept!

Accept!

If together they form an independent set of original graph accept

Otherwise start over

Something to note

If the left side is not in the independent set, accept for any right
side!

We don’t even need to draw the right side in order to accept!

New algorithm!

Generate first node of independent set of a line graph with n nodes
1. Uniformly choose node 1 in or out of the ind set. If it is out of

ind set, accept and return
2. Else recursively draw the value for node 2 of ind set on nodes
{2, . . . , n}

3. If node 2 is in the ind set, reject both sides and start over.
4. Otherwise, accept and return

New algorithm in action

First random choice puts node 1 out of independent set...

Accept and return

New algorithm in action

First random choice puts node 1 in independent set...

Recursively draw value for node 2. Say it is out of ind set

Then accept node 2, which means also accept node 1!

New algorithm in action
First random choice puts node 1 in independent set...

Recursively draw value for node 2. Say node 2 is in the ind set

Recursively draw value for node 3. Say it is out of the ind set

Then node 2 gets accepted as in the ind set, which means node 1
gets rejected because it was next to a node already in the
independent set! Reset and start over!

What is the chance that left most node is in theindependent set
Suppose we have a line graph with n nodes...

...let pn be chance that left most node in independent set

I To be in the independent set, we have to try to put the node
in the independent set. This happens with probability 1/2.

I Then either 1) the node next to it is not in the independent
set or 2) the node next to it is in the independent set and we
reject, start over, and eventually put the first node in.

pn =
1

2
[(1− pn−1) + pn−1pn]

The sequence of probabilities

So we know:
pn =

1

2
[(1− pn−1) + pn−1pn]

Doing some algebra:

pn =
1− pn−1
2− pn−1

Use this an p1 = 1/2 to find the first few values:

p1 =
1

2
, p2 =

1

3
, p3 =

2

5
, p4 =

3

8
, p5 =

5

13
, . . .

Infinite line graph
This algorithm works even if you have an infinite number of nodes!

· · ·

· · ·

· · ·

· · ·

· · ·

· · ·

Accept!

What is the chance that the first node is in the set

Instead of
pn =

1− pn−1
2− pn−1

you get

p =
1− p
2− p

Unique solution:

p = (1/2)(3−
√
5) = 0.3857 . . .

Moving from finite graph to infinite graph

As the graph gets larger, pn → p:

· · ·

Related to a well known constant

The constant can be rewritten as

p =
1

2
(3−

√
5) = 1− 1

φ
,

where φ is the Golden Ratio

Geometric view of Golden Ratio

The Fundamental Theorem of Perfect Simulation

Gives us multiple ways to simulate from tough examples:
I Acceptance/rejection
I Coupling from the past
I Randomness Recycler
I Popping algorithms
I Bernoulli factory

The wonderful idea of infinity

How can we satisfy ourselves
without going on in infinitum?
And, after all, what satisfaction
is there in that infinite
progression?

David Hume, 1779

Thank you!

